§2. Квадратные уравнения и неравенства с параметром. Учебное пособие "уравнения и неравенства с параметрами"




решение неравенства в режиме онлайн решение почти любого заданного неравенства онлайн . Математические неравенства онлайн для решения математики. Быстро найти решение неравенства в режиме онлайн . Сайт www.сайт позволяет найти решение почти любого заданного алгебраического , тригонометрического или трансцендентного неравенства онлайн . При изучении практически любого раздела математики на разных этапах приходится решать неравенства онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение неравенства онлайн займет несколько минут. Основное преимущество www.сайт при решении математических неравенства онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические неравенства онлайн , тригонометрические неравенства онлайн , трансцендентные неравенства онлайн , а также неравенства с неизвестными параметрами в режиме онлайн . Неравенства служат мощным математическим аппаратом решения практических задач. C помощью математических неравенств можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины неравенств можно найти, сформулировав задачу на математическом языке в виде неравенств и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое неравенство , тригонометрическое неравенство или неравенства содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения неравенств . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических неравенств онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических неравенств онлайн , тригонометрических неравенств онлайн , а также трансцендентных неравенств онлайн или неравенств с неизвестными параметрами. Для практических задач по нахождению инетравол решений различных математических неравенств ресурса www.. Решая неравенства онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение неравенств на сайте www.сайт. Необходимо правильно записать неравенство и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением неравенства. Проверка ответа займет не более минуты, достаточно решить неравенство онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении неравенств онлайн будь то алгебраическое , тригонометрическое , трансцендентное или неравенство с неизвестными параметрами.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

Самарской области

« Уравнения

и

неравенства

с параметрами»

учебное пособие

Клявлино

Учебное пособие

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Введение……………………………………………………………3-4

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…...16-18

Задачи ЕГЭ………………………………………………………...18-20

Задания для самостоятельной работы…………………………...21-28

Введение.

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

    Выделить особое значение - это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

    Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0 . Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax < b (а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а < 0 . Аналогично для неравенства

ах < b множество решений – промежуток (-;), если a > 0, и (; +), если а < 0.

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение.

Если а = 0 , то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = - решение уравнения.

Ответ : при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3) , рассмотрим два случая:

а= -3 и а ¹ -3.

Если а= -3 , то любое действительное число х является корнем уравнения (1). Если же а ¹ -3 , уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение : Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а - 2) х = а 2 – 4а +4

2(а - 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =
.
По условию х > 1 , то есть
>1, а > 4.

Ответ: При а {2} U (4;∞).

Пример 4 . Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

y = a – семейство горизонтальных прямых;

y = - графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0 , то уравнение решений не имеет. Если а ≠ 0 , то уравнение имеет одно решение.

Пример 5 . С помощью графиков выяснить, сколько корней имеет уравнение:

|х| = ах – 1.

y =| х | ,

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1 - один корень

при | а| ≤1 – уравнение корней не имеет.

Пример 6 . Решить неравенство ах + 4 > 2х + а 2

Решение : ах + 4 > 2х + а 2
(а – 2) х >
а 2 – 4. Рассмотрим три случая.


Ответ. х > а + 2 при а > 2; х <а + 2, при а < 2; при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Квадратное уравнение – это уравнение вида ах ² + b х + с = 0 , где а≠ 0,

а, b , с – параметры.

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² - 4 ac , (
²-
ас)

2) формул корней квадратного уравнения: х 1 =
, х
2 =
,

1,2 =
)

Квадратными называются неравенства вида

a х 2 + b х + с > 0, a х 2 + b х + с< 0, (1), (2)

a х 2 + b х + с ≥ 0, a х 2 + b х + с ≤ 0, (3), (4)

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 < х 2 ), то при а > 0 он положителен на множестве (-; х 2 )
2; +) и отрицателен на интервале

(х 1 ; х 2 ). Если а < 0, то трехчлен положителен на интервале (х 1 ; х 2 ) и отрицателен при всех х (-; х 1 )
2; +).

Пример 1. Решить уравнение ах² - 2 (а – 1)х – 4 = 0 .

Это квадратное уравнение

Решение : Особое значение а = 0.

    При а = 0 получим линейное уравнение 2х – 4 = 0 . Оно имеет единственный корень х = 2.

    При а ≠ 0. Найдем дискриминант.

D = (а-1)² + 4а = (а+1)²

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ - 1 , то D >0 . По формуле корней получим: х=
;

х 1 =2, х 2 = -.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ - 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8 - графиком является парабола;

y - семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а <-9 , уравнение решений не имеет; при а=-9, уравнение имеет одно решение; при а>-9 , уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х?

Решение. Квадратный трехчлен положителен при всех значениях х, если

а-3 > 0 и D <0, т.е. при а, удовлетворяющих системе неравенств






, откуда следует, что a > 6 .

Ответ. a > 6

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение
= 0

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

х – а = 0, х = а.

Ответ: При а ≠ - 2, х=а

При а = -2 корней нет.

Пример 2 . Решить уравнение
-
=
(1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² - 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² - (а² - 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а - 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.

Если х 1 +1=0, то есть (а+1) + 1= 0 , то а= -2. Таким образом,

при а= -2 , х 1 -

Если х 1 +2=0, то есть (а+1)+2=0, то а = - 3 . Таким образом, при а = - 3, х 1 - посторонний корень уравнения. (1).

Если х 2 +1=0, то есть (а – 3) + 1= 0 , то а = 2 . Таким образом, при а = 2 х 2 - посторонний корень уравнения (1).

Если х 2 +2=0, то есть (а – 3) + 2 = 0, то а=1 . Таким образом, при а = 1,

х 2 - посторонний корень уравнения (1).

В соответствии с этим при а = - 3 получаем х = - 3 – 3 = -6 ;

при а = - 2 х = -2 – 3= - 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2 , то х= -5 ; 3) если а= 0 , то корней нет; 4) если а= 1 , то х= 2; 5) если а=2 , то х=3 ; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х 1 = а + 1, х 2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида
=g (x ) равносильно системе

Неравенство f (x ) ≥ 0 следует из уравнения f (x ) = g 2 (x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

g(x)


≥g(x)

Пример 1. Решите уравнение
= х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе
.

При а = 2 первое уравнение системы имеет вид 0 х = 5 , то есть не имеет решений.

При а≠ 2 х=
.
Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1:
≥ - 1,
≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х=
,
при < а ≤ 2 уравнение решений не имеет.

Пример 2. Решить уравнение
= а
(приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Ответ : при а<0 –решений нет;

при а 0 – одно решение.

Пример 3 . Решим неравенство (а+1)
<1.

Решение. О.Д.З. х ≤ 2 . Если а+1 ≤0 , то неравенство выполняется при всех допустимых значениях х . Если же а+1>0 , то

(а+1)
<1.

<



откуда х (2-
2

Ответ. х (- ;2 при а (-;-1, х (2-
2

при а (-1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a
x= (-1)
n arcsin a+πn, n Z, ≤1, (1)

Cos x = a
x = ±arccos a + 2 πn, n Z, ≤1.
(2)

Если >1, то уравнения (1) и (2) решений не имеют.

tg x = a
x= arctg a + πn, n Z, aR

ctg x = a
x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a
arcsin a + 2 πn
Z,

при a <-1, xR ; при a ≥ 1, решений нет.

2. . sin x < a
π - arcsin a + 2 πnZ,

при а≤-1, решений нет; при а >1, xR

3. cos x > a
- arccos a + 2 πn < x < arccos a + 2 πn , n Z ,

при а<-1, xR ; при a ≥ 1 , решений нет.

4. cos x arccos a+ 2 πnZ,

при а≤-1 , решений нет; при a > 1, x R

5. tg x > a, arctg a + πnZ

6. tg x < a, -π/2 + πn Z

Пример1. Найти а , при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

с os 2 x + (2 a -4) cosx +(a – 5)(а+1) =0, решая его как квадратное, получаем cosx = 5-а и cosx = -а-1.

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1
4≤ а ≤ 6, а уравнение cosx = - а-1 при условии -1≤ -1- а ≤ 1
-2 ≤ а ≤0.

Ответ. а -2; 0
4; 6

Пример 2. При каких b найдется а такое, что неравенство
+
b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а <0, и х = - π /2 при а ≥0.

Ответ. b> 0

§ 6. Показательные уравнения и неравенства

1. Уравнение h (x ) f ( x ) = h (x ) g ( x ) при h (x ) > 0 равносильно совокупности двух систем
и

2. В частном случае (h (x )= a ) уравнение а f (x ) = а g (x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f (x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f (x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f (a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств
а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f (x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х =
имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0
8
х >1

>1

>0, откуда
a (1,5;4).

Ответ. a (1,5;4).

Пример 2. Решить неравенство a 2 ∙2 x > a

Решение . Рассмотрим три случая:

1. а< 0 . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых хR .

2. a =0. Решений нет.

3. а > 0 . a 2 ∙2 x > a
2 x >
x > - log 2 a

Ответ. хR при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

1. Уравнение log f (x ) g (x ) = log f (x ) h (x ) равносильно системе

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b
g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g (x ) ≤ log f ( x ) h (x ) равносильно совокупности двух систем:
и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение . Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

logх – 2 = 4 – log a x
logх + log a x – 6 = 0, откуда log a x = - 3

х = а -3 и log a x = 2
х = а 2 . Условие х = а 4
а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а (0; 1)
(1; ).

Пример 2 . Найдите наибольшее значение а , при котором уравнение

2 log -
+ a = 0 имеет решения.

Решение. Выполним замену
= t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0
а ≤.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log (x 2 – 2 x + a ) > - 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ±
и х
3,4 = 1 ±
.

Критические значения параметра: а = 1 и а = 9.

Пусть Х 1 и Х 2 – множества решений первого и второго неравенств, тогда

Х 1
Х
2 = Х – решение исходного неравенства.

При 0< a <1 Х 1 = (- ;1 -
)
(1 +
; +), при
а > 1 Х 1 = (-;+).

При 0 < a < 9 Х 2 = (1 -
; 1 +
), при
а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0< a ≤1 Х = (1 -
;1 -
)
(1 +
;1 +
).

2. 1 < a < 9 Х = (1 -
;1 +
).

3. a ≥ 9 Х – решений нет.

Задачи ЕГЭ

Высокий уровень С1, С2

Пример 1. Найдите все значения р , при которых уравнение

р ctg 2 x + 2sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ (
- 1) + 2sinx + p = 3, sinx =t , t
, t 0.

- p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f (y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f (x ) на


. у
/ = 6 t – 6 t 2 , 6 t - 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t
, E (f ) =
,

При t
, E (f ) =
, то есть при t


,
E (f ) =
.

Чтобы уравнение 3 t 2 – 2 t 3 = p (следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E (f ), то есть p
.

Ответ.
.

Пример 2.

При каких значениях параметра а уравнение log
(4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4x 2 – 4a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

Найдем а .

4∙ 0 2 - 4a + a 2 +7 = (0 2 + 2) 2 ,

a 2 - 4a +7 = 4, a 2 - 4a +3 = 0, a 1 = 1, a 2 = 3.

Проверка.

1) a 1 = 1. Тогда уравнение имеет вид: log
(4 x 2 +4) =2. Решаем его

4x 2 + 4 = (х 2 + 2) 2 , 4x 2 + 4 = х 4 + 4x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log
(4 x 2 +4) =2
х = 0 – единственный корень.

Ответ. 1; 3

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – (р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7р х 2 + 2х 2 – 14 р х - 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – (р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = - 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2
р = - 1; если х 1 = х 2 = - 1, то р + 3 = - 1 – 1 = - 2
р = - 5. Проверим являются ли корни уравнения х 2 – (р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = - 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ (- 1) ∙ 1 – 3 ∙ 1 + 21 ∙ (- 1) = 0 ≤ 0 – верно; для случая р = - 5, х 1 = х 2 = - 1 имеем (- 1) 3 – 7 ∙ (- 5) ∙ (-1) 2 + 2 ∙ (-1) 2 – 14 ∙ (-5) × (- 1) – 3 ∙ (- 1) + 21∙ (-5) = - 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = - 1 и р = - 5.

Ответ. р 1 = - 1 и р 2 = - 5.

Пример 4. Найдите все положительные значения параметра а , при которых число 1 принадлежит области определения функции

у = (а
- а
).

Тип задания: 18

Условие

При каких значениях параметра a неравенство

\log_{5}(4+a+(1+5a^{2}-\cos^{2}x) \cdot \sin x - a \cos 2x) \leq 1 выполняется при всех значениях x ?

Показать решение

Решение

Данное неравенство равносильно двойному неравенству 0 < 4+a+(5a^{2}+\sin^{2}x) \sin x+ a(2 \sin^{2}x-1) \leq 5 .

Пусть \sin x=t , тогда получим неравенство:

4 < t^{3}+2at^{2}+5a^{2}t \leq 1 \: (*) , которое должно выполняться при всех значениях -1 \leq t \leq 1 . Если a=0 , то неравенство (*) выполняется для любого t\in [-1;1] .

Пусть a \neq 0 . Функция f(t)=t^{3}+2at^{2}+5a^{2}t возрастает на промежутке [-1;1] , так как производная f"(t)=3t^{2}+4at+5a^{2} > 0 при всех значениях t \in \mathbb{R} и a \neq 0 (дискриминант D < 0 и старший коэффициент больше нуля).

Неравенство (*) будет выполняться для t \in [-1;1] при условиях

\begin{cases} f(-1) > -4, \\ f(1) \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} -1+2a-5a^{2} > -4, \\ 1+2a+5a^{2} \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} 5a^{2}-2a-3 < 0, \\ 5a^{2}+2a \leq 0, \\ a \neq 0; \end{cases}\: \Leftrightarrow -\frac{2}{5} \leq a < 0 .

Итак, условие выполняется при -\frac{2}{5} \leq a \leq 0 .

Ответ

\left [ -\frac{2}{5}; 0 \right ]

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 18
Тема: Неравенства с параметром

Условие

Найдите все значения параметра a , при каждом из которых неравенство

x^2+3|x-a|-7x\leqslant -2a

имеет единственное решение.

Показать решение

Решение

Неравенство равносильно совокупности систем неравенств

\left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2+3x-3a-7x+2a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2-4x-a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} a \leqslant x, \\ a\geqslant x^2-4x; \end{cases} \\ \begin{cases}a>x, \\ a\leqslant -\frac{x^2}{5}+2x. \end{cases}\end{array}\right.

В системе координат Oxa построим графики функций a=x, a=x^2-4x, a=-\frac{x^2}{5}+2x.

Полученной совокупности удовлетворяют точки, заключенные между графиками функций a=x^2-4x, a=-\frac{x^2}{5}+2x на промежутке x\in (заштрихованная область).

По графику определяем: исходное неравенство имеет единственное решение при a=-4 и a=5 , так как в заштрихованной области будет единственная точка с ординатой a , равной -4 и равной 5.

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.

Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.

В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.

§ 1. Основные определения

Рассмотрим уравнение

¦(a, b, c, …, k, x)=j(a, b, c, …, k, x), (1)

где a, b, c, …, k, x -переменные величины.

Любая система значений переменных

а = а0, b = b0, c = c0, …, k = k0, x = x0,

при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎА, bÎB, …, xÎX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

Два уравнения, содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

§ 2. Алгоритм решения.

Находим область определения уравнения.

Выражаем a как функцию от х.

В системе координат хОа строим график функции а=¦(х) для тех значений х, которые входят в область определения данного уравнения.

Находим точки пересечения прямой а=с, где сÎ(-¥;+¥) с графиком функции а=¦(х).Если прямая а=с пересекает график а=¦(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦(х) относительно х.

Записываем ответ.

I. Решить уравнение

(1)

Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а:

или

График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.

Если а Î (-¥;-1]È(1;+¥)È

, то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.

Таким образом, на этом промежутке уравнение (1) имеет решение

. , то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и , получаем и . , то прямая у=а не пересекает график уравнения (1), следовательно решений нет.

Если а Î (-¥;-1]È(1;+¥)È

, то ; , то , ; , то решений нет.

II. Найти все значения параметра а, при которых уравнение

имеет три различных корня.

Переписав уравнение в виде

и рассмотрев пару функций , можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции , при которых он имеет точно три точки пересечения с графиком функции .

В системе координат хОу построим график функции

). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде

Поскольку график функции

– это прямая, имеющая угол наклона к оси Ох, равный , и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции . Поэтому находим производную .

III. Найти все значения параметра а, при каждом из которых система уравнений

имеет решения.

Из первого уравнения системы получим

при Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы “скользят” вершинами по оси абсцисс.

Выделим в левой части второго уравнения полные квадраты и разложим её на множители