Раскрой плитных материалов из древесины. Раскрой плит – дело тонкое! Автоматизация технологической подготовки производства корпусной мебели




РАСКРОЙ ПЛИТНЫХ МАТЕРИАЛОВ

Цель работы:

Практическое и теоретическое изучение технологического процесса раскроя облицованных и необлицованных древесностружечных плит.

Задачи работы:

При выполнении лабораторной работы в производственных условиях студенты должны изучить процесс раскроя плит; работу и устройство оборудования; принципы организации рабочих мест на участке раскроя; способы определения производительности, специфику разработки карт раскроя для данного вида оборудования.

Общие сведения о раскрое плитных материалов

Раскрой древесностружечных плит – один из самых важных этапов производства мебели на их основе. Насколько качественно изготовлена мебель из ДСтП в значительной мере зависит от того, насколько качественно был выполнен распил плиты на заготовки.

Эффективность операции раскроя плит определяется производительностью и рациональностью использования материала.

Эффективность раскроя по рациональности использования материала определяется коэффициентом полезного выхода P , который определяется по формуле

(1.1)

Для организации рационального раскроя плитных материалов технологи разрабатывают карты раскроя. Карты раскроя являются графическим представлением расположения заготовок на стандартном формате раскраиваемого материала. Для составления карт раскроя необходимо знать размеры заготовок, их количество в пределах производственной программы, форматы подлежащего раскрою материала, ширину пропилов, количество пил и последовательность пропилов, соответствующую техническим данным оборудования.

Если раскраивают облицованные или ламинированные плиты, фанеру и подобные древесные материалы, то при составлении карт раскроя необходимо располагать заготовки на формате с учетом направления волокон на облицованной поверхности. В таком случае заготовки имеют определенность размера вдоль и поперек волокон, что делает полезный выход меньше, чем при раскрое необлицованных плит. Раскрой облицованных древесностружечных плит производится в точный размер.

Благодаря своим высоким потребительским качествам при доступной цене приобрели большую популярность форматно-раскроечные станки фирмы Altendorfи их многочисленные аналоги (FL-3200B, FL-3200B, FL-3200 Light и др.). Модели таких станков различаются уровнем систем управления и технологичности. На мировом рынке оборудования предлагаются различные модели форматно-раскроечных станков с подрезной пилой: Omnia 3200R (MJ3200D), KS3200 MAKA, WA6, ELMO IV (Германия), SC-32, OPTIMAL-350, ТЕМА2600, EXPRESS-3200, UNICA-500E (Италия) и др.

Ассортимент оборудования расширился также за счет появления вертикальных станков для раскроя плит фирм Reich (Holz-Her), Sonnenberger, Striebig (Швейцария), Homad-Espana (Испания). Эти станки отличаются тем, что раскрой плитных материалов производится в вертикальном положении. Это обеспечивает снижение производственной площади, необходимое для организации рабочего места.

В качестве инструмента при раскрое ДСтП применяются дисковые пилы диаметром от 320 до 400 мм с пластинками из твердых сплавов. Скорость подачи на зуб Uz = 0,05-0,12 мм. Отклонение от перпендикулярности сторон заготовок не более 0,5 мм, от прямолинейности – не более 0,3 мм. При раскрое облицованных древесностружечных плит для сохранения качества облицовки резы производятся двумя пилами: основной и подрезной (рисунок 1). Подрезной агрегат предусмотрен на станках для того, чтобы при раскрое материалов с двухсторонней облицовкой с нижней стороны не образовывалось вырывов и сколов. Линия пропила подрезателя в точности совпадает с пропилом основного диска, в том числе и при пилении под углом.

Рисунок 1 – Схема штучного и пакетного раскроя облицованных плит

Расчетная производительность станка может быть определена по формуле

,

где Т см – продолжительность рабочей смены, мин;

К р – коэффициент, учитывающий потери рабочего времени на введенные в режим работы перерывы;

К м – коэффициент, учитывающий потери машинного времени;

U – скорость подачи, м/мин;

n - количество одновременно раскраиваемых плит;

m - число заготовок по карте раскроя для одной плиты;

∑L пр – длина пропилов по карте раскроя;

L разрыв. - длина межторцовых разрывов.

В качестве базовой модели оборудования используется форматно-раскроечный станок FL-3200B фирмы Filato (рисунок 2).

Рисунок 2 – Внешний вид станка

Станок предназначен для продольного, поперечного и углового штучного и пакетного раскроя плитных материалов (МДФ, ДВП, ДСП и клееных щитов) облицованных и ламинированных, а также заготовок из массивной древесины, с предварительной подрезкой нижней кромки заготовки для исключения образования сколов. При раскрое необлицованных плит подрезная пила не используется. Подобное оборудование применяется на предприятиях по производству корпусной мебели, в столярных мастерски по производству столярно-строительных изделий.

Часть 1. Проблемы раскроя плит и выбор оборудования
для раскроя плит

Древесно-стружечные (ДСП) и древесно-волокнистые плиты (ДВП) давно уже стали основным материалом для изготовления мебели. И получение из этих плит деталей нужного размера невозможно без использования специализированных станков для раскроя. Понятно, что такое оборудование уже давно применяется на каждом мебельном предприятии.

К сожалению, многие вновь организованные предприятия, стесненные, как и все, в инвестиционных ресурсах, стараются приобрести чуть ли не первый попавшийся станок, лишь бы подешевле. В дальнейшем, когда производительность механизма становится недостаточной, по привычке приобретается второй такой же станок, хотя проблему нужно было сразу решать по-другому. Но, чтобы понять это, следует знать, какие существуют типы станков для раскроя, в чем их отличия.

Но ни в одном учебнике - ни для бывших ПТУ, ни для вузов - таких сведений нет. Все учебные пособия устарели, а новые написать сегодня просто некому. И мебельщику уже давно негде получить хоть как-то упорядоченные знания не только об этих станках, но и о большинстве других, используемых при современных технологиях. Но, планируя приобретение оборудования для раскроя, следует начинать не с выбора типа и конструкции конкретных станков, а с определения их назначения и требуемой производительности. Ошибки стоят слишком дорого. В буквальном смысле.

Прежде всего следует определиться с тем, мебель каких видов предполагается производить, из номенклатуры каких деталей она будет составлена, каковы будут их размеры. Понятно, что определить размеры щитовых заготовок на длительный период невозможно. Поэтому для начала выбирается какое-то наиболее характерное изделие, которое будет выпускаться часто и в наибольших объемах, - так называемое расчетное.


а - простая;
б - смешанная;
в - сложная смешанная;
г - с отрезанием головной части плиты.

Затем, исходя из требуемой производительности и количества заготовок, делается попытка составить для этого расчетного изделия так называемые карты раскроя - схемы расположения заготовок на раскраиваемых плитах, обеспечивающие образование наименьшего количества отходов. Необходимо также задаться и размерами исходных плит. Так, в СССР их существовало всего два: 1830х3660 и 1750х3500мм. Сегодня их значительно больше: 1750х3500мм, 2440х1830мм, 2440х1220мм, 2440х2070мм и т.д.

Карты раскроя полноформатных плит составляются по четырем основным схемам (рис. 1): простой - когда деталь раскраивается сквозными параллельными пропилами в одном направлении (вдоль или поперек); смешанной - продольно-поперечный раскрой, когда выполняются только сквозные пропилы, проходящие вдоль и поперек плиты; сложной смешанной - когда сквозные пропилы выполняются только в одном направлении (раскрой на полосы), а поперечные к ним делаются отдельно, на уже выпиленных заготовках (полосах). Еще более сложной считается схема с отрезанием головной части плиты, при которой плита сначала разрезается поперек на две заготовки, каждая из которых затем раскраивается по отдельной схеме. Существует также и пятая схема, которая может быть вообще без сквозных резов и составлена из заготовок разного размера, в том числе и непрямоугольной формы. Способ раскроя по этой схеме получил название «нестинг» (от англ. nesting).

Составление карт раскроя осуществляется с использованием компьютерных программ - отдельных или входящих в программные пакеты типа «Базис-конструктор мебельщик», «К3‑мебель», bCAD и т.п. При этом, уже создав начальные карты на расчетное изделие, многие с удивлением обнаруживают, что для его производства в заданном объеме, определяющем количество заготовок, выкраиваемых из плит, необходимо довольно много различных карт, что при малой серии позволит производить раскрой по нескольку плит в пакете. Эта ситуация еще более обостряется, когда изделия производятся из плит разных цветов или по заказу, с отличающимися размерами. При составлении карт раскроя облицованных плит обязательно учитывается направление текстуры в каждой детали, что обуславливает меньший полезный выход в сравнении с необлицованными плитами. Чем больше размер исходных полноформатных плит, тем больше возможных вариантов раскладки деталей при составлении карт раскроя и тем больше полезный выход.

Другая проблема - оценка производительности, необходимая для выбора будущего станка. В каких единицах рассчитывать производительность? Ведь при увеличении толщины плиты изменяется ее кубатура, а затраты времени на пропилы при той же карте раскроя остаются прежними. Поэтому оценка производительности в кубических метрах раскроенных плит интересна только снабженцам, а для технолога она практически не имеет значения.

Расчет производительности станков для раскроя в квадратных метрах тоже не может дать однозначных результатов. Здесь опять все зависит от толщины плиты. Например, если раскраивать плиты толщиной 25мм в пакете по три, толщиной 19мм - по четыре и толщиной 16мм - по пять, то разница в производительности, измеренной в квадратных метрах, при одинаковых картах раскроя будет больше чем в полтора раза!

В результате, когда нет всех конкретных и однозначных параметров, заранее оценить нужную предприятию производительность и ту, которую фактически обеспечит тот или иной станок, даже весьма приблизительно, оказывается просто невозможно. Слишком много неизвестных!

Конечно, определенную помощь здесь могут оказать компьютерные программы, в особенности входящие в программное обеспечение некоторых станков для раскроя плит с программным управлением, но что делать, например, если предполагается использование обычного круглопильного станка с кареткой, имеющего ручную подачу и требующего значительно большего вспомогательного времени для обработки материала?

К сожалению, и фотографий рабочего времени, которые могли бы помочь при определении фактической производительности при раскрое плит, не делал у нас никто. Вот поэтому-то так часты ошибки наших производственников, приобретающих оборудование, оказывающееся на поверку значительно менее мощным, чем было объявлено продавцом.

Производительность является основным параметром при выборе оборудования для раскроя древесных плит на заготовки и детали (ДСП, MDF, фанера клееная и т.д.).

Условно все оборудование может быть подразделено на ручной механизированный инструмент, станки для раскроя плит вертикальные, станки круглопильные с кареткой, станки для раскроя плит с прижимной балкой, станки с прижимной балкой и программным управлением (с программируемым толкателем пакета), станки для раскроя плит многопильные, полуавтоматические и автоматические линии для раскроя плит на базе станков с прижимной балкой.


Простейшим устройством для раскроя плит являются универсальные электропилы, наиболее часто используемые в деревообрабатывающих мастерских для продольного и поперечного раскроя досок, брусков и различных плитных материалов. В номенклатуре таких электропил едва ли не единственным, специально предназначенным для раскроя плит является устройство, разработанное немецкой фирмой Mafell (рис. 2). Его отличием от всех остальных является использование длинной (до 4м) линейки из алюминиевого профиля, по всей длине которой протянута пластмассовая зубчатая рейка, в зацепление с которой входит расположенная на корпусе устройства вращающаяся шестерня с приводом от электродвигателя пилы через редуктор. Линейка снабжена переставным упором, ограничивающим ход пилы, останавливающим ее вращение и движение по линейке при касании клавиши выключателя.

При работе устройства линейка с помощью струбцин закрепляется в нужном положении на верхней пласти раскраиваемой плиты, на нее устанавливается пила и производится включение. Вращающаяся шестерня, связанная с зубчатой рейкой, заставляет пилу перемещаться вдоль линейки, совершая рез. По достижении упора пила останавливается. Затем линейка переставляется в новое положение и цикл повторяется.

Это устройство позволяет распиливать плиты, уложенные на вспомогательный стол большого размера или раскраивать верхнюю плиту, лежащую в стопе. Его особое преимущество в том, что равномерная скорость подачи исключает остановки пилы, характерные для ручного перемещения электропил по линейке, как правило, приводящие к образованию прижогов на кромках раскраиваемого материала. Кроме того, при использовании электропилы фирмы Mafell для выполнения длинных резов в середине широкой плиты рабочему не приходится в неудобной позе дотягиваться до места реза, от чего обычно страдает качество пропила.

Однако производительность такой пилы недостаточна для использования на промышленных предприятиях. Она, как правило, не превышает десятка раскроенных полноформатных плит в смену. Поэтому на небольших производствах ограниченной площади получили распространение станки для раскроя плит, находящихся в вертикальном положении.


Рис. 3. Установка для раскроя плит простейшей конструкции (Safety
Speed Cut)

Одна из простейших моделей таких станков (рис. 3) включает установленную вертикально, с небольшим наклоном назад, раму-станину с расположенным в нижней части набором опорных (базирующих) роликов, вертикальные направляющие с поворотным пильным суппортом и две горизонтальные линейки с откидными упорами. Раскраиваемые плиты ставятся кромкой на опорные ролики, вкатываются по ним параллельно раме и прижимаются вплотную к ней. Суппорт поворачивается таким образом, чтобы его пила заняла горизонтальное положение и располагалась на высоте, необходимой для отпиливания полосы нужной ширины. Раскраиваемая плита вручную надвигается на пилу, отрезающую полосы. При поперечном раскрое суппорт разворачивается так, чтобы пила заняла вертикальное положение. Плита продвигается по опорным роликам вдоль рамы до одного из откинутых упоров, которые заранее устанавливаются на определенном расстоянии от места предполагаемого пропила. Суппорт с пилой вручную перемещается вниз и производит рез. Для раскроя узких деталей или полос используется вторая опорная линейка, расположенная выше, в середине рамы, и также снабженная откидными упорами. Пила закрыта кожухом с присоединяемым к нему мешком для сбора части образующихся в процессе пиления отходов.

Станки такой конструкции из-за необходимости ручного продвижения плиты при раскрое не обеспечивают высокой точности обработки, однако недороги и позволяют производить раскрой на полосы плит и заготовок практически неограниченной длины, например листов пластмассы большого формата или досок для строительства. Они могут использоваться и на малых производствах при изготовлении мебели - для чернового раскроя плит или раскроя ДВП на детали задних поликов, то есть там, где не требуется высокая точность размеров полученных элементов.

Более сложную конструкцию имеют станки с пильным суппортом, перемещаемым в горизонтальном и вертикальном направлении. Принцип их работы во многом подобен кульману с блоком линеек, передвигающихся по горизонтальным и вертикальным направляющим. Но о них - .

Эффективность раскроя зависит от применяемого оборудования и организации процесса раскроя плит и листовых материалов. По техно­логическим особенностям применяемое при раскрое плит оборудова­ние можно разделить на 3 группы:

- к первой относятся станки, имеющие несколько суппортов про­дольного пиления и один поперечного. Раскраиваемый материал укладывают на стол-каретку. При движении стола в прямом направле­нии суппорты продольного пиления раскраивают материал на продоль­ные полосы. На каретке имеются переставные упоры, воздействие кото­рых на конечный выключатель вызывает автоматическую остановку каретки и привод в движение поперечного суппорта пиления;

- ко второй относятся станки, имеющие также несколько суппортов продольного пиления и один поперечного, но стол-каретка состоит из двух час гей. При продольном пилении обе части стола составляют одно единое целое, а при обратном движении каждая часть движется отдельно до сто­порной позиции, определяющей положение поперечного реза. Таким об­разом, достигается совмещение поперечных резов отдельных полос;

- к третьей относятся станки, имеющие один суппорт продольного движения и несколько - поперечного. После каждого хода суппорта продольноного пиления полоса на подвижной каретке подается для попереч­ного раскроя. При этом

срабатывают те суппорты, которые настроены на раскрой данной полосы. Суппорт продольного пиления может выполнять несквозной рез (подрезание). Кроме этого, имеются однопиль­ные форматно-раскроечные станки и центры.

Первая группа оборудования (например, станок ЦТЗФ-1; 1ДТ4Ф) Ориентируется на выполнение простейших индивидуальных карт рас­кроя. Это снижает коэффициент использования материала.

При реализации более сложных схем после продольного раскроя возникает необходимость в съеме отдельных полос со стола с дальней­шим их накоплением для последующего индивидуального раскроя. При ном резко возрастают трудозатраты, падает производительность.

Вторая группа (например, станок SpK401) позволяет выполнять схе­мы раскроя с разнотипностью полос, равной двум. При большой разнотипности возникают те же трудности, что и в первом случае.

Третья группа (станки ЦТМФ, МРП) позволяет выполнить раскрой более сложных схем с разнотипностью полос до пяти. Эта группа оборудования имеет высокую производительность и наиболее перспективна.

Раскрой листовых материалов

Для выполнения операций раскроя можно использовать бумагорезательные машины, гильотинные ножницы.

На гильотинных ножницах НГ-18-1. НГ-28, НГ-30, «Куппер» раскраивают шпон в пакетах в продольном, поперечном направлениях без последующего фугования кромок перед ребросклеиванием.

Основные узлы ножниц: станина, две траверсы - ножевая и при­жимная, каретка с упорами, гидро- и электрооборудование. Станина выполнена в виде сборной конструкции и состоит из рабочего стола, направляющих стоек и переднего стола. Ножевая и прижим­ная траверсы представляют собой сварную балку жесткой конст­рукции. В нижней части ножевой траверсы имеется плоскость для крепления ножа. Привод ножевой траверсы гидравлический. Упо­ры каретки выполнены откидными. Настройка упоров на ши­рину обрезаемого материала производится с помощью механизма

Прямолинейная и параллельная рубка шпона - существенное достоинство станков типа «Куппер EFS». Высокая точность рубки обес­печивает в дальнейшем качественное склеивание шпона любых сор­тов. Позиционное устройство управления параллельным упором снабжено цифровым измерителем ширины, цифровой клавиатурой счетчиков циклов рубки и кнопками выбора различных типов опера­ций, высокое качество рубки достигается благодаря поворотному и мощному протягивающему движению ножа под углом 20 градусов. Линия рубки маркируется световым лучом. Широкая прижимная пластина позволяет выравнивать перед рубкой даже волнообразный шпон. Мощный кривошипный привод позволяет рубить шпон попе­рек волокон. Техническая характеристика оборудования приведена в табл. 19. На бумагорезательных машинах (например, БРП-4М) рас­краивают шпон и пленки на основе пропитанных бумаг, пленочные полимерные материалы. Техническая характеристика оборудования приведена в табл. 20.

На участках для централизованного изготовления пленок на основе пропитанных бумаг применяется оборудование для раскроя пленок на форматные листы - линия ЛРШ-1 и для раскроя рулонов пленки по ши­рине - станок С5-28-02

19 Раскрой плитных материалов. Организация процесса раскроя (виды раскроя). Эффективность раскроя. Задачи оптимального планирования раскроя. Оборудование. Проектирование участков раскроя. Производительность. Охрана труда и техника безопасности.

В производстве изделий из древесины широко используют плитные материалы, изготавливаемые в соответствии с требованиями стандартов на них. Процесс раскроя плитных материалов проще, чем досок, поскольку при их раскрое нет ограничений по качеству, цвету, дефектам и др. Они стабильны по качеству и формату. Количество типоразмеров заготовок должно соответствовать их комплектности на выпуск изделий, предусмотренных программой. Раскрой плитных материалов организуют в зависимости от назначения получаемых заготовок; его принято делить на три способа: индивидуальный, комбинированный и смешанный (совместный)

Способы раскроя:

а- индивидуальный; б- комбинированный; в- смешанный (совместный).

При индивидуальном раскрое каждая плита раскраивается на один типоразмер заготовок. Индивидуальный способ раскроя сопровождается большим количеством отходов.

При комбинированном способе раскроя из одного формата можно выкраивать по нескольку различных типоразмеров заготовок или деталей с обязательным соблюдением комплектности по выкраиваемым заготовкам. С точки зрения экономного расхода материалов, комбинированный способ раскроя является, как правило, более эффективным, по сравнению с индивидуальным. Но он более сложен, так как при большом числе типоразмеров трудно обеспечить условие комплектности в каждой карте раскроя.

При смешанном (совместном) раскрое возможно использование вариантов индивидуального и комбинированного раскроя для различных случаев. При совместном способе карта раскроя предусматривает различные типоразмеры без учета комплектности по каждой карте раскроя, но с максимальным выходом деталей и с минимальным повторением одинаковых деталей в разных картах раскроя. Этот способ раскроя является наиболее эффективным по сравнению с остальными.

Производительность на участке раскроя плитных материалов

П=60∙K д ·K м ∙n∙m/t ц, П=60∙ K д ·K м ∙n∙m/ t ц,

K д – коэффициент использования рабочего времени; K м – коэффициент использования машинного времени. n – коэффициент заготовок, получаемых из одной плиты, шт., определяется по карте раскроя; m – количество одновременно раскраиваемых плит (листов) в пакете, шт. t ц – суммарное время, затрачиваемое на подготовку пакета и его продольный раскрой на полосы, мин.

Для раскроя плитных материалов широко применяются круглопильные однопильные станки с ручной подачей: Altendorf. Вертикальные форматно-раскроечные станки заменяют обычные форматно-раскроечные там, где необходима экономия места GVS 13; Автоматические форматно-раскроечные круглопильные станки (центры) с верхней прижимной балкой и пильной кареткой для раскроя облицованных и необлицованных плит из древесных материалов пакетным методом с системой компьютерного управления, оптимизацией раскроя. Его отличают высокое качество распила, точность позиционирования, надежность, мощное и в то же время простое в использовании цифровое управление, широкие технологические возможности.

Первичная механическая обработка заготовок. Задачи, последовательность и содержание операций. Виды технологических баз и правила их выбора. Организация процесса. Охрана труда и техника безопасности.

Брусковые заготовки склеиваются по длине, ширине, толщине с целью получения деталей больших размеров. В связи с этим детали подвергаются первичной механической обработке. Задачей является создание базовых поверхностей для дальнейшей обработки заготовок, а также подготовка к склеиванию и облицовыванию.

Создание базовых поверхностей . Черновые заготовки имеют зна­чительные погрешности формы и размеров. Точная обработка заготовок, обеспечивающая взаимозаменяемость деталей, может быть достигнута при наличии у них чистовых баз, которые используются для базиро­вания заготовок на станке при последующей обработке. Обработку начинают с создания установочной чистовой базы. Вначале выравни­вают широкую пласть заготовки. Полученная база используется при обработке следующей поверхности - кромки. Имея выверенные по плоскости и под прямым (как правило) углом поверхности, обрабаты­вают следующие, придавая детали, требуемые чистовые размеры. При выполнении дальнейших операций необходимо использовать одну и ту же базовую поверхность для максимального числа операций, так как смена баз обусловливает появление случайных погрешностей и увеличивает общую погрешность обработки.

Обрабатываемые детали занимают на станке определенное положение относительно инструмента. Поверхности деталей, прилегающие к устойчивым устройствам станка в процессе обработки, называются технологическими базами . К ним относятся поверхности используемые при контрольных измерениях точности деталей, т.е. поверхности, от которых отсчитывают размеры, их называют измерительными базами . Установочные базы могут быть черновыми, т.е. грубыми, необработанными, и чистовыми – чисто обработанными.

При сборке узлов или изделий каждой детали должно быть придано определенное положение относительно других. Для этого используют сборочные базы , т.е. совокупность поверхностей, которые задают положение детали в изделии относительно других деталей. Эти базы совпадают с измерительными. Использование одних и тех же баз способствует повышению точности сб.единиц.

Точки, линии и плоскости, относительно которых указывают размеры деталей, называют конструкторскими базами . Ими могут быть не только реальные поверхности, но воображаемые. Понятие «база » включает комплекс поверхностей, линий и точек относительно которых деталь ориентируют при проектировании, обработке и сборке.

Технологические схемы мех.обработки брусковых заготовок:

1. Создание базовых поверхностей на фуговальных станках- обработка в размер на рейсмусовых станках- торцев. на ст-х для оперечного раскроя- выборка продолговатых гнезд и отверстий на сверлильно-пазовальных ст-х- шлифование

2. Создание базовых поверхностей на фуговальных станках- обработка в размер на рейсмусовых станках- формирование шипов(проушин)и торц-е на шипорезных ст-х- шлифование

3. Создание базовых поверхностей на фуговальных станках- обработка в размер на рейсмусовых станках по толщине- фрез-е на прод-фрез-х станках-торцевание-формирование шипов(проушин)или сверление отверстий, или выборка продолговатых гнезд и отверстий- шлифование

4. Создание базовых поверхностей на фуговальных станках- обработка в размер на 4-хсторонних продольно-фрез-х ст-х --торцевание-формирование шипов(проушин)или сверление отверстий, или выборка продолговатых гнезд и отверстий- шлифование

5. обработка в размер на рейсмусовых станках- фрез-е профиля на фрезерных ст-х-- торцевание-формирование шипов(проушин)или сверление отверстий, или выборка продолговатых гнезд иотверстий- шлифование

6. обработка в размер на рейсмусовых станках– торцевание-выборка продолговатых гнезд и отверстий-сверление отверстий--- шлифование

7. обработка в размер на рейсмусовых станках--формирова шипов(проушин)и торцевание на шипорезных ст-х-сверление отверстий-- шлифование и др.

8. обработка в размер на на 4-стор-х прод-фрез-х станках--торцевание-

выборка продолговатых гнезд и отверстий-- шлифование

9. обработка в размер на на 4-стор-х прод-фрез-х станках--формирование шипов(проушин)и торцевание на шипорезных ст-х--свеление отверстий-- шлифование

10. Создание базовых поверхностей -- обработка в размер --формирование шипов(проушин)-торцевание-- сверление отверстий-- выборка продолговатых гнезд и отверстий на поточных, автоматич-х и полуавтом-х линиях.

Создание базовых пов-й вызвано необходимостью повышение точности изготовления деталей за счет создания у заготовки технологической установочной базы.

Пов-сти заготовок, получ-х при раскрое п/м, в основном не могут служить технол- ой базой, т.к. имеют низкое кач-во и не являются плоскими в следствие деформаций, вызв-х внутр-ми напряжениями в др-не от усушки. Операцию создания базы вып-ют на одно- или двухсторонних фуговальных станках. На одностороннем обрабатывают только пласть заготовки, на двустороннем- две смежные стороны(пласть и кромка), т.е. создаются 2 базовые пов-сти и угол.

21 Первичная механическая обработка. Обработка заготовок в размер. Применяемое оборудование, режимы обработки, производительность, организация рабочих мест.

Для создания базовой поверхности на одной или двух смежных сторонах используют в основном фуговальные станки. Они бывают с ручной (СФ4-2, СФ6-1 и др.) и механической (СФ4-1А, СФ6-1А, С2Ф4-1, СФК6-1 и др.) подачей.

В зависимости от ширины стола бывают;

Легкие (до 350 мм), - средние (400-600), - тяжелые (600-800)

В зависимости от количества реж. Инструментов:

Односторонние и – двухсторонние.

где и - скорость подачи (при механической - 7-30 м/мин, при ручной примерно 10 м/мин);

К р - 0,9-0,93;

К м при ручной подаче и длине заготовок до 0,5 м равен 0,7, при длине заготовок свыше 1 м и механической подаче - 0,9;

п - количество одновременно обра­батываемых заготовок;

/ мг - длина заготовки;

т - число проходов.

Организация рабочего места

Обработка заготовок в размер по сечению . После создания базовых поверхностей заготовки обрабатывают в размер по сечению. Для этого применяют рейсмусовые и четырехсторонние продольно-фрезерные станки. Рейсмусовые станки бывают односторонние с верхним распо­ложением ножевого вала (СР4-1, СР6-9, СР8-2, СР12-3 и др.) и двухсторонние с верхним и нижним расположением ножевых валов (С2Р8-3, С2Р12-

3, С2Р12-ЗА). На всех рейсмусовых станках подача механическая, которая осу­ществляется передними и задними вальцами.

Для надежного сцепления с заготовками передний подающий валец выполнен рифленым, а остальные, контактирующие с обработанными поверхностями, гладкими. Кроме того, для одновременного фрезеро­вания заготовок разной толщины (до б мм) передний валец сделан секционным.

Часовая производительность рейсмусового станка определяется по

формуле

Плоскую и профильную обработку прямолинейных заготовок с че­тырех сторон за один проход можно выполнить на четырехсторонних продольно-фрезерных станках , которые имеют не менее четырех ножевых валов. В зависимости от ширины строгания они подразделяются на легкие (калевочные) - для обработки профильных мебельных и столярных деталей шириной до 160 мм, средние - для обработки деталей шириной до 250 мм и тяжелые

Для обработки погонажных изделий шириной до 650 мм. Подача у четырехсторонних станков вальцовая или вальцово-гусеничная.

Высокого качества в изготовлении четырехсторонних продольно-фрезерных станков добилась немецкая фирма «Вейниг». Станок под названием «Профимат» может изготовить любой произвольный про­филь. Четырехсторонний станок обслуживают двое рабочих: один подает заготовки в станок, а другой принимает их и складывает. В отличие от рейсмусовых в четырехсторонних станках и линиях на их основе заготовки подаются по одной, торец в торец.

Часовая производительность четырехсторонних станков

Торцевание заготовок Заготовкам должна быть придана точная длина и ровные торцовые плоскости, расположенные под прямым или другим углом к боковым граням. Торцовку заготовок осуществляют на круглопильных станках с одним, двумя или несколькими пильными дисками.

На однопильном торцовочном станке с кареткой (Ц6-2) можно торцевать заготовки под любым углом. Заготовку базируют по столу и направляющей линейке. При первом резе заготовку устанавливают на каретке «на глаз» так, чтобы опиливался минимальный припуск (рис. 6.21, а). Каретку надвигают на пилу вручную. Для торцевания второго конца заготовку переворачивают и отторцованным концом прижимают к упору, установленному от плоскости пилы на длину заготовки.

Торцовочные станки с кареткой удобны, но малопроизводительны. Часоваяпроизводительность однопильного торцовочного станка

где К р = 0,9 - 0,93; п - количество торцуемых

заготовок в одной закладке; t ц - продолжительность одного цикла; т - кратность торцуемых заготовок.

Двупильного концеравнителя

Пч=60uКрКмn/lупр заг./час,

lупр – растт между упорами транспрт.цепи.

22. Склеивание и облицовывание. Подготовка материалов, способы нанесения клея. Методы интенсификации процесса склеивания древесины. Оценка качества склеивания.

Склеивание является одним из основных видов соединений при производстве изделий из древесины. Оно позволяет получать детали требуемых размеров, увеличивать их формоустойчивость, прочность и улучшать декоративные свойства изделий, повышать полезный выход заготовок, использовать короткомерные и низкосортные заготовки и отходы. Основные его виды: склеивание заготовок и деталей из древе­сины, древесных, полимерных и других материалов; склеивание деталей из измельченной древесины; склеивание с одновременным гнутьем заготовок из шпона, фанеры, массивной древесины; облицовывание пластей и кромок щитовых деталей; склеивание при сборочных работах. Технологический процесс склеивания включает следующие основные стадии: подготовку склеиваемых материалов; подготовку клеевых рас­творов; нанесение клея на склеиваемые поверхности; запрессовку склеиваемых заготовок и выдержку их под давлением, выдержку склеенных заготовок после запрессовки.

Качество клеевого соединения предопределяет правильный выбор вида клея. К клею предъявляются технологические и эксплуатационные требования. Первые обусловливают применимость клея в производст­венных условиях, вторые обеспечивают требуемое качество соединений. Технологические требования регламентируются технологическими режи­мами, эксплуатационные - техническими условиями {прочность склеи­вания, водо- и влагостойкость, биостойкость и др.).

Клеевые соединения должны обеспечивать такую прочность склеи­вания, чтобы она была не ниже прочности склеиваемых материалов. Однако это не всегда достижимо. Например, торцовые клеевые сое­динения древесины такой прочности не обеспечивают, они составляют примерно 80 % прочности цельной древесины. Клеевые соединения на кромку древесностружечных плит имеют еще меньшую прочность. На прочность клеевого соединения влияют качество подготовки склеиваемых материалов, марка и качество клея, способ склеивания, параметры технологического режима склеивания и технологической выдержки, а также условия последующей эксплуатации клееной кон­струкции. Подготовка поверхностей к склеиванию зависит от вида материалов, их размера, формы изделия, применяемого оборудования для склеивания и др. Она осуществляется различными способами - пилением, фрезерованием, строганием, шлифованием. При приготов­лении клея учитывают его марку. Клей готовят в специально обору­дованном помещении с приточно-вытяжной вентиляцией.

Склеивание осуществляют при нормальной температуре в помеще­нии (холодное склеивание) и при повышенной (горячее склеивание).

Клей на детали наносят вручную (как правило, на одну из повер­хностей) или клеенаносящими вальцами. В первом случае используют кисти, щетки и специальные приспособления, Для местного нанесения клея используют пластмассовые емкости или тюбики, гор­лышко их имеет наконечник с отверстием, которым удобно наносить клей в отверстия, на щечки проушин и т. д.

Клеенаносящие вальцы бывают трех видов. Вальцы с нижним питаниемнеудобны в работе, с их помощью нельзя добиться равномерного распределения клея по поверхности заготовки. Вальцы с нижним и верхним питанием позво­ляют наносить клей на одну или две стороны и регулировать толщину клеевого слоя. Вальцы с дозирующими роликами более совершенны. Клеенаносящие вальцы покрыты резиной с рифлением, дозирующие выполнены стальными, полированными. Клеевой слой можно регулировать с большой точностью.

Холодное склеивание требует минимальных затрат энергии, но оно продолжительно во времени (как правило, 24 ч), поэтому трудно поддается автоматизации. Необходимы также значительный операци­онный запас заготовок и большая производственная площадь. В связи с этим оно применяется при склеивании крупногабаритных заготовок, а также если клеевой шов значительно удален от внешней поверхности деталей, например при сборочных работах.

Склеивание с нагревом осуществляют при различных способах под­вода тепла к клеевому слою - кондуктивном, конвективном, за счет предварительного аккумулирования тепла в одной и двух склеиваемых заготовках, путем нагрева в поле токов высокой частоты (ТВЧ).

Кондуктивный нагрев является одним из наиболее распространен­ных и применяется при склеивании тонких, толщиной до 10 мм, заготовок, которые контактируют с горячими плитами пресса. Такой способ широко применяется при облицовывании пластей и кромок щитовых заготовок. Нагрев осуществляют обычно паром, горячей водой, маслом или низковольтным током промышленной частоты.

Конвективный нагрев применяют при наклеивании тонких обли­цовочных материалов на основу сложной формы, например при обли­цовывании профильных деталей в пневматическом или мембранном прессе. Тепло передается горячим воздухом или инфракрасным облу­чением.

Нагрев за счет аккумулированного тепла можно осуществлять при достаточной, не менее 10 мм, толщине склеиваемой заготовки. Перед склеиванием одну (более массивную) или обе заготовки нагревают кондуктивным или конвективным способом.

Нагрев в поле ТВЧ производят в специальном прессе. Склеиваемые заготовки помещают между электродами, к которым подводят ток высокой частоты. Высокочастотное поле взаимодействует с молекулами материала,

23 Подготовка шпона к облицовыванию. Применяемое оборудова­ние, режимы обработки, производительность, организация рабочих мест.

Эта операция включает подбор и разметку, раскрой и фугование кромок пачек шпона. При облицовывании применяют строганый и лущеный шпон. Абсолютная влажность строганого и лущеного шпона должна быть 8 ±2%. Различают мелкослойный и крупнослойный шпоны - по проявлению годовых слоев, а также правую и левую стороны листа - по состоянию поверхности.

Правая сторона (более гладкая и плотная) получается на поверхности шпона, прилегающей к прижимной линейке во время его изготовления. Левая сторона (более шероховатая, с мелкими разрывами). При изготовлении шпона она сходит с острия ножа. Предпочтительно, чтобы лицевой стороной шпона была правая сторона. Пачку шпона подбирают по породам древесины, размерам, качеству, цветовому и текстурному рисунку листов. При обработке лущеного шпона, идущего на изготовление внутренних облицовок, пачки шпона не подбирают. Для максимального выхода шпона первый лист отобранной пачки размечают по шаблонам. Это дает возможность формировать облицовку с наиболее красивым рисунком при минимальных отходах шпона. Рабочий, производящий разметку, должен знать размеры и назначение всех облицовок для деталей изделия. Подбор и раскрой шпона показаны на рис. 17. При раскрое на круглопильных станках (рис. 17, 6, I) пачку шпона закрепляют на каретке зажимом. Каретка перемещается по пазам стола станка до пилы. После опиловки продольные кромки не имеют чистоты поверхности и их необходимо фуговать. Операция фугования не требуется, если шпон раскраивают на гильотинных ножницах с прижимной балкой (рис. 17, 6, II). Пачку шпона укладывают на столе, зажимают прижимной балкой и обрезают ножами. Схема организации рабочего места на гильотинных ножницах показана на рис. 18, а. С подстопного места пачки шпона перекладывают на стол и на станке раскраивают. Раскроенные пачки укладывают на этажерки. Необходимо постоянно следить за остротой лезвий режущих ножей.Кромки делянок в пачках фугуют на фрезерных, фуговальных и кромкофуговальных станках. Схемы фугования кромок шпона даны на рис. 19. При фуговании на фрезерном станке пачку шпона зажимают в приспособлении и вместе с ним перемещают по столу станка. При перемещении зажимного приспособления по упорному кольцу кромки обрабатываются фрезой. Кромки выравнивают на кромкофуговальном станке. Пачку шпона укладывают на стол станка, зажимают балкой. При движении каретки с пилой и фрезой по направляющей на кромке вначале опиливают крупные неровности, а затем фрезеруют тонкий слой, что позволяет получить требуемое качество поверхности.
Кромки следует обрабатывать при скорости подачи каретки 6 м/мин и скорости резания фрезы не менее 25 м/с. Толщина слоя, снимаемого фрезой за один проход, должна быть не более 1,5 мм. Схема организации рабочего места при работе на кромкофуговальном станке показана на рис. 18, б. Пачки нефугованного шпона с этажерки перекладывают на стол, на котором выравнивают кромки в пачке. В станке обрабатывают вначале одну, а затем вторую кромку пачки.

Часовая производительность гильотинных ножниц НГ 18

(комп/ч).

где n – количество полос шпона в стопе, шт.; t ц – цикл обрезки одной стороны пакета, мин (0,5); l∙b – площадь листа в чистых размерах, м 2 ; ∑S i – площадь комплекта с припусками, м 2 .


П см =Т см ∙n∙К д / t ц ∙z,

где t ц – цикл обрезки одной стороны пакета; t ц =0,5 мин; z – количество резов по периметру; K д – коэффициент использования рабочего времени, К д =0,7; n –число полос шпона в пакете

Часовую производительность фуговального станка можно определить по формуле

Часовая производительность фрезерного станка Ф-130-04

где t ц – время обработки одной заготовки, мин; Z –число обрабатываемых концов заготовки.

24 Технология облицовывания пластей щитовых заготовок в однопролетных и многопролетных прессах. Производительность, организация ра­бочих мест.

Облиц-е пластей в многопролетных прессах . Исп-т многопрол. прессы типа П713А, П713Б , которые имеют по 10 пролетов , с размерами плит 2000x1300 мм. Они являются устаревшими, однако еще ис­пользуются на многих предприятиях.

Щиты очищ. от пыли, затем на них наносят клей на основе КФС, в кот-ю добавл. 1 %-й хлорид аммония. Сформированные пакеты загружают в пресс вручную или механически с помощью загрузочных этажерок. Во всех пролетах заготовки д.б. уло­жены строго одна над другой.

Облиц-е пластей в однопролетных прессах . Ком­плекс АКДА 4938-1 имеет ленточную загрузку пресса, щеточный станок для удал. пыли, улучшенную конструкцию питателя и укладчика. Размер плит пресса 3,3 х 1,8 м, усилие пресса 6300 кН . В комплексе АКДА 4940-1 увеличены плиты пресса (5,2 х 1,8 мм) и усилие (до 10 000 кН), гидроцилиндры расположены сверху, что ускоряет время смыкания; улучшена конструкция питателя и укладчика.

Для скоростного облицовывания в однопролетных прессах рекомен­дуются КФ клеи на основе смол КФ-Ж(М), КФ-БЖ при наибольшей дозировке отвердителя.

Комплекс АКДА 4938-1 работает следующим образом:

Питатель пневмотолкателем подает поштучно щиты в щет-й станок со скоростью 15-20 м/мин. Затем в клеенанос. станке на обе стороны щитов нанос. клей , щиты дисковым конвейером передаются на формирующий конв-р . Пакеты из щитов и шпона формир-ся на лент. формирующем конв-ре. После того как загружен конвейер и закончено время выдержки под давлением предыд. запрессовки, плиты пресса размык. и пакеты лент. конв-ром передаются на приводной конв-р пресса. Облицован щиты одноврем. перемещ на ускорен­ный лент. разгруз. конв-р-укладчик с подъемной плат­формой накопителя. После загрузки пресса плиты его смык. и ведется пресс-е. Пресс ДА4938-1 работает в автом. ре­жиме и позвол. вести загр. и выгр. деталей автом-ки. Облиц. щиты направл. на место выд-ки. Облиц-е ведут по следующему режиму.

Часовую производительностьпрессов определяем по формуле

где К р - коэф. исп-ния раб. врем. (К р = 0,85-0,9); п - число рабочих промежутков пресса; F np - площадь плит пресса, м 2 ; К г - коэффициент заполнения плит пресса (К 3 =0,7); t u - прод-ть цикла одной запрессовки, мин. Формула (7.5) может также иметь следующий вид:

Где т - кол-во заготовок в одном промежутке пресса. Продолжительность цикла:

где t n , t 3 , t np , t p - соотв. время подготовки пакетов, загрузки пресса, пресс-я и разгр.пресса.

Так как подготовка пакетов выпол-ся во время пресс-я, то в расчет приним. то время, кот-е явл. болыпим. Для однопрол. прессов t n , для многопролетных - t n >t np , , поэтому / пр при определении цикла учитывать не следует.

25 Технология облицовывание щитов методом постформинг. Осо­бенности. Материалы, оборудование, режимы, производительность, органи­зация рабочих мест.

Суть этого метода заключается в том, что после облицовывания пластиком оставляется свес, который затем заворачивается и приклеивается к плите (ДСП). Покрытие по типу постформинга является одним из самых прочнейших и имеет отличную износостойкость, царапоустойчивость и стойкость к выцветанию.

Метод постформинга допускает облицовывание любыми материалами, но наибольшее распространение получило облицовывание ламинатами - многослойными пластиками на основе бумаг, пропитанных меламиновыми смолами. В зависимости от требований к прочности и стойкости поверхности к абразивному износу эти пластики делятся по технологии их производства: на пластики CPL - пластики непрерывного способа производства и HPL - пластики высокого давления, изготавливаемые в плоских многоэтажных прессах. Особенность продукции, изготовленной с применением постформируемых пластиков, - закругленные кромки и минимальное количество швов.

Облицовывание на позиционном оборудовании:

Для облицовывания профильных кромок щита со специально оставленным свесом пластика (после приклеивания) исп.сец.станки циклопроходного типа.Облицовочный пласитк пластифицируется нагретой шиной.При передвижении шины по профилю кромки материал принимает форму кромки и приклеивается. Облицовку способом постформинг осуш. На разл.станках, например РФ10/31 фирмы БРАНД.

Производительностьпозиционного:

Проходного: (Для одностороннего)

Двустороннего: ,Где n-кол-во сторон

L-длина кромки l- межторцовый разрыв

Постформинг - процесс формирования термопластичного материала на основу заданной формы под высоким давлением.

Процесс постформинга является незаменимым при изготовлении деталей типа столешниц и подоконников.

Материалы, используемые в процессе постформинг :

Клеи для постформинга должны обладать особенно высокой первоначальной схватываемостью для того, чтобы противостоять напряжению материала и усилию по его разгибанию.

Рекомендуемый тип клея для станков постформинга - универсальный контактный полихлоропреновый PROTOPREN 299 extra на основе растворителя. Нанесение клея осуществляется с помощью кисти или с помощью специальной распылительной головки, работающей при температуре от +55 °С до +60 °С.

Материалы для облицовывания . Процесс постформинга допускает облицовывание любыми материалами: ламинатами, натуральным шпоном, пленками на основе бумаг. Наибольшее распространение получило облицовывание ламинатами. Почему предпочтителен для обклеивания ламинат? Он долговечен, по внешнему виду эстетичен.

Нет проблем цвета и дизайна рисунка. не линяет, не держит пятен, легко чистится.

Оборудование для постформинга обеспечивает оптимальное облицовывание поверхности пласти и кромки заготовки одним и тем же непрерывным материалом. Этот метод идеален, так как заготовка меньше подвергается механическому, тепловому или химическому воздействию, а так же воздействию влаги. Этот тип воздействия может проявить отмеченное отрицательное воздействие на мебель, особенно изделия с необработанными кромками..

Постформинг - метод облицовывания, который увеличивает практичность мебели, а значит и срок ее эксплуатации. Некоторые типичные примеры:

Столешницы и рабочие поверхности кухонь

Мебель для ванной

Офисная мебель

Внутренние полки

Прилавки магазинов

Мебель для банков (стойки)

Барные стойки

Лабораторная мебель

Наружные подоконники

26 Технология облицовывание кромок щитов методом софтформинг. Особенности. Материалы, оборудование, режимы, производи­тельность, организация рабочих мест.

В ее основу были положены способ и режимы хорошо известного к тому времени метода постформинг (Postforming) с использованием клея на основе ПВА-дисперсии.

При облицовывании кромок сложного профиля (способ софтформинг) в станки встраивают блоки, в которых ролики выставляются под углами для прикатки эластичного облицовочного материала к кромке. Для каждого вида профиля можно применить отдельный съемный блок. Клей наносится на кромку, подсушивается и активируется перед прикаткой кромочного материла инфракрасными нагревателями. Если применяют кромочный материал с нанесенным ранее клеевым слоем, перед прикаткой активируют струей горячего воздуха, для чего у станков предусмотрен набор агрегатных устройств. Для одностороннего облицовывания можно сип. Оборудование фирмы «Бранд» типа КВ14-2/200, также Хомаг и др.

Сегодня под способом «софтформинг» понимается процесс облицовывания профильных кромок щитовых деталей путем наклеивания на них полосовых или рулонных облицовочных материалов с использованием клея-расплава.

Станки для облицовывания методом «софтформинг» должны также обеспечивать облицовывание не только профильных, но и плоских кромок. Вместе с тем, при облицовывании плоских кромок для достижения большей прочности производится нанесение клея-расплава на кромку детали. Но нанести клей-расплав на профиль невозможно, и он наносится на оборотную сторону облицовочного материала кромки. Для этого клеенаносящие узлы лучших (и более дорогих) станков для облицовывания профильных кромок выполняются универсальными и имеют два клеенаносящих ролика, установленных в одном бачке

Производительность

:

Где L-длина кромки l- межторцовый разрыв

Софтформинг - облицовывание профильной (любого профиля) кромки материалом рулонным кромочным уже после облицовывания пластей.

Для софтформинга прим. позиционные и проходные станки.

Особенность и сложность этого процесса состоит в точном снятии свесов кромочного материала и облицовки пласти на лицевой стороне детали, в месте их стыка.

Оборудование : для облицовки профильной кромки плиты:

Пневмат настольное устройство торцевой обрезки (для обраб. торц. свесов кромочного мат-ла после его приклеивания);

Фрез. ст. для снятия свесов кромочных мат-в по пласти;

Станок для обраб. прямолин. деталей и деталей с внешними и внутренними радиусами;

Фрез. ст.для снятия свесов кромочных мат-в по полости пневм. для приклеивания кромки.

Произв-ть участков облиц.методом рассчитывается в зав-ти от типа оборуд.: если это проходные линии, то через скорость подачи (П=Т*Кр*Км*U/(L+∆L)); если оборудование позиционное, то через время цикла (например обрезка свесов на позиц станке) (П=Т*Кр/tц).

27 Технология облицовывание криволинейных кромок щитов. Осо­бенности. Материалы, оборудование, режимы, производительность, органи­зация рабочих мест.

Оборудование для облицовывания кромок щитов по сложности и степени автоматизации можно разделить: простейшие станки с ручной и механизированной подачей; односторонние механизированные и полуавтоматические станки и автоматические линии.

Автоматическая линия облицовывания кромок состоит из загрузчика, станка для облицовывания продольных кромок, разворотного ус-ва, станка для облицовывания поперечных кромок разгрузчика-накопителя.

Первая операция, которой подвергается обрабатываемый щит, является форматная обрезка. В начале подрезной пилой 6 снизу производится предварительный пропил, после чего пила 7 отрезает кромку щита. Фрезерный агрегат 8 с правым и левым вращением производит окончательную обработку кромки. Клей на кромку щита наносится приводным роликом 10 смонтированном в клеевом бачке.

На станке можно облицовывать кромки натуральным полосовым или рулонным синтетическим шпоном. Магазин 9 крепится на кронштейне. Здесь же смонтированы пневматические ножницы для разрезания рулонного материала (гильотина). Кромка подается из магазина и прижимается к щиту роликом 11. Недостатком таких механизмов является то, что на кромке щита остаются так наз. свесы.

Щит передней и задней кромки взаимодействует с упорами, и пилы производят поперечный рез, отпиливая свисающую облицовочную кромку. Свесы по толщине щита снимаются фрезерными головками 14, которые могут наклоняться под углом до 45°. На последующих агрегатах производится окончательная обработка облицовочных кромок щита. Две наклонные фрезерные головки 17 образуют фаску на кромках щита. Шлифовальная осциллирующая головка 15 работает по схеме ленточного станка с контактным прижимом. Ус-во 16 для шлифования фасок на кромках состоит из двух щеток из полосок шлиф.шкурки или др. материала. Возможны и др. операции, например скругление кромок 18, прорезание пазов и четверти 19, обработка циклями 20.

В отличие от рассмотренных выше станки для облицовывания щитов овальной формы, с закругленными углами и т.п. выполнены не по протяжной схеме, а по круговой. Все агрегаты располагаются вокруг одной стойки. Деталь крепится на поворотном ус-ве с вакуумными присосками. За время поворота детали она последовательно проходит все операции облицовывания. Обычно эти станки устанавливаются как дополнение к обычным кромкооблицовочным станкам.

Для облицовывания криволинейных поверхностей кромок щитов используют: для нанесения клея – клее намазывающие диски и кисти – щетки.; для склеивания - обогреваемые ваймы, и агрегатные станки. Последние могут облицовывать криволинейные кромки щитовых деталей, на которых на пласти уже напрессован слой пластика. Облицоваывание на проходном и ручном оборудовании. Проходное Sk-774/, МОК-3,. МФК-2 , При исп.клея расплава нагрев до нач. за 30 – 40минут,плавят гранулы протемпр 190-195 град.

Задача раскроя листовых (плитных) и погонажных материалов на исходные детали (заготовки) является важной частью процесса проектирования и изготовления изделий корпусной мебели и имеет большое практическое значение. Она заключается в размещении плоских геометрических объектов, соответствующих исходным заготовкам, на листах материала. В линейном раскрое размещаются объекты, измеряемые в погонных метрах, на полосах материала, также измеряемых в погонных метрах.

Раскрой материалов в автоматизированном мебельном производстве

Роль и значение задачи раскроя материалов в мебельном производстве определяются тремя основными факторами, оказывающими существенное влияние на всю производственную деятельность предприятия:

▼ уменьшение отходов материалов является важнейшим фактором повышения эффективности мебельного производства;

▼ технологичность карт раскроя позволяет уменьшить трудоемкость и время выполнения технологической операции раскроя, обеспечивая эффективное использование оборудования;

▼ операция раскроя, будучи первой операцией технологического процесса изготовления корпусной мебели, во многом определяет эффективность работы производственных участков, реализующих последующие операции.

Эти факторы актуальны для любого мебельного предприятия, независимо от объемов и номенклатуры выпускаемой продукции, в силу большого удельного веса материалов в себестоимости изделий.

С точки зрения автоматизации задача оптимизации раскроя имеет две особенности, объясняющие существование большого количества «раскройных» программ на рынке программного обеспечения:

▼ высокая трудоемкость ручного формирования карт раскроя;

▼ возможность формализации математической постановки задачи раскроя и проработанность алгоритмов ее решения.

Как правило, все существующие программы предназначены для оптимизации раскроя листовых материалов на детали (заготовки) прямоугольной формы при помощи прямых сквозных резов и с учетом текстуры материалов в случае необходимости. В ряде программ имеется дополнительная возможность раскроя погонажных материалов.

Основной целью работы всех программ является автоматическое формирование карт раскроя материалов, качество которых оценивается следующими параметрами:

▼ коэффициентом использования материала;

▼ комплектностью получаемых при раскрое деталей в соответствии с объемом производства;

▼ трудоемкостью выполнения технологической операции раскроя.

Коэффициент использования материала (КИМ) рассчитывается как отношение суммы площадей полученных панелей (щитовых элементов изделий корпусной мебели) к сумме использованных площадей исходных плит. Он может рассчитываться с учетом того, что остатки плит (обрезки), не используемые при раскрое деталей данного изделия, но имеющие достаточные размеры, могут быть использованы при изготовлении других изделий, в составе которых присутствуют аналогичные материалы. Кроме того, при его расчете может учитываться или не учитываться операция обрезки края плиты для обеспечения точного базирования и ликвидации дефектов.

Комплектность деталей, необходимых для обеспечения плана выпуска изделий, в случае интеграции программ раскроя в структуру САПР обеспечивается автоматически при передаче в них моделей изделий из модуля конструирования. При использовании автономных программ раскроя список деталей набирается вручную, что нередко приводит к ошибкам комплектации, исправление которых требует существенных затрат.

Трудоемкость выполнения раскроя зависит от количества поворотов заготовок на станке и их веса, количества переустановок упоров и затрат на перемещение оператора в рабочей зоне станка. Наиболее адекватной числовой характеристикой трудоемкости может служить среднее время выполнения раскроя одной плиты (пачки плит для раскройных центров). Создание карт раскроя, реализация которых требует минимальных трудозатрат, является обязательным требованием. На трудоемкость раскроя и последующей организации технологического процесса влияют многие производственные факторы, то есть задача минимизации трудоемкости является многокритериальной.

Результатом работы программ раскроя являются карты раскроя - графические схемы, показывающие расположение деталей на стандартном формате плиты подлежащего раскрою материала. Оптимизация раскроя материалов является многокритериальной задачей, при решении которой должны использоваться геометрические и технологические критерии.

Используемые в настоящее время алгоритмы раскроя работают в основном с геометрической информацией о размерах раскраиваемых деталей. Это не позволяет в полной мере учитывать особенности технологических процессов на конкретном производстве. Исходя из этого, при создании модуля БАЗИС-Раскрой были разработаны новые алгоритмы оптимизации раскроя, с помощью которых можно добиться значительно более полного учета совокупности геометрических, технологических и организационных особенностей технологических процессов мебельного производства. Практическое использование разработанных алгоритмов позволяет найти в максимальной степени сбалансированные соотношения между требованиями экономии материалов, технологичности карт раскроя и эффективности загрузки всего технологического оборудования.

Тесная интеграция модулей конструирования и раскроя материалов в структуре САПР имеет особое значение при работе со сложными изделиями, количество которых на мебельном рынке постоянно увеличивается. Помимо автоматического обеспечения комплектности деталей, необходимых для обеспечения плана выпуска изделий, она позволяет реализовать три важные дополнительные возможности:

▼ использование не только полноформатных плит, но и обрезков, оставшихся от предыдущих раскроев того же материала, что при должной организации производства дает ощутимую экономию;

▼ передача в модуль раскроя наряду с габаритными размерами контуров криволинейных деталей, что является полезным с точки зрения их последующей маршрутизации;

▼ автоматическое формирование управляющих программ для пильного оборудования с ЧПУ, в том числе работающего по технологии нестинга, которая в последнее время получает широкое распространение.

При импорте информации из модели изделия производится автоматическая двухуровневая сортировка:

▼ в зависимости от типа используемого материала создаются два списка деталей: из листовых материалов и из погонажных материалов;

▼ внутри каждого списка детали сортируются по виду материалу.

Облицовочные материалы также включаются в список погонажных материалов, поскольку их раскрой может производиться, например, когда применяется профиль, который поступает на предприятие в виде полос определенной длины.

При подготовке исходных данных для раскроя необходимо выполнить ряд дополнительных действий, набор и характер которых определяется параметрами оборудованием и технологией изготовления. При использовании интегрированных в САПР модулей раскроя эти действия выполняются автоматически, поскольку в модели изделия присутствует вся необходимая информация. Например, в случае раскроя листовых материалов из модели считываются распиловочные размеры. Однако некоторые типы кромкооблицовочных станков перед облицовыванием выполняют операцию предварительного фрезерования кромок. Это учитывается при формировании карт раскроя заданием припуска при нанесении облицовки.

Важным параметром деталей с точки зрения формирования оптимальных карт раскроя является направление текстуры материала. Поскольку одним из атрибутов материала в модели мебельного изделия является вид текстуры поверхности, то при импорте списка деталей ее направление определяется автоматически. При технологическом контроле модели этот параметр можно корректировать, изменяя или отключая направления текстуры для отдельной детали или группы деталей.

Это только несколько примеров, показывающих, что эффективность использования программ раскроя значительно повышается в случае их объединения с программами конструирования корпусной мебели и организации на предприятии единого информационного пространства. БАЗИС+Раскрой изначально разрабатывался как интегрированный в САПР БАЗИС модуль, в полном объеме использующий модели мебельных изделий, создаваемые в конструкторских модулях БАЗИС+Мебельщик и БАЗИС+Шкаф.

Автоматизация технологической подготовки производства корпусной мебели

Конечная цель комплексной автоматизации предприятия заключается в оптимизации двух составляющих его деятельности: процессов выполнения производственных обязанностей каждым специалистом и информационных связей между процессами, специалистами и подразделениями.

Обобщенная схема информационных потоков мебельного предприятия, работающего в режиме позаказного промышленного производства, показана на рис. 1.1. Из нее видно, что технологический отдел является источником и потребителем значительного количества информации. Следовательно, автоматизация технологической подготовки производства (ТПП) является важной задачей с точки зрения обеспечения эффективной работы предприятия в целом.

В зависимости от конкретного предприятия разбиение проектных операций по подразделениям, показанное на рис. 1.1, может являться как реальным, так и функциональным по отношению к подразделениям или исполнителям. Например, на многих мебельных предприятиях, особенно относящихся к классу средних и малых предприятий, имеет место совмещение ряда функций в компетенции одного отдела или специалиста (конструктор+технолог, дизайнер-конструктор и т.д.).

Выполнение любой проектной операции, конструкторской или технологической, предполагает получение входной информации, ее обработку и передачу выходной информации для выполнения последующих операций. Подобная схема универсальна и определяется самим фактом существования предприятия. Автоматизация проектных операций позволяет повысить скорость и качество (безошибочность) реализации процессов обработки и передачи информации, что и предопределяет показатели эффективности внедрения САПР. Другими словами, работа любого специалиста, участвующего в проекте, оценивается двумя ключевыми количественными показателями: временем выполнения проектной операции и количеством субъективных ошибок, внесенных при этом в проект. Эти показатели для существующей структуры предприятия являются взаимоисключающими: ускорение выполнения заданий ведет к повышению уровня брака и, наоборот, повышение требований к качеству приводит к уменьшению скорости выполнения заданий, то есть рост эффективности работы предприятия ограничивается его существующей структурой.

Переход на качественно новый уровень работы, а именно это и предполагает внедрение комплексной САПР, невозможен без кардинальной реконструкции организационной структуры предприятия. Характер, направление и глубина подобной реконструкции определяются выбранной платформой автоматизации.

Именно тем, в какой мере САПР позволяет разрешить указанное выше противоречие, и определяется эффективность автоматизации. Анализ результатов внедрения системы БАЗИС на ряде мебельных предприятий показал, что ее функциональность достаточна для реального сокращения времени выполнения заказов при одновременной минимизации количества ошибок, вызванных человеческим фактором. Прежде всего, это касается технологической подготовки производства, как важнейшего этапа жизненного цикла изделия.

Основой автоматизации предприятия является формирование единого информационного пространства, охватывающего все проектно-производственные операции. Это позволяет в процессе конструирования учесть целый ряд технологических требований и реализовать элементы параллельной стратегии проектирования. Внедрение САПР БАЗИС позволяет формировать несколько параллельно обрабатываемых потоков информации, основные из которых направлены на выполнение следующих операций:

▼ конструирование изделий и ансамблей;

▼ раскрой плитных и погонажных материалов;

▼ разработка управляющих программ для станков с ЧПУ;

▼ расчет технико-экономических показателей;

▼ формирование документов для материально-технического обеспечения производства;

▼ нормирование материальных и трудовых затрат;

▼ формирование информационных массивов для автоматизированных систем управления проектными работами.

Автоматизация ТПП имеет три основные цели:

▼ сокращение трудоемкости процесса, необходимое для уменьшения количества задействованных специалистов и, соответственно, себестоимости изделий;

▼ сокращение сроков проектирования, что является основой получения конкурентных преимуществ за счет быстрой реализации проектов;

▼ повышение качества принимаемых решений и разрабатываемых технологических процессов, что диктуется техническим перевооружением современных мебельных производств за счет замены универсального оборудования оборудованием с автоматическим циклом обработки и широким внедрением станков с ЧПУ и обрабатывающих центров.

Общая постановка задачи раскроя

Плитные материалы, используемые в производстве мебели, такие как ДСтП, ДВП, МДФ, фанера, клееные щиты, должны проходить первую технологическую операцию - раскрой на заготовки. Они раскраиваются круглыми пилами на круглопильных станках и пильных центрах. Станки различаются между собой рядом технологических параметров, влияющих на способы выполнения технологической операции раскроя, а, следовательно, и на формирование карт раскроя:

▼ количество пильных агрегатов продольного и поперечного направлений пиления;

▼ ограничения в схемах раскроя размерами максимальной и минимальной ширины отрезаемой полосы и наличием обязательных сквозных продольных или поперечных пропилов (резов);

▼ максимальными размерами обрабатываемого материала;

▼ количеством одновременно раскраиваемых плит;

▼ точностью раскроя;

▼ чистотой получаемой при пилении кромки;

▼ толщиной используемых пил.

Современные линии для раскроя материалов и полуавтоматические круглопильные станки могут иметь встроенный модуль для составления карт раскроя. Однако ввод исходных данных для их работы осуществляется вручную, что нередко приводит к появлению ошибок. Наилучшим решением в этом случае является автоматический импорт данных непосредственно из математической модели изделия. Кроме того, встроенные модули раскроя, как правило, достаточно дорогие.

Если используемое оборудование не может выполнять такую функцию, в рамках технологической подготовки производства требуется составлять карты раскроя листовых материалов. Они служат технологическими инструкциями для операторов, выполняющих данную операцию, а также несут в себе информацию, необходимую для выполнения последующих расчетов, таких как:

▼ материалоемкость изделия;

▼ полезный выход материала при раскрое;

▼ потребное количество материала для обеспечения производства;

▼ трудозатраты на выполнение операций по раскрою материала;

▼ нормирование операций.

Различают раскрой чистовых и черновых заготовок. Если после раскроя в процессе последующих операций размеры детали не будут меняться, целесообразно проводить чистовой раскрой. Например, раскрой ламинированных ДСтП с последующей операцией облицовывания кромок. Если же последующие операции будут менять размеры или форму детали, производят черновой раскрой. Например, раскрой ДСтП с последующим облицовыванием пласти и опиливанием в размер.

Разница в размерах между чистовым размером и размером черновой заготовки называется припуском. Она определяется составом технологических операций, которые должна пройти заготовка после раскроя, параметрами оборудования для выполнения этих операций и видом раскраиваемого материала.

Карты раскроя - это графическое представление расположения заготовок на стандартном формате подлежащего раскрою материала. Составление карт раскроя вручную очень трудоемко, при этом их качество в значительной степени зависит от опыта и квалификации разработчика. Существуют три схемы раскроя: продольный, поперечный и смешанный. Поперечный и продольный раскрои встречаются в самостоятельном виде очень редко. Обычно поперечный раскрой является продолжением продольного раскроя, то есть раскроя продольных полос на заготовки.

Смешанный раскрой сочетает в себе раскрой по двум предыдущим схемам и выполняется на одном и том же станке. На рис. 1.2 показаны возможные схемы раскроя.

В модуле БАЗИС+Раскрой можно выбирать продольно+поперечную или смешанную схему раскроя. В нем реализован алгоритм раскроя только прямолинейными сквозными резами. Такая схема используется на подавляющем большинстве видов оборудования в мебельной промышленности.

Все САПР корпусной мебели, представленные на российском рынке, включают в себя подсистемы раскроя материалов, однако в них технологические критерии оптимизации реально не учитываются. Для современных условий производства при наличии высокопроизводительного пильного оборудования с ЧПУ такое положение дел является неудовлетворительным. Необходимо учитывать всю совокупность параметров, характеризующих технологическую и организационную специфику конкретного предприятия. Именно такие алгоритмы оптимизации и заложены в модуле БАЗИС+Раскрой.

Помимо оптимизации раскладки заготовок, программы раскроя материалов должны иметь ряд дополнительных возможностей:

▼ фильтрация остатков материалов, образующихся в процессе раскроя, на деловые обрезки, которые предполагается использовать в будущем, и отходы, подлежащие утилизации;

▼ формирование и ведение базы данных материалов и обрезков;

▼ настройка параметров оптимизации, основными из которых являются ширина реза (толщина режущего инструмента), величина обрезки края плиты, ограничение на длину пропила, направление первоначального распила плит и количество раскраиваемых изделий;

▼ ручное редактирование карт раскроя;

▼ настройка параметров печати карт раскроя;

▼ экспорт данных в наиболее распространенные форматы;

▼ импорт данных из внешних файлов.

Структура задачи оптимального раскроя материалов и ее место в технологической подготовке производства показаны на рис. 1.3.

Критерии оптимизации и технологические параметры раскроя

Требования современного рынка мебельных изделий предполагают сокращение сроков выполнения заказов и повышение качества продукции при условии минимально возможных цен. Для достижения подобного баланса необходимо наличие, как минимум, двух составляющих производственного процесса:

▼ использование современного высокопроизводительного оборудования;

▼ минимизация издержек при выполнении технологических операций

Применительно к задаче оптимизации раскроя материалов это означает, что критерий минимизации отходов уже не имеет безусловного приоритета. Эффективное мебельное производство требует комплексных критериев оптимизации, позволяющих формировать карты раскроя, учитывающие все возникающие издержки, в которых достижение максимального значения КИМ является одним (хотя и очень важным) составляющим элементом. Новые критерии должны способствовать уменьшению трудоемкости технологической операции раскроя, повышению эффективности использования имеющегося оборудования, обеспечению ритмичности работы последующих производственных участков. Их удельный вес в составе комплексных критериев оптимизации повышается одновременно с повышением уровня автоматизации производства.

Одним из комплексных критериев оптимизации, с достаточной точностью учитывающим специфику современного мебельного производства, служит обобщенная стоимость получаемых в результате раскроя деталей. В нее входят затраты на материалы, выполнение операции раскроя и дополнительные издержки, связанные с обслуживанием деловых обрезков, получающихся в результате раскроя, и утилизацией отходов.

Рассмотрим характер составляющих обобщенной стоимости деталей. Геометрическая составляющая определяется полной стоимостью использованных полноформатных плит и деловых обрезков, полученных при выполнении предыдущих операций раскроя.

Трудоемкость выполнения раскроя зависит от трех основных параметров:

▼ количество поворотов панелей,

▼ количество установок размеров,

▼ количество карт раскроя.

Поскольку круглопильные станки и пильные центры реализуют прямые сквозные пропилы, то перед выполнением очередного технологического перехода возникает необходимость поворота отпиливаемых полос. Эти действия выполняются вручную и занимают время, которое зависит от количества поворотов и размеров поворачиваемых полос. Минимизация общего количества поворотов панелей позволяет сформировать карты раскроя, обеспечивающие минимальные трудоемкость и время выполнения.

Технологический переход в операции раскроя состоит из нескольких проходов, каждый из которых соответствует получению очередной полосы или готовой детали. При изменении типоразмера отпиливаемой детали оператор устанавливает специальные приспособления (упоры), обеспечивающие необходимый размер. Каждый новый размер полосы предусматривает переустановку упоров, которая требует времени и, кроме того, выполняется с некоторой погрешностью, вследствие наличия люфта в упорах. Погрешность раскроя, не влияя непосредственно на время выполнения операции, может оказать негативное влияние на качество изделия. Минимизация количества установок размеров означает последовательное расположение полос с одинаковыми размерами для того, чтобы отпиливать их при одной установке упоров.

Если два предыдущих параметра относятся к раскрою отдельных плит материала, то минимизация количества карт раскроя позволяет уменьшить общее время выполнения всех операций раскроя, связанных с конкретным заказом. Это определяется двумя основными факторами: уменьшением количества технологических операций раскроя и возможностью одновременного раскроя нескольких плит, когда это допускает используемое оборудование. Кроме того, уменьшение количества одинаковых карт раскроя приводит к уменьшению вероятности возникновения субъективных ошибок в случае раскроя на круглопильных станках без ЧПУ.

Для экономии материалов на предприятии может функционировать склад деловых обрезков - фрагментов плит, остающихся после выполнения раскроя, которые рационально использовать для последующего раскроя деталей из того же материала. Использование обрезков значительно повышает коэффициент использования материала, но требует при этом дополнительных издержек, связанных с транспортировкой обрезков на склад и в производство, их хранением, идентификацией и дополнительной обработкой, например, при наличии сколов. Оценить затраты на выполнение этих операций достаточно сложно. Аналогичным образом дело обстоит и с затратами на утилизацию отходов. Наряду с критерием оптимизации на формирование карт раскроя большое влияние оказывают технологические параметры раскроя. Их особенностью является существенная зависимость от многих факторов конкретного производства, что предопределяет необходимость разработки гибких инструментов настройки при программной реализации модуля автоматизированного раскроя.

Параметр, определяющий направление первых пропилов может принимать одно из трех значений, соответствующих пропилам вдоль плиты, поперек плиты или произвольным пропилам. Последний вариант имеет больше теоретическое, чем практическое значение, поскольку при его выборе часть карт раскроя может иметь первые пропилы поперек плиты, а остальные - вдоль, что приведет к дополнительным затратам при выполнении раскроя, а также увеличит время формирования карт раскроя.

Параметр ширины пропила, как правило, соответствует ширине пилы, однако есть одно существенное уточнение. Если пила хорошо заточена, а станок правильно отрегулирован, то ширина пропила совпадает с шириной пилы. Если же пила притупилась, или пила и подрезчик не находятся в одной плоскости, то ширина пропила окажется несколько больше ширины пилы. Следовательно, для задания значения данного параметра необходимо иметь возможность указания реальной ширины пропила.

Параметр, задающий максимальную ширину отпиливаемых полос, определяется конструкцией используемого станка. Правый упор на круглопильном станке можно отодвинуть до определенных пределов. Как правило, его положение выбирается из ряда 800, 1000, 1300, 1600 мм. На левом упоре можно установить любой размер, но правый упор при этом может мешать выполнению операции. На многих станках его можно откинуть или вообще снять, но такие манипуляции не только потребуют лишнего времени, но и далеко не всегда приведут к желаемому результату. Продвижению плиты может помешать, например, труба аспирации. Иллюстрация важности учета данного параметра представлена примерами карт раскроя, показанными на рис. 1.4 и рис. 1.5.

Карту раскроя, приведенную на рис. 1.4, невозможно выполнить от правого упора, а при базировании от левого упора могут возникнуть проблемы перемещения плиты. Формирования подобных карт следует избегать. В данном случае целесообразнее получить карту, показанную на рис. 1.5, где плиту можно базировать как от правого, так и от левого упора, поэтому сложностей с ее исполнением не возникнет.

Параметр максимальной длины пропила представляет собой, по сути, величину хода каретки станка. Он влияет на возможность выполнения продольных первых пропилов.

Современные тенденции развития мебельного рынка приводят к увеличению в составе изделий удельного веса криволинейных деталей, технология изготовления которых имеет определенные особенности. В частности, при наличии выпуклых кромок, как правило, необходимо при технологическом проектировании карт раскроя делать припуск в соответствующую сторону для последующей обработки. Участки с сопряжением кромок считаются особыми случаями: в зависимости от технологии изготовления они могут учитываться или не учитываться при добавлении припуска, причем в первом случае припуск добавляется на обе сопрягаемые кромки. Это означает, что необходимо наличие соответствующих возможностей в модуле раскроя.

Еще одним способом технологической коррекции размеров деталей является моделирование режима чернового раскроя. По умолчанию моделируется чистовой раскрой, и распиловочные размеры рассчитываются по конструкторским размерам из модели изделия с учетом припусков. Однако в ряде случаев технология обработки предполагает выполнение операции фрезерования контура детали после раскроя. В таких случаях должен моделироваться черновой раскрой, перед выполнением которого заданные значения припусков для каждой стороны детали добавляются к размерам соответствующих сторон.

Как следует из сказанного, технологические параметры раскроя являются важным дополнением к критериям оптимизации, позволяющим учитывать особенности работы конкретного мебельного производства.

Методика автоматизации раскроя материалов

В системе БАЗИС задача оптимизации раскроя материалов решается в контексте автоматизации всего проектно+производственного участка жизненного цикла корпусной мебели. Операции раскроя материалов фактически определяет начальные условия для выполнения большинства производственных операций. Именно это положение и лежит в основе предлагаемой методики оптимизации раскроя материалов.

Совместное использование модуля автоматизированного раскроя материалов и модулей конструирования изделий позволяет автоматически формировать на основе модели изделия или мебельного ансамбля информационные массивы, обеспечивающие безошибочную комплектацию заданий на раскрой, выполняя при этом необходимую предварительную обработку.

Прежде всего, при импорте информации из модели производится автоматическая двухуровневая сортировка деталей:

▼ в зависимости от типа используемого материала создается два списка деталей: из листовых материалов и из погонажных материалов;

▼ внутри каждого списка детали сортируются по виду материала.

Естественно, что операции раскроя выполняются отдельно для каждого материала. Облицовочные материалы также могут включаться в список погонажных материалов, поскольку выполнять их раскрой необходимо, например, в том случае, когда применяется профиль, который поступает на предприятие в виде полос.

Важной частью предварительной обработки деталей является формирование распиловочных размеров по конструкторским размерам, то есть их коррекция в зависимости от условий выполнения технологической операции облицовки кромок и других последующих операций. Первый вариант коррекции заключается в учете способа облицовки: с подрезанием контура детали или без подрезания. Второй вариант коррекции связан с моделированием особенности работы некоторых кромкооблицовочных станков, которые перед облицовыванием кромок выполняют операцию их предварительного фрезерования. При использовании таких станков необходимо учесть величину предварительного фрезерования, то есть автоматически смоделировать режим чернового раскроя.

Важным параметром деталей с точки зрения проектирования оптимальных карт раскроя является направление текстуры материала или ее отсутствие. Данный параметр определяется автоматически в соответствии с назначениями, сделанными в процессе конструирования изделия. В ходе предварительной обработки информации допускается его ручное корректирование одним из следующих способов:

▼ изменение направления текстуры для отдельной детали;

▼ отказ от учета направления текстуры для отдельных деталей по эстетическим или иным соображениям, что может привести к повышению КИМ (например, деталь является элементом цокольной коробки и расположена под дном изделия);

▼ отказ от учета направления текстуры для всех деталей, если соответствующий материал не имеет текстуры (например, крашеная ДВП), или его текстура не имеет направления (мраморная крошка).

Таким образом, при автоматизированном раскрое материалов в комплексной САПР БАЗИС основной массив исходной информации формируется безошибочно и в автоматическом режиме, естественно, при правильной настройке параметров предварительной обработки.

Для максимального совмещения изначально противоречивых требований технологичности и экономичности проектируемых карт раскроя разработан алгоритм построения плана оптимального раскроя площадных материалов, основанный на приведении его к раскрою погонажных материалов (линейному раскрою).

Известно, что задача построения оптимального плана линейного раскроя линейных материалов имеет точное математическое решение, причем добиться технологичности раскроя очень просто. Задачу площадного раскроя можно свести к задаче линейного раскроя, если формировать полосы, включая в них заготовки, размеры которых различаются незначительно. Величина отклонения размеров выбрана на основе анализа результатов выполнения раскроя на ряде предприятий. Это объясняется тем, что существует некоторое граничное значение, после которого дальнейшее изменение отклонения практически не влияет на результаты раскроя.

Таким образом, сначала выполняется раскрой листа на полосы первого порядка, затем каждая полоса раскраивается на полосы второго порядка и т.д. Поскольку единственным критерием оптимизации линейного раскроя является достижение максимального значения КИМ, выполняемый полосовой раскрой дает оптимальные карты раскроя, которые априорно являются технологичными на каждом уровне.

Отметим важную особенность рассматриваемого подхода. В качестве исходного постулата оптимизации карт раскроя выступает технологичность, поскольку линейный раскрой априорно технологичен. Решение задачи достижения максимального значения КИМ находится уже для технологичных карт раскроя. Это позволяет оптимальным образом разрешить противоречие между экономичностью и технологичностью проектируемых карт раскроя.

При практической реализации предлагаемой методики используется подход, основанный на задании приоритетов действия критериев оптимизации. Для этого составляется список критериев, включающий в себя семь позиций, определяющих материалоемкость и трудоемкость изготовления изделий:

▼ максимизация значения КИМ;

▼ минимизация общего количества пропилов;

▼ минимизация количества установок размеров;

▼ минимизация количества поворотов панелей;

▼ минимизация длины пропилов;

▼ минимизация количества карт раскроя;

▼ оптимизация размеров деловых обрезков.

Коэффициент использования материала может рассчитываться двумя способами: с учетом и без учета последующего использования деловых обрезков. Его значение во многом зависит от набора типоразмеров заготовок. В соответствии с разработанными в свое время Всероссийским проектно+конструкторским и технологическим институтом мебели рекомендациями при формировании карт раскроя полезный выход материала должен составлять:

▼ не менее 92% при раскрое ДСтП;

▼ 88...90% при раскрое твердых ДВП с лакокрасочным покрытием;

▼ 85% при раскрое фанеры.

В условиях позаказного промышленного производства набор используемых типоразмеров заготовок достаточно широк. Размеры полноформатных плит могут варьироваться в зависимости от материала и используемой партии. Эти факторы ведут к уменьшению потенциально достижимых значений КИМ, но в качестве ориентировочных показателей данные рекомендации актуальны.

Минимизация общего количества пропилов, количества установок размеров и количества поворотов панелей определяет отдельные аспекты технологичности карт раскроя и имеет особую актуальность при проектировании раскроя большого количества полноформатных листов.

Минимизация общей длины пропилов характеризует износ режущего инструмента и преобладает при работе с особо твердыми или хрупкими материалами, требующими дорогого инструмента.

Минимизация количества карт раскроя позволяет уменьшить количество различных действий оператора круглопильного станка, уменьшая вероятность возникновения ошибок субъективного характера.

Оптимизация размеров деловых обрезков предполагает формирование карт раскроя таким образом, чтобы размеры обрезков были максимальными, а их количество - минимальным. Использование данного критерия оправдано при наличии и хорошей организации работы склада обрезков. Как правило, критерий оптимизации размеров обрезков носит вспомогательный характер и используется при проектировании в качестве уточняющего показателя при наличии нескольких практически одинаковых вариантов оптимального раскроя. На трудоемкость раскроя и последующего процесса организации технологического потока влияет состав деталей в карте раскроя. Проектируя раскрой материалов, следует стремиться к тому, чтобы при раскрое одной плиты или листа выходило минимальное количество типоразмеров деталей, а повторение одних и тех же деталей в разных картах раскроя было минимальным или вообще исключалось.

Набор указанных критериев представляет собой противоречивое множество требований, поэтому в зависимости от поставленной задачи технолог должен определить приоритет их действия. Использование подобной методики позволяет получать карты раскроя, максимально адаптированные к конкретному производству.

Для дополнительного повышения технологичности карт раскроя на каждом уровне выполняется операция сортировки заготовок в полосе. При выборе метода сортировки технологу необходимо оценить свойства материала и геометрические размеры заготовок, после чего выбрать один из вариантов:

▼ по уменьшению значения КИМ в полосе;

▼ по уменьшению или увеличению ширины полос;

▼ по увеличению ширины полос, начиная от центра листа;

▼ по уменьшению размеров полос с размещением самой широкой полосы последней;

▼ по уменьшению значения КИМ в полосе с размещением самой широкой полосы последней.

Последний метод сортировки обусловлен тем, что внутренние напряжения в листах ДСтП распределены неравномерно по ширине листа (рис. 1.6).

Это может привести к тому, что при попадании достаточно узких и длинных заготовок на край листа, они будут изгибаться под действием разности касательных напряжений (рис. 1.7).

Рассмотрим на примерах влияние методов сортировки на проектируемые карты раскроя. На рисунках 1.8, 1.9 и 1.10 приведены карты раскроя, имеющие одинаковое значение КИМ. Однако можно отметить следующие различия.

Карта на рис. 1.8 спроектирована с использованием метода сортировки по уменьшению значения КИМ в полосе: площадь обрезков уменьшается от верхней полосы к нижней. Визуально она представляется наиболее рациональной, но при ее реализации оператор будет вынужден перемещать упоры станка в разных направлениях.

Карта на рис 1.9. имеет те же показатели по количеству поворотов панелей, установке размеров, длине пропилов и т.д. Однако в отличие от карты на рис. 1.8, ширина полос увеличивается от верхней полосы к нижней. Это позволяет перемещать упоры только в одном направлении, что ведет к исключению люфтов при установке новых размеров.

Карта на рис. 1.10 имеет большее количество установок размеров, но при этом узкие полосы сгруппированы в середине листа.

Нельзя однозначно сказать, какая из приведенных карт раскроя лучше. Право выбора остается за технологом, поскольку все зависит от конкретной производственной ситуации и свойств используемого материала. Отметим, что методы сортировки не влияют на значение КИМ, они только вносят дополнительный вклад в получение технологичных карт раскроя.

Предлагаемый подход к проектированию карт раскроя материалов разделяет оптимизацию распределения заготовок и их сортировку. Это позволяет реализовать гибкую настройку алгоритмов на технологические условия конкретного предприятия.

Организационные аспекты работы раскройного участка

Как отмечалось выше, раскрой материалов является операцией, объединяющей проектный и производственный этапы работы над заказом. Это означает, что от качественного проектирования раскроя во многом зависит ритмичная работа многих производственных участков мебельного предприятия, то есть в алгоритмах формирования карт раскроя должны учитываться, помимо геометрических и технологических параметров, производственные аспекты, определяемые используемыми технологическими процессами. Рассмотрим их.

При любом раскрое материалов неизбежно образуются обрезки, часть которых можно использовать в дальнейшей работе, а другая часть подлежит утилизации. Под деловым обрезком будем понимать фрагмент листа материала, который рационально использовать для последующего раскроя деталей из того же материала, в отличие от отхода, использовать который нерационально. Поскольку четкой границы между обрезком и отходом зачастую не существует, возможность ее определения остается за технологом. Для автоматической сортировки обрезков необходимо задать минимальные значения длины и ширины. Все обрезки, размеры которых одновременно превышают оба значения, являются деловыми обрезками и будут учитываться при выполнении последующих операций проектирования раскроя.

Проблема рационального использования обрезков на предприятии имеет информационные и технологические аспекты. Информационные аспекты связаны с поддержкой базы данных, в которую автоматически после выполнения раскроя заносится необходимая информация. Из нее же извлекаются данные об имеющихся обрезках перед началом выполнения раскроя. Следует отметить, что использование обрезков требует дополнительных затрат на их хранение и транспортировку, которые также необходимо учитывать.

Технологический аспект использования обрезков определяется возможностью образования различных повреждений во время хранения, которые, как правило, образуются по краю обрезка. Поэтому перед началом формирования карт раскроя для каждого материала задается величина предварительного опиливания обрезков, что приводит к дополнительным издержкам.

При наличии базы данных обрезков на предприятии обеспечиваются два режима раскроя материалов:

▼ раскрой только полноформатных плит материалов без учета обрезков того же самого материала, образовавшихся при предыдущих раскроях;

▼ раскрой с учетом имеющихся обрезков.

Во втором случае вначале производится раскрой обрезков, а затем, если обрезки закончились, или на них невозможно разместить оставшиеся в списке детали, производится раскрой плит.

В процессе раскроя обрезков может возникнуть ситуация, когда количество обрезков в начале раскроя, то есть тех, которые используются в качестве исходных листов, окажется меньшим количества обрезков, получившихся в результате выполнения раскроя. Это связано с тем, что при раскрое обрезков могут появляться новые обрезки. Возникновение подобной ситуации в большинстве случаев является крайне не рациональным. Для исключения этого необходимо автоматически анализировать каждую карту раскроя и исключать из множества допустимых вариантов те карты раскроя обрезков, которые дают хотя бы один новый обрезок. Однако такой автоматический анализ требуется не всегда, поэтому данный режим является опциональным. Кроме того, в ряде случаев возникает необходимость вновь появившиеся обрезки для определенных материалов директивно отнести к отходам, не меняя общих критериев сортировки.

Таким образом, определяется три условия рационального использования информации об обрезках при проектировании раскроя:

▼ КИМ обрезков превышает некоторое заранее заданное значение;

▼ КИМ раскроя обрезков из базы данных превышает КИМ текущих обрезков на величину, не меньшую заданного значения;

▼ информацию об обрезках необходимо удалить из базы данных.

Для радикального увеличения коэффициента использования материала разработана и программно реализована технология каскадного раскроя, которая представляет собой такой способ формирования карт раскроя, который позволяет автоматически «перекраивать» отдельные карты, имеющие неудовлетворительные характеристики, в соответствии с локальной шкалой критериев оптимизации.

Поскольку шкала критериев имеет сквозное действие, могут образоваться отдельные карты раскроя, качество которых можно улучшить. Для этого определяется новая локальная шкала критериев, действие которой распространяется только на карты, указанные технологом, и выполняется операция раскроя деталей, размещаемых на этих картах без изменения всех остальных. Количество повторений каскадного раскроя не ограничено. Дополнительной опцией проектирования раскроя является ручное редактирование карт раскроя с учетом направления текстуры и комплектности.

Исходя из этого, результирующий оптимальный план раскроя включает в себя три составляющие:

▼ множество карт раскроя, принимаемых технологом без доработок;

▼ множество карт, спроектированных с использованием технологии каскадного раскроя;

▼ множество вручную отредактированных карт раскроя.

Поскольку использование обрезков при проектировании раскроя материалов приводит к появлению дополнительных издержек, разработана новая методология организации проектирования, позволяющая существенно сократить их количество. Для этого список деталей, подлежащих раскрою, разбивается на два списка:

▼ основной список, содержащий информацию о заготовках текущего проектируемого изделия или ансамбля;

▼ дополнительный список, в который включается информация о заготовках для изготовления будущих изделий, изделий малых форм (цветочные полочки, небольшие тумбочки и т.д.) или элементов, которые будут использоваться во многих изделиях (выдвижные ящики, полки под клавиатуру компьютера и т.д.).

В дополнительный список включаются заготовки, которые будут раскраиваться на обрезках, полученных при раскрое основного списка. Информация о них, также как и информация об обрезках, заносится в базу данных. Однако их среднее время пребывания там значительно меньше, чем информации об обрезках. Это объясняется тем, что перед началом раскроя материалов для очередного задания выполняются две операции:

▼ информация обо всех имеющихся заготовках извлекается из базы данных;

▼ из основного списка исключаются все заготовки, которые были ранее раскроены через дополнительный список.

Принципиальное различие между алгоритмами раскроя заготовок из дополнительного списка и обычного раскроя обрезков заключается в том, что в первом случае производится совместный раскрой обоих списков. При этом заготовки из дополнительного списка размещаются только на обрезках, образующихся при раскрое заготовок основного списка. Раскрой заготовок дополнительного списка выполняется по тем же алгоритмам и с теми же технологическими настройками, что и заготовок основного списка.

При использовании дополнительного списка необходимо выбрать один их трех возможных режимов использования данных из него:

▼ использовать только текущие обрезки;

▼ использовать текущие обрезки и обрезки, информация о которых имеется в базе данных, без дополнительных условий;

▼ использовать обрезки из базы данных только при условии размещения на них хотя бы одной заготовки из основного списка.

Принципы формирования дополнительного списка определяются при подготовке исходных данных для раскроя, исходя из текущих и перспективных потребностей предприятия. Понятие коэффициента использования материала при работе с ним расширяется до четырех возможных вариантов в зависимости от того, что считать полезным выходом операции раскроя:

▼ площадь заготовок основного списка;

▼ площадь заготовок основного списка и деловых обрезков;

▼ площадь заготовок основного и дополнительного списков;

▼ площадь заготовок основного списка, дополнительного списка, а также деловых обрезков.

Интеграции раскроя в производственную среду предприятия

Технологическая операция раскроя материалов является началом изготовления изделий корпусной мебели. Это означает, что карты раскроя являются источником исходных данных для реализации последующих технологических операций: облицовки кромок, присадки отверстий, сборки, упаковывания. От того, как будут сформированы начальные условия для их реализации, зависит и время выполнения данного заказа, и время выполнения следующих заказов.

Это требует включения программного модуля раскроя в производственную среду предприятия с целью алгоритмического решения в процессе формирования карт раскроя ряда организационно-производственных проблем. Современные пильные центры могут одновременно кроить пакеты полноформатных листов, причем их количество в пакете зависит от типа станка и имеет определенную кратность. Если центр кроит за один раз n листов, а для раскроя заготовок изделия требуется k листов (k не кратно n), возникает возможность формирования двух вариантов раскроя:

▼ раскрой с заделом, в котором все карты оптимизированы для исполнения на пильном центре, то есть в них запланирован раскрой дополнительных листов и получение избыточного количества заготовок, информация о которых будет занесена в базу данных;

▼ точный раскрой, в котором присутствуют карты двух видов, например, для пильного центра и для круглопильного станка, позволяющего кроить по одной плите материала.

Наличие подобной возможности в модуле БАЗИС+Раскрой позволяет использовать так называемую технологию фиксированного уровня раскроя. Выше говорилось о приведении площадного раскроя к линейному раскрою. Это означает, что такой алгоритм оптимизации фактически разбивает каждый полноформатный лист на полосы определенного уровня, при этом исходный лист является полосой нулевого уровня. Каждый новый уровень с точки зрения исполнения раскроя представляет собой поворот раскраиваемого пакета. Задавая в качестве входного параметра номер максимального уровня, можно проектировать карты раскроя двух типов - с ограничением по количеству поворотов и без ограничения.

Грамотное использование данной технологии позволяет формировать карты раскроя, обеспечивающие оптимальную загрузку всего имеющегося парка раскройного оборудования.

Еще одним производственным аспектом, который необходимо учитывать при автоматизированном раскрое материалов, является обеспечение планируемого выхода деталей с раскройного участка. Это достигается применением методики штабелирования деталей. Известно, что для оптимизации работы фрезерно-присадочного и кромкооблицовочного оборудования необходимо минимизировать количество переналадок, то есть максимизировать количество одинаковых деталей, поступающих с раскройного участка в различных партиях. В модуле БАЗИС+Раскрой реализована возможность регулирования максимального количества различных типоразмеров деталей, которые располагаются на одном листе - уровень штабелирования.

При изменении уровня пакетирования изменяется количество групп текущих деталей, которые необходимо складировать около раскройного станка перед их передачей на последующие технологические участки. Уменьшение количества таких групп, достигаемое в процессе формирования карт раскроя, позволяет получить ряд существенных преимуществ: использование меньшей производственной площади для складирования деталей; минимизация возможных ошибок оператора вследствие необходимости сортировки меньшего количества типоразмеров деталей; равномерная загрузка оборудования других участков.

Естественно, что включение дополнительных условий в параметры раскроя является причиной уменьшения значения КИМ и/или технологичности карт раскроя. Задача технолога состоит в том, чтобы, воспользовавшись возможностями модуля БАЗИС+Раскрой, формировать карты раскроя, в максимальной степени удовлетворяющие требованиям текущей производственной ситуации. Разработанные алгоритмы и методики раскроя предоставляют все необходимые условия для решения данной задачи.

Помимо рассмотренных настроек для оптимизации производства в модуле БАЗИС+Раскрой реализованы следующие дополнительные возможности:

▼ подбор оптимальной партии раскраиваемых изделий в заданном диапазоне, что является актуальным при совмещении позаказного и серийного типов производства;

▼ качественное оформление карт раскроя, имеющее большое значение для сокращения времени его выполнения;

▼ автоматическое формирование пользовательских бирок, содержащих заданный набор параметров, представленный как в явном виде, так и в виде штрих-кода в одной из систем кодирования, что позволяет внедрить на производстве элементы безбумажной технологии.

Технологические операции раскроя листовых и плитных материалов включают распиливание их вдоль и поперек с получением заготовок или деталей требуемых размеров. При этом необходимо выполнять главные требования, предъявляемые к раскрою – обеспечение максимального коэффициента раскроя, комплектности заготовок в соответствии с объемом производства и соответствующим им качеством. Максимальный процент полезного выхода деталей в чистоте может быть обеспечен при условии, если припуски будут минимальными, организационные и технологические потери сведены к нулю, а раскрой плитных и листовых материалов на заготовки будет основан на строгих математических расчетах.

На производстве заготовки из плитных и листовых материалов раскраивают по картам раскроя. При разработке карт раскроя требуется строгое соблюдение максимального выхода деталей, комплектности деталей разных размеров и назначения в соответствии с объемом производства, максимального количества типоразмеров деталей при раскрое одной плиты и минимального повторения одних и тех же деталей в разных картах раскроя. Карты раскроя составляют с учетом припусков на последующую механическую обработку. Для мебельных заготовок из плитных материалов припуски на обработку устанавливают по длине и ширине. При составлении карт раскроя, облицованных ДСтП, учитывают направление рисунка в заготовках.

Применяемое на мебельных и деревообрабатывающих предприятиях оборудование для раскроя плит реализует схему поэтапного раскроя, при которой на первом этапе ДСтП раскраивают по длине на полосы, затем, на втором этапе, полосы раскраивают на заготовки. В зависимости от количества типоразмеров заготовок, входящих в карту раскроя, и соблюдения или несоблюдения комплектности заготовок в одной карте раскроя, различают индивидуальный, комбинированный и совместный способы раскроя.

При индивидуальном раскрое материалы (плиты) одного вида раскраиваются на заготовки одного вида или материалы одного вида раскраиваются на заготовки нескольких видов (нескольких типоразмеров) и, наконец, материалы нескольких видов раскраиваются на заготовки одного вида. Индивидуальный способ раскроя сопровождается большим количеством отходов.

Комбинированный раскрой предусматривает включение в каждую карту раскроя нескольких типоразмеров заготовок или деталей с обязательным соблюдением комплектности по выкраиваемым заготовкам. Этот способ раскроя является, как правило, более эффективным по сравнению с индивидуальным, но он более сложен.

Совместный раскрой может включать индивидуальный и комбинированный способы раскроя и является наиболее эффективным по сравнению с рассмотренными.

Наибольше применение для раскроя необлицованной ДСтП нашли такие станки как ЦТМФ-1, ЦТЗФ-1 (Россия) (рис. 67); для раскроя ламинированной ДСтП – форматно-раскроечные станки ITALMAC Omnia-3200R (рис. 68), CASOLIN Astra SE400 (Италия), ROBLAND (Бельгия), PANHANS (Германия) и центры по раскрою с числовым программным управлением SELCO EB 120 (рис. 69), Biesse SELCO WNAR600 (Италия), HVP 120 (рис. 70) и др.

Рис. 67. Станок форматно-обрезной ЦТ3Ф-1: 1-станина; 2-направляющая; 3-пульт управления; 4-гидростанция; 5-гидропривод поперечного суппорта; 6-траверса; 7, 12-суппорты; 8, 11-маховики; 9-пила для продольного пиления; 10-пила для поперечного пиления; 13-трос; 14-распиливаемый материал; 15-каретка

Рис. 68. Форматно-раскроечный станок ITALMAC Omnia-3200R

Рис. 69. Форматно-раскроечный с ЧПУ SELCO EB 120

Рис. 70. Вертикальный форматно-раскроечный центр с ЧПУ HVP 120