Увидеть галактику невооруженным глазом. Галактики, видимые невооруженным глазом в северных широтах. Свет и тьма




Доктор педагогических наук Е. ЛЕВИТАН, действительный член Российской академии естественных наук

Наука и жизнь // Иллюстрации

Одна из лучших современных астрофизических обсерваторий - Европейская южная обсерватория (Чили). На снимке: уникальный инструмент этой обсерватории - "Телескоп новых технологий" (NТТ).

Фотография обратной стороны 3,6-метрового главного зеркала "Телескопа новых технологий".

Спиральная галактика NGC 1232 в созвездии Эридана (расстояние до нее около 100 млн световых лет). Размер - 200 световых лет.

Перед вами огромный, возможно, раскаленный до сотен миллионов градусов по Кельвину газовый диск (его диаметр около 300 световых лет).

Странный, казалось бы, вопрос. Разумеется, мы видим и Млечный Путь и другие, более близкие к нам звезды Вселенной. Но вопрос, поставленный в заглавии статьи, на самом-то деле не так уж прост, а потому постараемся разобраться в этом.

Яркое Солнце днем, Луна и звездная россыпь на ночном небе всегда привлекали к себе внимание человека. Судя по наскальным рисункам, на которых древнейшие живописцы запечатлели фигуры наиболее приметных созвездий, уже тогда люди, по крайней мере наиболее любознательные из них, вглядывались в таинственную красоту звездного неба. И уж конечно проявляли интерес к восходу и заходу Солнца, к загадочным изменениям вида Луны... Вероятно, так зарождалась "примитивно-созерцательная" астрономия. Произошло это на много тысяч лет раньше, чем возникла письменность, памятники которой стали для нас уже документами, свидетельствующими о зарождении и развитии астрономии.

Сначала небесные светила, может быть, были только предметом любопытства, потом - обожествления и, наконец, стали помогать людям, выполняя роль компаса, календаря, часов. Серьезным поводом для философствования о возможном устройстве Вселенной могло стать открытие "блуждающих светил" (планет). Попытки разгадать непонятные петли, которые описывают планеты на фоне якобы неподвижных звезд, привели к построению первых астрономических картин или моделей мира. Апофеозом их по праву считается геоцентрическая система мира Клавдия Птолемея (II век н. э.). Древние астрономы пытались (в основном безуспешно) определить (но еще не доказать!), какое место Земля занимает по отношению к семи известным тогда планетам (таковыми считались Солнце, Луна, Меркурий, Венера, Марс, Юпитер и Сатурн). И только Николаю Копернику (1473-1543) это наконец удалось.

Птолемея называют создателем геоцентрической, а Коперника - гелиоцентрической системы мира. Но принципиально эти системы отличались только содержащимися в них представлениями о расположении Солнца и Земли по отношению к истинным планетам (Меркурию, Венере, Марсу, Юпитеру, Сатурну) и к Луне.

Коперник, по существу, открыл Землю как планету, Луна заняла подобающее ей место спутника Земли, а центром обращения всех планет оказалось Солнце. Солнце и движущиеся вокруг него шесть планет (включая Землю) - это и была Солнечная система, какой ее представляли в XVI веке.

Система, как мы теперь знаем, далеко не полная. Ведь в нее кроме известных Копернику шести планет входят еще Уран, Нептун, Плутон. Последний был открыт в 1930 году и оказался не только самой далекой, но и самой маленькой планетой. Кроме того, в Солнечную систему входят около сотни спутников планет, два пояса астероидов (один - между орбитами Марса и Юпитера, другой, недавно открытый, - пояс Койпера - в области орбит Нептуна и Плутона) и множество комет с разными периодами обращения. Гипотетическое "Облако комет" (что-то вроде сферы их обитания) находится, по разным оценкам, на расстоянии порядка 100-150 тысяч астрономических единиц от Солнца. Границы Солнечной системы соответственно многократно расширились.

В начале 2002 года американские ученые "пообщались" со своей автоматической межпланетной станцией "Пионер-10", которая была запущена 30 лет назад и успела улететь от Солнца на расстояние 12 млрд километров. Ответ на радиосигнал, посланный с Земли, пришел через 22 ч 06 мин (при скорости распространения радиоволн около 300 000 км/сек). Учитывая сказанное, "Пионеру-10" еще долго придется лететь до "границ" Солнечной системы (конечно, достаточно условных!). А дальше он полетит к ближайшей на его пути звезде Альдебаран (самая яркая звезда в созвездии Тельца). Туда "Пионер-10", возможно, домчится и доставит заложенные в нем послания землян только через 2 млн лет...

От Альдебарана нас отделяют не менее 70 световых лет. А расстояние до самой близкой к нам звезды (в системе a Центавра) всего 4,75 светового года. Сегодня даже школьникам надлежит знать, что такое "световой год", "парсек" или "мегапарсек". Это уже вопросы и термины звездной астрономии, которой не только во времена Коперника, но и много позже просто не существовало.

Предполагали, что звезды - далекие светила, но природа их была неизвестна. Правда, Джордано Бруно, развивая идеи Коперника, гениально предположил, что звезды - это далекие солнца, причем, возможно, со своими планетными системами. Правильность первой части этой гипотезы стала совершенно очевидной только в XIX веке. А первые десятки планет около других звезд были открыты лишь в самые последние годы недавно закончившегося XX века. До рождения астрофизики и до применения в астрономии спектрального анализа к научной разгадке природы звезд просто невозможно было приблизиться. Вот и получалось, что звезды в прежних системах мира почти никакой роли не играли. Звездное небо было своеобразной сценой, на которой "выступали" планеты, а о природе самих звезд особо не задумывались (иногда упоминали о них, как... о "серебряных гвоздиках", воткнутых в твердь небесную). "Сфера звезд" была своеобразной границей Вселенной и в геоцентрической и в гелиоцентрической системе мира. Вся Вселенная, естественно, считалась видимой, а то, что за ее пределами, - "царствие небесное"...

Сегодня мы знаем, что невооруженным глазом видна лишь ничтожная часть звезд. Белесоватая полоса, протянувшаяся через все небо (Млечный Путь), оказалась, как догадывались еще некоторые древние греческие философы, множеством звезд. Наиболее яркие из них Галилей (в начале XVII века) различил даже с помощью своего весьма несовершенного телескопа. По мере увеличения размеров телескопов и их совершенствования астрономы получали возможность постепенно проникать в глубь Вселенной, как бы зондируя ее. Но далеко не сразу стало понятно, что звезды, наблюдаемые в разных направлениях неба, имеют какое-то отношение к звездам Млечного Пути. Одним из первых, кому удалось это доказать, был английский астроном и оптик В. Гершель. Поэтому с его именем связывают открытие нашей Галактики (ее иногда так и называют - Млечный Путь). Однако увидеть целиком нашу Галактику простому смертному, видимо, не дано. Конечно, достаточно заглянуть в учебник астрономии, чтобы обнаружить там ясные схемы: вид Галактики "сверху" (с отчетливой спиральной структурой, с рукавами, состоящими из звезд и газово-пылевой материи) и вид "сбоку" (в этом ракурсе наш звездный остров напоминает двояковыпуклую линзу, если не вдаваться в некоторые детали строения центральной части этой линзы). Схемы, схемы... А где же хотя бы одна фотография нашей Галактики?

Гагарин был первым из землян, кто увидел нашу планету из космического пространства. Теперь, наверное, каждый видел фотографии Земли из космоса, переданные с борта искусственных спутников Земли, с автоматических межпланетных станций. Сорок один год минул со времени полета Гагарина, и 45 лет со дня запуска первого ИСЗ - начала космической эры. Но и поныне никто не знает, сможет ли когда-нибудь человек увидеть Галактику, выйдя за ее пределы... Для нас это вопрос из области фантастики. А потому вернемся к реальности. Но только при этом, пожалуйста, подумайте о том, что всего лишь лет сто назад нынешняя реальность могла показаться самой невероятной фантастикой.

Итак, открыты Солнечная система и наша Галактика, в которой Солнце - одна из триллионов звезд (невооруженным глазом на всей небесной сфере видно около 6000 звезд), а Млечный Путь - проекция части Галактики на небесную сферу. Но подобно тому, как в XVI веке земляне поняли, что наше Солнце - самая рядовая звезда, мы теперь знаем, что наша Галактика - одна из множества ныне открытых других галактик. Среди них, как и в мире звезд, есть гиганты и карлики, "обычные" и "необычные" галактики, относительно спокойные и чрезвычайно активные. Они находятся на громадных расстояниях от нас. Свет от самой близкой из них мчится к нам почти два миллиона триста тысяч лет. А ведь эту галактику мы видим даже невооруженным глазом, она в созвездии Андромеды. Это очень большая спиральная галактика, похожая на нашу, и поэтому ее фотографии в какой-то степени "компенсируют" отсутствие снимков нашей Галактики.

Почти все открытые галактики удается рассмотреть лишь на фотографиях, полученных с помощью современных наземных телескопов-гигантов или космических телескопов. Применение радиотелескопов и радиоинтерферометров помогло существенно дополнить оптические данные. Радиоастрономия и внеатмосферная рентгеновская астрономия приоткрыли завесу над тайной процессов, происходящих в ядрах галактик и в квазарах (самых далеких из известных ныне объектов нашей Вселенной, почти неотличимых от звезд на фотографиях, полученных с помощью оптических телескопов).

В чрезвычайно огромном и практически скрытом от глаз мегамире (или в Метагалактике) удалось открыть его важные закономерности и свойства: расширение, крупномасштабную структуру. Все это несколько напоминает другой, уже открытый и во многом разгаданный микромир. Там исследуются совсем близкие к нам, но тоже невидимые кирпичики мироздания (атомы, адроны, протоны, нейтроны, мезоны, кварки). Познав устройство атомов и закономерности взаимодействия их электронных оболочек, ученые буквально "оживили" Периодическую систему элементов Д. И. Менделеева.

Самое важное то, что человек оказался способным открыть и познать непосредственно не воспринимаемые им миры различных масштабов (мегамир и микромир).

В этом контексте астрофизика и космология вроде бы не оригинальны. Но тут мы приближаемся к самому интересному.

"Занавес" издавна известных созвездий открылся, унося с собой последние потуги нашего "центризма": геоцентризма, гелиоцентризма, галактикоцентризма. Мы сами, как и наша Земля, как Солнечная система, как Галактика, - всего лишь "частицы" невообразимой по обыденным масштабам и по сложности структуры Вселенной, именуемой "Метагалактика". Она включает в себя множество систем галактик разной сложности (от "двойных" до скоплений и сверхскоплений). Согласитесь, что при этом осознание масштаба собственной ничтожной величины в необъятном мегамире не унижает человека, а, наоборот, возвышает мощь его Разума, способного открыть все это и разобраться в том, что было открыто ранее.

Казалось бы, пора и успокоиться, поскольку современная картина строения и эволюции Метагалактики в общих чертах создана. Однако, во-первых, она таит в себе много принципиально нового, ранее неведомого для нас, а во-вторых, не исключено, что кроме нашей Метагалактики есть и другие мини-вселенные, образующие пока еще гипотетическую Большую Вселенную...

Может быть, на этом стоит пока остановиться. Потому что нам бы сейчас, как говорится, со своей Вселенной разобраться. Дело в том, что она в конце ХХ века преподнесла астрономии большой сюрприз.

Тем, кто интересуется историей физики, известно, что в начале ХХ века некоторым великим физикам показалось, будто бы их титанический труд завершен, ибо все главное в этой науке уже открыто и исследовано. Правда, на горизонте оставалась пара странных "облачков", но мало кто предполагал, что они вскоре "обернутся" теорией относительности и квантовой механикой... Неужели что-то подобное ожидает астрономию?

Вполне вероятно, потому что наша Вселенная, наблюдаемая с помощью всей мощи современных астрономических инструментов и вроде бы уже довольно основательно изученная, может оказаться лишь вершиной вселенского айсберга. А где же его остальная часть? Как могло возникнуть столь дерзкое предположение о существовании еще чего-то громадного, материального и совершенно доселе неизвестного?

Вновь обратимся к истории астрономии. Одной из ее триумфальных страниц было открытие планеты Нептун "на кончике пера". Гравитационное воздействие какой-то массы на движение Урана натолкнуло ученых на мысль о существовании неизвестной еще планеты, позволило талантливым математикам определить ее местоположение в Солнечной системе, а потом точно указать астрономам, где ее искать на небесной сфере. И в дальнейшем гравитация оказывала астрономам подобные услуги: помогала открывать разные "диковинные" объекты - белых карликов, черные дыры. Так вот и теперь исследование движения звезд в галактиках и галактик в их скоплениях привело ученых к выводу о существовании таинственного невидимого ("темного") вещества (а может быть, вообще какой-то неведомой нам формы материи), и запасы этого "вещества" должны быть колоссальными.

По наиболее смелым оценкам, все то, что мы наблюдаем и учитываем во Вселенной (звезды, газово-пылевые комплексы, галактики и т. д.), составляет лишь 5 процентов от массы, которая "должна была бы быть" по расчетам, основанным на законах гравитации. Эти 5 процентов включают весь известный нам мегамир от пылинок и распространенных в космосе атомов водорода до сверхскоплений галактик. Некоторые астрофизики относят сюда даже всепроникающие нейтрино, считая, что, несмотря на их небольшую массу покоя, нейтрино своим бессчетным количеством вносят определенный вклад все в те же 5 процентов.

Но, может быть, "невидимое вещество" (или по крайней мере часть его, неравномерно распределенная в пространстве) - это масса потухших звезд или галактик либо таких невидимых космических объектов, как черные дыры? В какой-то мере подобное допущение не лишено смысла, хотя недостающие 95 процентов (или, по другим оценкам, 60-70 процентов) восполнить не удастся. Астрофизики и космологи вынуждены перебирать различные другие, в основном гипотетические, возможности. Наиболее фундаментальные идеи сводятся к тому, что значительная часть "скрытой массы" - это "темное вещество", состоящее из не известных нам элементарных частиц.

Дальнейшие исследования в области физики покажут, какие элементарные частицы кроме тех, которые состоят из кварков (барионы, мезоны и др.) или являются бесструктурными (например, мюоны), могут существовать в природе. Разгадать эту загадку будет, вероятно, легче, если объединить силы физиков, астрономов, астрофизиков, космологов. Немалые надежды возлагаются на данные, которые могут быть получены уже в ближайшие годы в случае успешных запусков специализированных космических аппаратов. Например, планируется запустить космический телескоп (диаметр 8,4 метра). Он сможет зарегистрировать огромное число галактик (до 28-й звездной величины; напомним, что невооруженным глазом видны светила до 6-й звездной величины), а это позволит построить карту распределения "скрытой массы" по всему небу. Из наземных наблюдений тоже можно извлечь определенную информацию, поскольку "скрытое вещество", обладая большой гравитацией, должно искривлять лучи света, идущие к нам от далеких галактик и квазаров. Обрабатывая на компьютерах изображения таких источников света, можно зарегистрировать и оценить невидимую гравитирующую массу. Подобного рода обзоры отдельных участков неба уже сделаны. (См. статью академика Н. Кардашева "Космология и проблемы SETI", недавно опубликованную в научно-популярном журнале президиума РАН "Земля и Вселенная", 2002, № 4.)

В заключение вернемся к вопросу, сформулированному в названии данной статьи. Думается, что после всего сказанного вряд ли на него можно уверенно дать положительный ответ... Древнейшая из самых древних наук - астрономия только начинается.

В столице продолжаются мероприятия, приуроченные к 55-й годовщине первого полета человека в космос. 18 мая открывается выставка "Русский космос". Специально к этому событию мы собрали некоторые интересные факты о Вселенной. Эти, казалось бы, самые обычные вопросы часто задают даже дети. А вот самих взрослых они порой ставят в тупик. Какая температура в космосе, можно ли услышать звук планет и сколько звезд во Вселенной – читайте в нашем материале.

С Земли можно увидеть галактики невооруженным глазом

С Земли невооруженным глазом мы можем увидеть целых четыре галактики: в Северном полушарии видны наш Млечный Путь и Андромеда (М31), а в Южном – Большое и Малое Магеллановы Облака.
Галактика Андромеды – самая крупная из ближайших к нам. А вот если вооружиться достаточно большим телескопом, можно увидеть еще много тысяч галактик. Они будут видны как туманные пятна различной формы.

Солнечной системе почти 4,5 миллиарда лет

Глядя на ночное небо, мы смотрим в прошлое

Когда мы смотрим в ночное небо и видим привычные нам звезды, мы действительно заглядываем в прошлое.

Это происходит оттого, что на самом деле мы видим свет, посланный очень далеким объектом много лет назад. Все звезды, которые мы видим с Земли, находятся на расстоянии многих световых лет от нас. И чем звезда дальше, тем дольше добирается до нас ее свет.

Например, галактика Андромеды находится в 2,3 миллиона световых лет от нас. То есть ровно столько идет до нас ее свет. Галактику мы видим такой, какой она на самом деле была 2,3 миллиона лет назад. А наше Солнце мы видим с опозданием в восемь минут.

Солнце вращается вокруг своей оси неравномерно. На экваторе – за 25,05 земных дня, у полюсов – за 34,3 дня

В космосе не абсолютная тишина

Наши уши воспринимают колебания воздуха, а в космосе из-за безвоздушной среды мы действительно не сможем услышать никаких звуков.

Но это не значит, что их там нет. На самом деле даже разреженный газ или вакуум может проводить неслышный для нашего уха звук очень большой длинной волны. Его источником могут стать столкновения газопылевых облаков или вспышки сверхновых.

Слышать такие электромагнитные волны мы, конечно, не можем. А вот у некоторых космических кораблей есть инструменты, способные захватывать радиоизлучение, а ученые, в свою очередь, могут преобразовать его в звуковые волны. Например, мы можем послушать "голос" гиганта Юпитера, сделанный космический аппаратом Кассини в 2001 году.

Какая температура в космосе

На самом деле наше обычное представление о температуре к космическому пространству не совсем применимо. Температура – это состояние вещества, а его в открытом космосе, как известно, практически нет.

Но все же космическое пространство не безжизненно. Оно буквально пронизано излучением от самых разных источников – столкновения газопылевых облаков или вспышки сверхновых и многого другого.

Считается, что температура в открытом космосе стремится к абсолютному нулю (минимальному пределу, которое может иметь физическое тело во Вселенной). Абсолютный нуль температуры является началом отсчета шкалы Кельвина или минус 273,15 градуса по Цельсию.

Важную роль в формировании температуры космоса играют планеты и их спутники, астероиды, метеориты и кометы, космическая пыль и многое другое. Из-за этого температура может колебаться. Кроме того, вакуум – это отличный теплоизолятор, что-то вроде огромного термоса. А из-за того, что в космосе отсутствует атмосфера, предметы в нем нагреваются очень быстро.

Например, температура тела, помещенного в космосе вблизи Земли и находящегося под лучами Солнца, может повыситься до 473 градусов Кельвина, или почти 200 по Цельсию. То есть космос может быть и горячим, и холодным, смотря в какой его точке измерять.

Луна каждый год удаляется от нашей планеты примерно на четыре сантиметра

Космос не черный

Хотя все мы видим черное ночное небо, а голубой цвет днем – это из-за атмосферы нашей планеты. Казалось бы, все просто: космос черный, потому что там темно. Но как же звезды? Ведь на самом деле их так много, что космос должен быть пронизан их светом.

С Земли мы не видим звезд повсюду, потому что свет многих из них просто не может до нас добраться. Кроме того, наша Солнечная система находится в относительно тихом, довольно скучном и темном месте галактики. И звезды здесь разбросаны очень далеко друг от друга. Ближайшая к нашей планете – Проксима Центавра находится аж в 4,22 световых года от Земли. Это в 270 тысяч раз дальше Солнца.

На самом деле если рассмотреть космос во всем диапазоне электромагнитных излучений, то он ярко излучает в основном радиоволны от разных астрономических объектов. Если бы наши глаза могли их видеть, то мы жили бы в значительно более яркой Вселенной. Но сейчас нам кажется, что мы обитаем в полной темноте.

Солнце составляет 99,86 процента всей массы Солнечной системы

Самая большая звезда во Вселенной

Конечно, речь идет о самой большой известной нам звезде. По оценкам ученых, Вселенная содержит более 100 миллиардов галактик, каждая из которых, в свою очередь, содержит от нескольких миллионов до сотен миллиардов звезд. Нетрудно догадаться, что в них могут существовать такие гиганты, о которых мы даже не подозреваем.

Оказалось, что вопрос, какая звезда самая большая, неоднозначен даже для самих ученых. Поэтому расскажем о трех известных на данный момент гигантах. Довольно долго самой большой звездой считалась VY в созвездии Большого Пса. Ее радиус – от 1300 до 1540 радиусов Солнца, а диаметр – около двух миллиардов километров. Для сравнения, диаметр Солнца – 1,392 миллиона километров. Если представить наше светило как шар в один сантиметр, то диаметр VY составит 21 метр.

Самая массивная из известных звезд – R136a1 в Большом Магеллановом Облаке. Это трудно представить, но звезда весит как 256 Солнц. Она же самая яркая из всех. Этот голубой гипергигант светит ярче нашей звезды в десять миллионов раз. А вот по своим размерам R136a1 далеко не самая крупная. Несмотря на впечатляющую яркость, увидеть ее с Земли невооруженным глазом не получится, потому что она находится в 165 тысячах световых лет от нас.

В настоящее время лидер списка огромности – красный гипергигант NML Лебедя. Радиус этой звезды ученые оценивают в 1650 радиусов нашего светила. Чтобы лучше себе представить этого сверхгиганта, поместим звезду в центр нашей Солнечной системы вместо Солнца. Она займет собой все космическое пространство до орбиты Юпитера.

На орбите Земли находится "свалка" из отходов развития космонавтики. Вокруг нашей планеты обращаются более 370 тысяч объектов весом от нескольких грамм до 15 тонн

Большую часть планет Солнечной системы можно увидеть без телескопа

В подходящее для этого время с Земли мы можем наблюдать Меркурий, Венеру, Марс, Юпитер и Сатурн. Эти планеты были открыты еще во времена античности.

Далекий Уран тоже иногда различим невооруженным глазом с Земли. Но до его открытия планету принимали просто за тусклую звезду. О существовании Урана, Нептуна и Плутона из-за большой их удаленности ученые узнали только с помощью телескопа. С Земли невооруженным глазом мы не сможем увидеть только Нептун и Плутон, который, правда, больше не считается планетой.

Жизнь не только на Земле?

В Солнечной системе есть еще одно небесное тело, на котором ряд ученых все-таки допускают наличие жизни. Пусть даже в самых примитивных формах. Это спутник Сатурна Титан.

На Титане находится большое количество озер. Правда, искупаться в них не получится: в отличие от земных, они наполнены жидкими метаном и этаном.

Тем не менее Титан считается похожим на Землю в самом начале ее развития. Из-за этого некоторые ученые полагают, что в подземных водоемах спутника Сатурна могут существовать простейшие формы жизни.

  • Космический мусор – вышедшие из строя космические аппараты, отработавшие ракетные и другие устройства и их обломки, которые находятся на околоземных орбитах.
  • Невесомость – состояние, при котором действующие на тело гравитационные силы не вызывают взаимных давлений его частей друг на друга.
  • Солнечный ветер – поток электронов и протонов с большими скоростями, постоянно испускаемых Солнцем.
  • Черная дыра – область пространства, обладающая настолько мощным гравитационным полем, что покинуть ее не могут ни вещество, ни излучение. Возникают на конечной стадии эволюции некоторых сверхбольших звезд.
  • Экзопланеты – планеты, находящиеся за пределами Солнечной системы.
  • Комета – небольшой объект, вращающийся вокруг Солнца по сильно вытянутой эллиптической орбите. При приближении к Солнцу образует облако или хвост из пыли и газа.
  • Галактика – связанная гравитацией система из звезд и звездных скоплений, межзвездного газа, пыли и темной материи.
  • Звезда – массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением.
  • Ракета – летательный аппарат, двигающийся за счет действия реактивной тяги, возникающей из-за отброса части собственной массы аппарата. Для полета не нужна воздушная или газовая среда.
  • Космодром – территория с комплексом специальных сооружений и технических систем, предназначенная для запусков космических аппаратов.
  • Гравитация – притяжение материальных объектов друг другом.
  • Планета – небесное тело, вращающееся по орбите вокруг звезды. Достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции.
  • Астероид – относительно небольшое небесное тело Солнечной системы, движущееся по орбите вокруг Солнца. Значительно уступает по массе и размерам планетам, имеет неправильную форму, не имеет атмосферы.
  • Световой год – расстояние, которое свет проходит в вакууме за один год.
  • Вакуум – пространство, свободное от вещества.
  • Туманность – облако межзвездного газа или пыли. На общем фоне неба выделяется своим излучением или поглощением излучения.

В этом посту коротко, в форме «вопрос-ответ», расказано о многих интересных фактах и явлениях происходящих во вселенной. Почему звезды мерцают? Сколько лет вселенной? Велика ли черная дыра? Как долго лететь к другим планетам? И много другого в продолжении поста. Простенько и очень даже поучительно…

Вопрос:
Многие ученые думают, что Вселенная началась с Большого взрыва. А что было до этого?
Ответ:
Ученые считают, что не было ничего. Само время началось с Большого взрыва.

Вопрос:
Правда ли, что, глядя в космос, можно увидеть прошлое?
Ответ:
Да. Глядя в глубокий космос, вы видите свет, посланный отдаленным объектом много-много лет назад. Чем дальше объект, тем дольше добирается до нас его свет и тем дальше вы углубитесь в прошлое, когда этот свет увидите. Например, мы видим Солнце таким, каким оно было восемь минут назад, Альфу Кентавра - какой она была четыре года назад, а галактику Андромеды - какой она была 2,9 млн лет назад. Ученые думают, что самые удаленные объекты мы видим такими, какими они были в самом начале эволюции Вселенной.

Вопрос:
Велика ли черная дыра?

Ответ:
Неизвестно, потому что никто ее никогда не видел. Ученые полагают, что ее наименьший размер может быть такой, как у небольшого города, а наибольший - как у гигантской планеты Юпитер или даже еще больше.

Вопрос:
Можно ли увидеть с Земли другие галактики?
Ответ:
Да. В большой телескоп можно увидеть много тысяч галактик. Даже невооруженным глазом видны три из ник: Большое и Малое Магеллановы Облака и М31 - галактика Андромеды

Вопрос:
Как долго проживет Солнце?
Ответ:
Ученые подсчитали, что Солнце проживет еше от 4,5 до 5 млрд лет.

Вопрос:
Сколько звезд во Вселенной?

Ответ:
Никто не знает точно. В одной только галактике Млечный Путь их около 100 млрд. Сейчас астрономы считают, что во Вселенной много миллионов галактик и в каждой из них примерно столько же звезд, как в нашем Млечном Пути. Видимо, мы никогда не узнаем точно, сколько всего звезд.

Вопрос:
Почему звезды мерцают?

Ответ:
Проходя сквозь атмосферу Земли, свет звезды отклоняется и преломляется. Угол отклонения зависит от температуры воздуха. Проходя сквозь теплые и холодные слои, лучи преломляются и словно бы приходят к нам сразу с нескольких сторон. Поэтому звезды и кажутся мерцающими.

Вопрос:
Смогут ли космические корабли сесть на все планеты Солнечной системы?

Ответ:
Нет, только на твердые планеты: Меркурий, Венеру, Землю, Марс и Плутон. А Юпитер, Сатурн, Уран и Нептун - газовые гиганты, огромные шары из газа и жидкости, оез твердой оболочки. Но у них есть много лун, на которые посадка возможна.

Вопрос:
Как выглядит ночное небо на Луне?
Ответ:
На Луне нет атмосферы и небо всегда ясное. Солние и там мешает наблюдать все звезды, но, когда оно садится, звезды видны гораздо яснее, чем с Земли. Видна в лунном небе и Земля в виде большого, голубого с белым шара. В бинокль можно рассмотреть материки и даже некоторые города (ночью). Подобно Луне, Земля проходит через разные фазы.

Вопрос:
Почему Марс красный?

Ответ:
Почва Марса содержит много железа, за миллионы лет превратившегося в красную ржавчину.

Вопрос:
Некоторые люди утверждают, что видели инопланетян. Существуют ли инопланетяне?
Ответ:
Никто этого точно не знает. Многие люди клянутся, что видели «пришельиев», но не могут это доказать. Ученые считают, что в нашей Галактике многие звезды имеют собственные планеты, а при миллионах галактик во Вселенной планет должно быть бесчисленное множество. Специалисты обнаруживают и в нашей Солнечной системе вешества органического происхождения. Их нашли на Марсе и под ледяной корой Европы, одной из лун Юпитера. Но пока никто не нашел там «пришельцев».

Вопрос:
Сколько Солнечной системе астероидов?
Ответ:
Точного количества никто не знает, но их наверняка многие тысячи. И не только в поясе астероидов, а и во всем пространстве, так что едва ли астероиды когда-нибудь удастся пересчитать.

Вопрос:
Попадал ли в кого-нибудь из жителей Земли метеорит?
Ответ:
Да, но не тревожьтесь: это случается очень редко. В начале 90-х гг. XX в. один человек был ранен метеоритом, когда проезжал по автостраде в Германии. А в начале 900-х гг. Хл в. упавший метеорит убил собаку.

Вопрос:
Какая комета была самой большой?
Ответ:
У самой большой кометы 1811 года голова (облако газа) была
диаметром более 2 млн км - больше Солнца. Большая комета 1843 года имела хвост длиной 330 млн км - как от Солнца до Марса.

Вопрос:
Видны ли с Земли искусственные спутники?
Ответ:
Да, они похожи на звезды, медленно плывущие по небу. Этим они отличаются от самолетов, проносящихся довольно быстро. Иногда искусственные спутники можно видеть на небе каждые несколько минут.

Вопрос:
Как стать космонавтом?
Ответ:
Лучший способ - стать сначала ученым, например химиком, астрономом, инженером. Нужны высшее образование и специализация в отрасли науки, которая может понадобиться в космосе. Полезно также научиться управлять самолетом. Затем обратитесь в Центр подготовки космонавтов с просьбой принять вас в кандидаты. Если вас примут, понадобятся еше четы ре-пять лет тренировок. Может быть, вам посчастливится и вас отберут для участия в экспедиции.


Вопрос:

Почему для полетов в космосе всегда используются ракеты? Почему нельзя использовать что-то вроде самолетов?
Ответ:
Турбины самолетов потребляют очень много воздуха, но его почти нет в самых верхних слоях атмосферы. Там пока годятся только ракеты. Они выбрасывают струю газов с огромной силой и разгоняют космический корабль до колоссальной скорости. Ученые продолжают работать над турбинами, пригодными на краю атмосферы. Пока удалось создать только челноки (шаттлы). Они могут приземляться как самолеты, но взлетают все еше с помошью ракет.

Вопрос:
Сколько времени понадобится космонавтам, чтобы долететь до Плутона?
Ответ:
Космический корабль типа «Аполлон» (такой, какой летал на Луну) смог бы долететь до Плутона за 86 лет.

Вопрос:
В некоторых фантастических фильмах людей для транспортировки сначала разлагают на атомы, а потом передают в другое место лучом. Возможно ли это на самом деле?
Ответ:
Нет. Для такой транспортировки нужно было бы на месте прибытия собрать и соединить все атомы человеческого тела точно в прежнем порядке. Но сделать это невозможно, так как атомы находятся в постоянном движении.

На безграничных просторах интернета я как-то наткнулся на следующую картинку.

Конечно, этот маленький кружок посреди Млечного пути захватывает дух и заставляет задумать о многих вещах, начиная от бренности бытия и заканчивая безграничными размерами вселенной, но все же возникает вопрос: насколько все это соответствует действительности?

К сожалению, составители изображения не указали радиус желтого круга, а оценивать его на глазок - сомнительное занятие. Тем не менее авторы твиттера @FakeAstropix задались таким же вопросом как и я, и утверждают, что эта картинка верна где-то для 99% звезд, видимых на ночном небе.

Другой вопрос заключается в том, а сколько вообще звезд можно увидеть на небе не пользуясь оптикой? Считается, что невооруженным глазом с поверхности Земли можно наблюдать до 6000 звезд. Но в реальности это число будет куда меньше - во первых, в северном полушарии мы физически сможем видеть не больше половины от этого количества (это же справедливо и для жителей южного полушария), во-вторых речь идет об идеальных условиях наблюдения, которых в реальности практически невозможно достичь. Чего только стоит одно световое загрязнение неба. А когда речь идет о самых дальних видимых звездах, то в большинстве случаев чтобы заметить их, нам нужны именно идеальные условия.

Но все же, какие из маленьких мерцающих точек на небе являются наиболее далекими от нас? Вот список, который мне пока что удалось составить (хотя конечно совсем не удивлюсь, если я много чего пропустил, так что не судите строго).

Денеб - самая яркая звезда в созвездии Лебедя и двадцатая по яркости звезда в ночном небе, с видимой звездной величиной +1,25 (считается, что предел видимости для человеческого глаза +6, максимум +6.5 для людей с действительно великолепным зрением). Этот бело-голубой сверхигагинт, который находится от нас на расстоянии от 1500 (последняя оценка) до 2600 световых лет - таким образом, видимый нами свет Денеба был испущен где-то в промежутке между зарождением Римской республики и падением Западной Римской империи.

Масса Денеба больше массы нашей звезды примерно в 200 раз Солнца, а светимость превышает солнечную минимум в 50 000 раз. Находись он на месте Сириуса, он бы сверкал на нашем небе ярче, чем полная Луна.

VV Цефея А - одна из самых больших звезд нашей галактики. По разным оценкам, ее радиус превышает солнечный от 1000 до 1900 раз. Она находится на расстоянии 5000 световых лет от Солнца. VV Цефея А является частью двойной системы - его сосед активно перетягивает на себя вещество звезды- компаньона. Видимая звездная величина VV Цефея А примерно равна +5.

P Лебедя находится от нас на расстоянии от 5000 до 6000 световых лет. Она является ярко-голубым переменным гипергигантом, чья светимость превышает солнечную в 600 000 раз. Известна тем, что за период ее наблюдений ее видимая звездная величина несколько раз менялась. Впервые звезда была открыта в 17 веке, когда она внезапно стала видимой - тогда ее звездная величина составляла +3. Через 7 лет яркость звезды уменьшилась настолько, что она перестала быть видимой без телескопа. В 17 веке последовало еще несколько циклов резкого увеличения, а затем такого же резкого уменьшения светимости, за что ее даже прозвали постоянной новой. Но в 18 веке звезда успокоилась и с тех пор ее звездная величина составляет примерно +4.8.


P Лебедя выделана красным

Мю Цефея известная также как Гранатовая звезда Гершеля - красных сверхгигант, возможно самая крупная звезда, видимая невооруженным глазом. Ее светимость превышает солнечную от 60 000 да 100 000 раз, радиус согласно последним оценкам может быть в 1500 раз больше солнечного. Мю Цефея находится на расстоянии 5500-6000 световых лет от нас. Звезда находится в конце своего жизненного пути и в скором (по астрономическим меркам) времени превратится в сверхновую. Ее видимая звездная величина меняется от +3,4 до +5. Считается, что она является одной из самых красных звезд на северном небе.


Звезда Пласкетта находится на расстоянии 6600 световых лет от Земли в созвездии Единорога и представляет собой одну из самых массивных систем двойных звезд в Млечном пути. Звезда А имеет массу в 50 солнечных и светимость, превышающую светимость нашей звезды в 220 000 раз. Звезда B имеет примерно такую же массу, но ее светимость поменьше - “всего лишь” в 120 000 солнечных. Видимая звездная величина звезды А составляет +6.05 - а значит, теоретически ее можно увидеть невооруженным глазом.

Система Эта Киля находится от нас на расстоянии 7500 - 8000 световых лет. Она состоит из двух звёзд, главная из которых — яркая голубая переменная, является одной из самых больших и неустойчивых звезд в нашей галактике с массой около 150 солнечных, 30 из которых звезда уже успела сбросить. В 17 веке Эта Киля имела четвёртую звёздную величину, к 1730 году она стала одной из самых ярких в созвездии Киля, но к 1782 опять стала очень слабой. Затем, в 1820 году началось резкое увеличение яркости звезды и в апреле 1843 она достигла видимой звёздной величины −0,8, став на время второй по яркости на небе после Сириуса. После этого, яркость Эта Киля стремительно упала, и к 1870 году звезда стала невидимой невооружённым глазом.

Однако, в 2007 году яркость звезды снова выросла, она достигла звездной величины +5 и снова стала видимой. Нынешняя светимость звезды оценивается минимум в миллион солнечных и она по всей видимости является главным кандидатом на звание следующей сверхновой в Млечном пути. Некоторые даже считают, что она уже взорвалась.

Ро Кассиопеи - это одна из самых дальних звезд, видимых невооруженным глазом. Это крайне редкий желтый гипергигант, со светимостью превышающей солнчечную в полмиллиона раз и радиусом в 400 раз больше, чем у нашей звезды. По последним оценкам, она находится на расстоянии 8200 световых лет от Солнца. Обычно ее звездная величина составляет +4.5, но в среднем раз в 50 лет на несколько месяцев звезда тускнеет, а температура ее внешних слоев уменьшается с 7000 до 4000 градусов Кельвина. Последний такой случай произошел в конце 2000 - начале 2001 году. Согласно расчетам, за эти несколько месяцев звезда выбросила вещество, масса которого составила 3% от массы Солнца.

V762 Кассиопеи - это вероятно самая дальняя звезда, видимая с Земли невооруженным глаза - по крайней мере, исходя из имеющихся на данный момент данных. Информации об этой звезде немного. Известно, что это красный сверхгигант. Согласно последним данным он находится на расстоянии 16 800 световых лет от нас. Его видимая звездная величина составляет от +5.8 до +6, так что увидеть звезду можно как раз в идеальных условиях.

В заключение стоит упомянуть, что в истории были случаи, когда люди имели возможность наблюдать куда более далекие звезды. Например, в 1987 в Большом Магеллановом облаке, находящемся от нас на расстоянии 160 000 световых лет, вспыхнула сверхновая, которую можно было видеть невооруженным глазом. Другое дело, что в отличии от всех перечисленных выше сверхгигантов, наблюдать ее можно было в течении куда меньшего промежутка времени.

Туманность Андромеды - которая, хоть и выглядит как туманное пятно, на самом деле является гигантской спиральной галактикой - один из излюбленных небесных объектов для любителей астрономии. Это ярчайшая галактика, видимая на территории России и сопредельных стран; при благоприятных условиях она может наблюдаться даже простым глазом. Находясь на расстоянии 2,5 миллионов световых лет от нас, галактика Андромеды - самый далекий объект во Вселенной, который можно увидеть без помощи телескопа или другого оптического инструмента. Давайте посмотрим, как увидеть Туманность Андромеды невооруженным глазом.

В чем трудность?

Я не зря написал выше, что галактика Андромеды может наблюдаться невооруженным глазом только при определенных условиях . Довольно часто начинающие астрономы-любители, разобравшись в понятии звездных величин и узнав, что Туманность Андромеды имеет видимую звездную величину 3,44 m , полагают, что увидеть ее не составит проблемы. Рассуждают примерно так: имеющая примерно такой же блеск звезда Мегрец, лежащая в основании ручки ковша Большой Медведицы, вполне отчетливо видна даже на городском небе - почему же нельзя на этом же небе увидеть Туманность Андромеды?

При этом они забывают, что 3,44 m - это интегральная звездная величина галактики , то есть блеск, которая имела бы Туманность Андромеды, собранная в звездообразный, точечный объект. На деле интегральный блеск размазан по площади, в несколько раз большей площади видимого диска Луны на небе. Значит, пятнышко галактики в реальности будет значительно тусклее.

Условия для наблюдения туманностей на небе

Вначале давайте посмотрим на главные факторы, влияющие на видимость тусклых объектов на небе. Вот они:

В городе галактика Андромеды с трудом видна даже в бинокль. Источник: Cloudy Nights

  1. Световое загрязнение неба. Все жители городов, знают что такое засветка. Это когда вы выходите на улицу, а на небе различимы только самые яркие звезды. Все остальные объекты тонут в свете, который создают тысячи уличных фонарей, неоновая реклама, витрины магазинов, фары тысяч автомобилей. Из-за уличного освещения давным-давно исчез с городского неба Млечный Путь.
  2. Загрязнение воздуха. Воздух не всегда бывает чистым и прозрачным. Довольно часто в атмосфере плавает пыль, наблюдается слабый туман, а над большими городами почти всегда бывает еще и смог. Из-за смога, который отлично рассеивает уличное освещение, даже ясное небо из темного превращается в рыжее или цвета кофе с молоком, абсолютно непригодное для наблюдений. Напротив, если небо прозрачное, то и засветка бывает несущественной.
  3. Облака. Я имею в виду не обычные кучевые или слоистые облака, которые способны испортить праздник любому астроному, а тонкие перистые, плавающие на большой высоте и ночью часто совершенно не заметные, если только не подсвечены Луной. Хотя перистые облака иногда помогают при наблюдении ярких планет (изображение становится более резким и спокойным), в случае наблюдения туманностей они - смертельный враг.
  4. Луна. Начиная с фазы первой четверти и даже еще раньше, свет Луны становится препятствием для наблюдения слабых туманных объектов на небе. Вблизи полнолуния о таких наблюдениях можно забыть.

Все это напрямую касается и наблюдения Туманности Андромеды. На небе крупных городов практически нет шансов увидеть эту галактику без бинокля или телескопа. Мне удавалось заметить М31 на окраине полумиллионного города: в особо прозрачные ночи она была видна прямым зрением, а в обычные - боковым. Но все-таки такие наблюдения требуют опыта.

Городские жители уже забыли, что такое по-настоящему темное и прозрачное небо. Источник: 7я.ру

Наконец, еще один важный момент: высота галактики над горизонтом . Как известно, земная атмосфера неплохо поглощает свет - вспомните, каким бывает летнее Солнце в полдень, когда находится высоко в небе, и на закате. Как-будто две разные звезды! Когда объект находится в зените, поглощение света атмосферой минимально, когда у горизонта - максимально. (Объясняется это тем, что свет небесного светила у горизонта проходит через бо́льшую толщу атмосферы.)

Вывод из всего вышесказанного простой: если хотите увидеть Туманность Андромеды невооруженным глазом, постарайтесь выполнить следующие шаги.

  • Найдите место вдали от фонарей, где небо действительно темное, а не белесое и видны звезды до 5 m
  • Не наблюдайте, когда на небе Луна.
  • Занимайтесь поиском галактики тогда, когда она находится как можно выше над горизонтом.

Лучшее время для наблюдения Туманности Андромеды

А когда, кстати, Туманность Андромеды удобнее всего наблюдать? Ночью после полуночи в августе и в сентябре, поздним вечером и ночью в октябре, вечером в ноябре и декабре и ранним вечером в январе. В это время галактика находится высоко над южной стороной неба (на широте Москвы в 75° над горизонтом и на высоте 85° на широте Сочи).

Предположим, вы выполнили базовые условия (сделать это на самом деле не сложно - кому-то, вероятно, читать этот текст сложнее!), что дальше? Приступайте к поиску галактики на небе!

Как найти Туманность Андромеды я подробно описал . Если коротко: есть два способа поиска - отталкиваясь от звезд квадрата Пегаса и от звезд созвездия Кассиопеи, которое находится над галактикой. В обоих случаях вы должны прийти к трем звездам пояса Андромеды , расположенным одна над другой. В основании пояса находится яркая (2 m) звезда Мирах (бета Андромеды), а над ней две звездочки 4-й величины, мю и ню Андромеды. Галактика находится непосредственно на продолжении пояса чуть-чуть выше и правее звезды ню .

Галактика Андромеды находится между звездой Мирах и созвездием Кассиопеи. Рисунок: Stellarium

Не забудьте про адаптацию глаз к темноте и боковое зрение

Не беда, если не видите. Возможно, ночь не слишком прозрачная. Может быть, на небе Луна? Если ночь действительно темная, а вы все-таки ничего не видите, то скорее всего, ваши глаза еще не адаптировались к темноте. Дайте им хотя бы 10 минут, чтобы привыкнуть к окружающей обстановке. В это время не заглядывайте в телефон, прячьте глаза от фонарей и фар машин. Вы удивитесь, насколько легко найдете галактику после этой процедуры!

Туманность Андромеды предстанет маленьким, вытянутым вдоль главной цепочки звезд Андромеды пятнышком света - размытым и без четких краев. Оно действительно похоже на «небесное облачко» и на «клочок тумана», как его называли разные авторы.

Примерно так выглядит для невооруженного глаза галактика Андромеды на дачном небе. Найти туманное пятнышко, когда звезды поблизости не соединены линиями, немного сложнее, не так ли? Рисунок: Stellarium

Надо понимать, что невооруженным глазом мы видим только центральные, наиболее яркие области галактики Андромеды - так называемый балдж . На любительских фотографиях, призванных показать нам спиральную структуру галактики, эта часть М31 обычно безнадежно засвечена и предстает белым пятном, а при визуальных наблюдениях она похожа на свет неоновой лампы, просвечивающий сквозь запотевшее стекло. Надо сказать, что в телескоп мы способны увидеть не только балдж, но и часть диска галактики, а в большой любительский телескоп да еще в прозрачную ночь - также намеки на спиральные рукава.

И все-таки многих, наверное, интересует вопрос: можно ли увидеть Туманность Андромеды невооруженным глазом на городском небе и если да, то как ? Если небо прозрачно и при этом не слишком засвечено (скажем, на городской окраине или в неосвещенном парке), то вполне! Во всяком случае, если не прямым, то боковым зрением . Не секрет, что периферия сетчатки наших глаз более чувствительна к свету, чем центральные области, хотя дает и не такую четкую картинку. Благодаря этому эффекту мы способны уловить на городском небе довольно слабые небесные объекты - Млечный Путь, скопление хи-аш Персея и, конечно, Туманность Андромеды!

Чтобы увидеть галактику боковым зрением, смотрите не на саму галактику, а на несколько градусов в сторону от нее. Вероятность увидеть Туманность Андромеды повысится, если чуть-чуть покачивать головой из стороны в сторону - наш мозг лучше реагирует на движущиеся объекты.

Post Views: 2 911