Связи в металлическом каркасе промышленного здания. Устойчивость ферм, связи между фермами. Горизонтальные связи по нижним поясам




Вертикальные связи, как наиболее экономичные конструкции, в большинстве случаев надежно обеспечивают жесткость зданий со стальным каркасом.

1.1. Со статической точки зрения они являются защемленными в земле изгибаемыми консольными балками.

1.2. В узких вертикальных связях возникают значительные усилия, а сами стержни претерпевают большие деформации по длине, что способствует большим деформациям фасада при малом шаге колонн.

1.4. Жесткость узких ветровых связей может быть повышена объединением их с наружными колоннами.

1.5. Такое же действие оказывает высокая горизонтальная балка (например, в техническом этаже высотного здания). Она уменьшает перекос верхнего ригеля фахверка и отклонение здания от вертикали.

Расположение вертинальных связей в плане

В плане вертикальные связи необходимы в двух направлениях. Сплошные или решетчатые вертикальные связи внутри здания препятствуют свободному использованию помещений; их располагают внутри стен или перегородок с небольшим числом проемов.

2.1. Вертикальные связи окружают лестничную клетку.

2.2. Здание с тремя поперечными связями и одной продольной связью. При узком ядре жесткости в высоких зданиях обеспечение жесткости целесообразно по схемам 1 .4 или 1.5.

2.3. Поперечные связи в безоконных торцовых стенах экономны и эффективны; продольная связь в одном пролете между двумя внутренними колоннами.

2.4. Вертикальные связи расположены в наружных стенах. Таким образом, вид здания находится в прямой зависимости от конструкций.

2.5. Высотное здание с квадратным планом и вертикальными связями между четырьмя внутренними колоннами. Необходимая жесткость в обоих направлениях обеспечивается применением схем 1.4 или 1.5.

2.6. В высотных домах с квадратным или близким к квадратному планом расположение связей в наружных стенах позволяет получить особенно рентабельные строительные конструкции.

Расположение связей в каркасе

3.1. Все связи расположены друг над другом.

3.2. Вертикальные связи отдельных этажей не лежат друг над другом, а взаимно смещены. Междуэтажные перекрытия передают горизонтальные усилия от одной вертикальной связи к другой. Жесткость каждого этажа должна быть обеспечена в соответствии с расчетом.

3.3. Решетчатые связи вдоль наружных стен, участвующие в передаче вертикальных и горизонтальных нагрузок.

Влияние вертикальных связей на основание

Колонны здания, как правило, являются одновременно элементами вертикальных связей. Они испытывают усилия от ветра и от нагрузки на перекрытия. Ветровая нагрузка вызывает в колоннах усилия растяжения или сжатия. Усилия в колоннах от вертикальных нагрузок всегда сжимающие. Для устойчивости здания нужно, чтобы в подошве всех фундаментов преобладали усилия сжатия, однако в некоторых случаях усилия растяжения в колоннах могут быть больше, чем усилия сжатия. В этом случае вес фундаментов учитывается как балласт.

4.1. Угловые колонны воспринимают незначительные вертикальные нагрузки, однако при большом шаге связей усилия, возникающие в этих колоннах от ветра, также незначительны, а потому искусственной пригрузки угловых фундаментов обычно не требуется.

4.2. Внутренние колонны воспринимают большие вертикальные нагрузки, а из-за незначительной ширины ветровых связей и большие усилия от ветра.

4.3. Ветровые усилия такие же, как на схеме 4.2, но уравновешиваются небольшими вертикальными нагрузками благодаря наружным колоннам. Пригрузка фундаментов в этом случае необходима.

4.4. Пригрузка фундаментов необязательна, если наружные колонны стоят на высокой подвальной стене, которая в состоянии уравновесить силы растяжения от действия ветра.

5. Жесткость зданий в поперечном направлении обеспечивается с помощью решетчатых связей в безоконных торцовых стенах. Связи скрыты между наружной стеной и внутренней огнестойкой облицовкой. В продольном направлении здание имеет вертикальные связи в коридорной стене, но расположены они не друг над другом, а смещаются в разных этажах. - Ветеринарно-медицинский факультет в Западном Берлине. Архитекторы: д-р Люкхардт и Вандельт.

6. Жесткость каркаса обеспечивается в поперечном направлении решетчатыми дисками, которые проходят через оба корпуса здания, выходя наружу в промежутках между зданиями. Жесткость здания в продольном направлении обеспечена связями между внутренними рядами колонн. - Высотный дом «Феникс-Рейнрор» в Дюссельдорфе. Архитекторы: Хентрих и Петчниг.

7. Трехпролетное здание с шагом колонн в поперечном направлении 7; 3,5; 7 м. Между четырьмя расположенными попарно внутренними колоннами узкие поперечные связи, между двумя внутренними колоннами одного ряда - продольная связь. Вследствие незначительной ширины поперечных связей расчетные горизонтальные деформации от действия ветра очень велики. Поэтому во втором и пятом этажах в четырех связевых плоскостях установлены напрягаемые раскосы к наружным колоннам.

Напрягаемые стержни выполнены в виде поставленных на ребро стальных полос. Они предварительно напрягаются (напряжение контролируется тензометрами) настолько, что при действии ветра напряжение растянутого раскоса одного направления удваивается, а в другом направлении обращается почти в нуль. - Здание главной администрации фирмы «Беваг» в Западном Берлине. Архитектор проф. Баумгартен.

8. Здание имеет только наружные колонны. Балки перекрывают пролет 12,5 м, шаг наружных колонн 7,5 м. В высокой части ветровые связи расположены на всю ширину здания между наружными колоннами. Наружные колонны воспринимают большие нагрузки, что компенсирует растягивающие усилия от ветра. Фронтон высокой части здания выдается перед колоннами на 2,5 м. Расположенные в торцовых стенах связи продолжаются в пределах первого скрытого этажа между колоннами с передачей горизонтальных усилий от верхней связи к нижней по горизонтальной связи в нижнем междуэтажном перекрытии. Для передачи суммарных опорных усилий служит сплошная балка из стальных листов на высоту этажа, расположенная в техническом этаже между предпоследней и последней колоннами. Эта балка образует консоль до фронтонной стены. - Высотное здание телецентра в Западном Берлине. Архитектор Тепец. Конструктор дипл. инж. Трептов.

9. Обеспечение жесткости здания с помощью наружных связей, передающих часть вертикальных нагрузок промежуточным колоннам. Детали - Административное здание фирмы «Алкоа» в Сан-Франциско. Архитекторы: Скидмор, Оуингс, Меррил.

10. Обеспечение жесткости здания в поперечном направлении: в нижней части благодаря тяжелой железобетонной стене, в верхней части с помощью расположенных перед фасадом связей, которые смещаются в шахматном порядке. В каждом этаже по шесть связей. Стержни связей изготовлены из трубчатых профилей. Жесткость в продольном направлении обеспечена установкой фахверковых связей в средних рядах колонн. Детали - Жилой высотный дом на улице Крулебарб в Париже. Архитекторы: Альбер-Буало и Лябурдет.

Связи между колоннами.

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Связи, образующие жесткий диск, располагают посередине здания или температурного отсека, учитывая возможность перемещения колонн при температурных деформациях продольных элементов.

Если поставить связи (жесткие диски) по торцам здания, то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают большие температурные усилия F t

При длине здания или температурного блока более 120м между колоннами обычно ставят две системы связевых блоков.

Предельные размеры между вертикальными связями в метрах

Размеры в скобках даны для зданий, эксплуатируемых при расчетных температурах наружного воздуха t= –40° ¸ –65 °С.

Наиболее простая схема связей крестовая, она применяется при шаге колонн до 12 м. Рациональный угол наклона связей , поэтому при небольшом шаге, но большой высоте колонн устанавливают две крестовые связи по высоте нижней части колонны.

В таких же случаях иногда проектируют дополнительную развязку колонн из плоскости рамы распорками.

Вертикальные связи ставят по всем рядам здания. При большом шаге колонн средних рядов, а также чтобы не мешать передаче продукции из пролета в пролет проектируют связи портальной и полупортальной схем.

Вертикальные связи между колоннами воспринимают усилия от ветра W 1 ,и W 2 действующего на торец здания и продольного торможения кранов Т пр.

Элементы крестовых и портальных связей работают на растяжение. Сжатые стержни вследствие большой гибкости выключаются из работы и в расчете их не учитывают. Гибкость растянутых элементов связей, расположенных ниже уровня подкрановых балок не должна превышать 300 для обычных зданий и 200 для зданий с «особым» режимом работы кранов; для связей выше подкрановых балок – соответственно 400 и 300.



Связи по покрытию.

Связи по конструкциям покрытия (шатра) или связи между фермами создают общую пространственную жесткость каркаса и обеспечивают: устойчивость сжатых поясов ферм из их плоскости, перераспределение местных крановых нагрузок, приложенных к одной из рам, на соседние рамы; удобство монтажа; заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Связи по покрытию располагают:

1) в плоскости верхних поясов стропильных ферм – продольные элементы между ними;

2) в плоскости нижних поясов стропильных ферм – поперечные и продольные связевые фермы, а также иногда и продольные растяжки между поперечными связевыми фермами;

3) вертикальные связи между стропильными фермами;

4) связи по фонарям.

Связи в плоскости верхних поясов ферм.

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Ж/б плиты покрытия и прогоны могут рассматриваться как опоры, препятствующие смещению верхних узлов из плоскости фермы при условии, что они закреплены от продольных перемещений связями, расположенными в плоскости кровли. Такие связи (поперечные связевые фермы) целесообразно располагать в торцах цеха, чтобы они вместе с поперечными связевыми фермами по нижним поясам и вертикальными связями между фермами создавали пространственный блок, обеспечивающий жесткость покрытия.

При большей длине здания или температурного блока устанавливают промежуточные поперечные связевые фермы, расстояние между которыми не должно превышать 60 м.

Для обеспечения устойчивости верхнего пояса фермы из ее плоскости в пределах фонаря, где нет кровельного настила, предусматриваются специальные распорки, в коньковом узле фермы обязательны. В процессе монтажа (до установки плит покрытия или прогонов) гибкость верхнего пояса из плоскости фермы должна быть не более 220. Поэтому, если коньковая распорка не обеспечивает этого условия, между ней и распоркой на опоре фермы (в плоскости колонн) ставят дополнительную распорку.

Связи в плоскости нижних поясов ферм

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания.

При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха.

Если поперечная жесткость каркаса недостаточна, краны при движении могут заклиниваться и нарушается нормальная эксплуатация. Чрезмерные колебания каркаса создают неблагоприятные условия для работы кранов и сохранности ограждающих конструкций. Поэтому в однопролетных зданиях большой высоты (H>18 м), в зданиях с мостовыми кранами Q>100 кН, с кранами тяжелого и весьма тяжелого режимов работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Горизонтальные силы F от мостовых кранов воздействуют в поперечном направлении на одну плоскую раму или две-три смежные.

Продольные связевые фермы обеспечивают совместную работу системы плоских рам, вследствие чего поперечные деформации каркаса от действия сосредоточенной силы значительно уменьшаются.

Стойки торцевого фахверка передают ветровую нагрузку F вт в узлы поперечной связевой фермы.

Чтобы избежать вибрации нижнего пояса фермы вследствие динамического воздействия мостовых кранов ограничивается гибкость растянутой части нижнего пояса из плоскости рамы: при кранах с числом циклов нагружения 2×10 6 и более – величиной 250, для прочих зданий – величиной 400. Для сокращения длины растянутой части нижнего пояса в некоторых случаях ставят растяжки, закрепляющие нижний пояс в боковом направлении.

Вертикальные связи между фермами.

Эти связи связывают между собой стропильные фермы и препятствуют их опрокидыванию. Они устанавливаются, как правило, в осях, где установлены связи по нижним и верхним поясам ферм образуя совместно с ними жесткий блок.

В зданиях с подвесным транспортом вертикальные связи способствуют перераспределению между фермами крановой нагрузки приложенной непосредственно к конструкциям покрытия. В этих случаях, а также к стропильным фермам крепят электрические кран – балки значительной грузоподъемности, вертикальные связи между фермами располагают в плоскостях подвески непрерывно по всей длине здания.

Конструктивная схема связей зависит главным образом от шага стропильных ферм.

Связи по верхним поясам стропильных ферм

Связи по нижним поясам стропильных ферм

Для горизонтальных связей при шаге ферм 6м может быть применена крестовая решетка, раскосы которой работают только на растяжение (рис а).

В последнее время в основном применяются связевые фермы с треугольной решеткой (рис б). Здесь раскосы работают как на растяжение, так и на сжатие, поэтому их целесообразно проектировать из труб или гнутых профилей, позволяющих снизить расход металла на 30-40 %.

При шаге стропильных ферм 12 м диагональные элементы связей даже работающие только на растяжение, получаются слишком тяжелыми. Поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12 м, и этим элементом поддерживают диагонали (рис в, г).

Обеспечить крепление продольных связей можно и без решетки связей по верхнему поясу ферм, которая не дает возможности использовать сквозные прогоны. В этом случае в жесткий блок входят элементы покрытия (прогоны, панели), стропильные фермы и часто расположенные вертикальные связи (рис д). Такое решение является в настоящее время типовым. Элементы связи шатра (покрытия) рассчитываются, как правило, по гибкости. Предельная гибкость для сжатых элементов этих связей – 200, для растянутых – 400, (при кранах с числом циклов 2×10 6 и более – 300).

Система конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузки называется фахверком.

Фахверк устраивается для нагруженных стен, а также для внутренних стен и перегородок.

При самонесущих стенах, а также при панельных стенах с длинами панелей, равными шагу колонн, необходимости в конструкциях фахверка нет.

При шаге наружных колонн 12 м и стеновых панелях длиной 6м устанавливаются промежуточные фахверковые стойки.

Фахверк, устанавливаемый в плоскости продольных стен здания, называется продольным фахверком. Фахверк, устанавливаемый в плоскости стен торца здания, называется торцевым фахверком.

Торцовый фахверк состоит из вертикальных стоек, которые устанавливаются через 6 или 12 м. Верхние концы стоек в горизонтальном направлении опирают на поперечную связевую ферму в уровне нижних поясов стропильных ферм.

Чтобы не препятствовать прогибу стропильных ферм от временных нагрузок, опирание стоек фахверка осуществляется с помощью листовых шарниров, представляющих собой тонкий лист t=(8 10мм) шириной 150 200мм, который в вертикальном направлении легко изгибается, не препятствуя прогибу фермы; в горизонтальном направлении он передает усилие. К стойкам фахверка крепят ригели для оконных проемов; при большой высоте стоек в плоскости торцевой стены ставят распорки, уменьшающие их свободную длину.

Стены из кирпича или бетонных блоков устраивают самонесущими, т.е. воспринимающими весь свой вес, и только боковая нагрузка от ветра передается стеной на колонну или стойку фахверка.

Стены из крупнопанельных ж/б плит устанавливаются (навешиваются) на столики колонн или фахверковых стоек (один столик через 3 – 5 плит по высоте). В этом случае фахверковая стойка работает на внецентренное сжатие.

Связи каркаса обеспечивают геометрическую неизменяемость и устойчивость элементов в продольном направлении, совместную пространственную работу конструкций каркаса, жесткость здания и удобство монтажа и состоят из двух основных систем: связей между колоннами и связей покрытия.

Связи между колоннами. Связи между колоннами (рис. 6.4) обеспечивают во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, воспринимают и передают на фундамент ветровые нагрузки, действующие на торец здания, и воздействия от продольного торможения мостовых кранов, а также обеспечивают устойчивость колонн из плоскости поперечных рам.

Система связей по колоннам состоит из надкрановых одноплоскостных связей V-образной схемы, располагаемых в плоскости продольных осей здания, и подкрановых двухплоскостных крестовой схемы, располагаемых в плоскостях ветвей колонны.

Подкрановые связи в каждом ряду колонн располагаются ближе к середине блока здания, чтобы обеспечить свободу температурных деформаций в обе стороны и снизить температурные напряжения в элементах каркаса. Количество связей (одна или две по длине блока) определяется их несущей способностью, длиной температурного отсека и наибольшим расстоянием L с от торца здания (температурного шва) до оси ближайшей вертикальной связи (см. табл. 6.1). При наличии двух вертикальных связей расстояние между ними в осях не должно превышать 40 – 50 м.

Надкрановые связи устанавливаются в крайних шагах колонн у торца здания или температурного блока, а также в местах, где предусматриваются вертикальные связи в плоскости опорных стоек стропильных ферм.

Промежуточные колонны (вне блоков связей) в уровне стропильных ферм раскрепляются распорками.

При большой высоте подкрановой части колонны целесообразна установка дополнительных горизонтальных распорок между колоннами, уменьшающих их расчетную длину из плоскости рамы (на рис. 6.4 показаны пунктиром).

Вертикальные связи по колоннам рассчитываются на крановые и ветровые нагрузки W , исходя из предположения работы на растяжение одного из раскосов крестовых подкрановых связей. При большой длине элементов, воспринимающих небольшие усилия, связи принимаются по предельной гибкости λ u = 200.

Элементы связей выполняются из горячекатанных уголков, распорки – из гнутых прямоугольных профилей.

Связи покрытия. Система связей покрытия состоит из горизонтальных и вертикальных связей, образующих жесткие блоки в торцах здания или температурного блока и при необходимости промежуточные блоки по длине отсека (рис. 6.5).

Горизонтальные связи в плоскости нижних поясов стропильных ферм проектируются двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм и растяжек (см. рис. 6.5, в г – при шаге 12 м). Связи второго типа состоят из поперечных связевых ферм и растяжек (см. рис. 6.5, д – при шаге ферм 6 м; см. рис. 6.5, е – при шаге ферм 12 м).


Рис. 6.4. Схема связей по колоннам


6.5. Связи покрытия


Рис. 6.5 (продолжение)


Поперечные связевые фермы по нижним поясам стропильных ферм предусматриваются в торцах здания или температурного (сейсмического) отсека (см. рис. 6.5, д , е ). Предусматривается также дополнительно одна связевая горизонтальная ферма в середине здания или отсека при их длине более 144 м в зданиях, возводимых в районах с расчетной температурой наружного воздуха –40 о С и выше, и при длине здания более 120 м в зданиях, возводимых в районах с расчетной температурой ниже –40 о С (см. рис. 6.5, в , г ). Тем самым уменьшаются поперечные перемещения пояса фермы, возникающие вследствие податливости связей. Поперечные горизонтальные связи в уровне нижних поясов ферм воспринимают ветровую нагрузку на торец здания, передаваемую верхними частями стоек фахверка, и вместе с поперечными горизонтальными связями по верхним поясам ферм и вертикальными связями между фермами обеспечивают пространственную жесткость покрытия.

Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм предусматриваются вдоль крайних рядов колонн в зданиях:

с мостовыми опорными кранами групп режимов работы 7К и 8К, требующими устройства галерей для прохода вдоль крановых путей;

с подстропильными фермами;

с расчетной сейсмичностью 7, 8 и 9 баллов;

с отметкой низа стропильных ферм свыше 18 м независимо от грузоподъемности кранов;

в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью свыше 50 т при шаге стропильных ферм 6 м и свыше 20 т при шаге ферм 12 м;

в однопролетных зданиях с кровлей по стальному профилированному настилу, оборудованных кранами грузоподъемностью свыше 16 т;

при шаге стропильных ферм 12 м с применением стоек продольного фахверка.

Поперечные горизонтальные связи в уровне верхних поясов стропильных ферм предусматриваются для обеспечения устойчивости поясов из плоскости ферм. Из-за решетки поперечных связей по верхним поясам ферм затрудняется использование решетчатых прогонов и поэтому поперечные связи, как правило, не применяются. В этом случае развязка ферм обеспечивается системой вертикальных связей между фермами.

В зданиях с кровлей по железобетонным плитам в уровне верхних поясов стропильных ферм предусматриваются распорки (см. рис. 6.5, а ). В зданиях с кровлей по стальному профилированному настилу распорки располагаются только в подфонарном пространстве, раскрепление ферм между собой осуществляется прогонами (см. рис. 6.5, б ); при расчетной сейсмичности 7, 8 и 9 баллов предусматриваются также поперечные связевые фермы или диафрагмы жесткости, устанавливаемые в торцах сейсмического отсека (см. рис. 6.5, ж – при шаге ферм 6 м; см. рис. 6.5, к – при шаге ферм 12 м), и дополнительно не менее одной при длине отсека более 96 м в зданиях с расчетной сейсмичностью 7 баллов и при длине отсека более 60 м в зданиях с расчетной сейсмичностью 8 и 9 баллов.

В диафрагмах жесткости профилированный настил, кроме основных функций ограждающих конструкций, выполняет функцию горизонтальных связей по верхним поясам стропильных ферм. Поперечные диафрагмы жесткости и горизонтальные связевые фермы воспринимают продольные расчетные горизонтальные нагрузки от покрытия.

В зданиях с фонарем в случае устройства промежуточной диафрагмы жесткости фонарь над диафрагмой должен быть прерван. Диафрагмы жесткости выполняются из профилированного настила марок H60-845-0,9 или H75-750-0,9 по ГОСТ 24045-94 с усиленным креплением его к прогонам.

Стропильные фермы, не примыкающие непосредственно к поперечным связям, раскрепляются в плоскости расположения этих связей распорками и растяжками. Распорки обеспечивают необходимую боковую жесткость ферм при монтаже (предельная гибкость верхнего пояса фермы из ее плоскости при монтаже λ u = 220). Растяжки предусматриваются для уменьшения гибкости нижнего пояса с целью предотвращения вибрации и случайных погнутостей при перевозке. Предельная гибкость нижнего пояса из плоскости фермы принимается: λ u = 400 – при статической нагрузке и λ u = 250 – при кранах режимов работы 7К и 8К или при воздействии динамических нагрузок, приложенных непосредственно к ферме.

Для горизонтальных связей обычно принимается связевая ферма с треугольной решеткой. При шаге стропильных ферм 12 м стойки-распорки связевых ферм проектируются с достаточно большой вертикальной жесткостью (как правило, из гнутых прямоугольных профилей) для опирания на них длинных диагональных раскосов, выполненных из уголков с незначительной вертикальной жесткостью.

Вертикальные связи между фермами предусматриваются по длине здания или температурного отсека в местах размещения поперечных связевых ферм по нижним поясам ферм. В зданиях с расчетной сейсмичностью 7, 8 и 9 баллов и кровлей по стальному профилированному настилу по рядам колонн вертикальные связи устанавливаются в местах размещения связевых ферм или диафрагм жесткости по верхним поясам стропильных ферм.

Основное назначение вертикальных связей – обеспечить проектное положение ферм при монтаже и увеличить их боковую жесткость. Обычно устраивается одна-две вертикальные связи по ширине пролета (через 12 – 15 м).

При опирании нижнего узла стропильных ферм на оголовок колонны сверху вертикальные связи располагаются также в плоскости опорных стоек ферм. При примыкании стропильных ферм сбоку к колонне эти связи располагаются в плоскости, совмещенной с плоскостью устройства вертикальных связей надкрановой части колонны.

В покрытиях зданий, эксплуатируемых в климатических районах с расчетной температурой ниже –40 о С, следует, как правило, предусматривать (дополнительно к обычно применяемым связям) вертикальные связи, расположенные по середине каждого пролета вдоль всего здания.

При наличии жесткого диска кровли в уровне верхних поясов ферм следует предусматривать инвентарные съемные связи для выверки проектного положения конструкций и обеспечения их устойчивости в процессе монтажа.

От воздействия внешней нагрузки, приложенной к узлам фермы, в её элементах появляются сжимающие и растягивающие усилия. В этом случае верхний пояс работает на сжатие, а нижний — на рас-тяжение. Элементы решетки в зависимости от характера и направле-ния действующей нагрузки могут работать как на сжатие, так и на растяжение. При этом сжимающие усилия создают опасность поте-ри устойчивости конструкции. Потеря устойчивости верхнего пояса может происходить в двух плоскостях: в плоскости фермы и из ее плоскости. В первом случае потеря устойчивости происходит за счет выпучивания между узлами фермы (по длине панели). Во втором случае потеря устойчивости возникает между точками пояса, закреп-ленными от смещения в горизонтальном направлении. Устойчивость фермы из ее плоскости является значительно меньшей по сравнению с устойчивостью в ее плоскости, что очевидно из-за того, что длина одной панели значительно меньше длины сжатого пояса.

Отдельная стропильная ферма является балочной конструкци-ей, обладающей очень малой боковой жесткостью. Для того чтобы обеспечить пространственную жесткость сооружения из плоских ферм, они должны быть раскреплены связями, образующими со-вместно с фермами геометрически неизменяемые пространствен-ные системы, обычно решетчатые параллелепипеды (рис. ниже).

Кроме обеспечения пространственной неизменяемости, систе-ма связей должна обеспечивать устойчивость сжатых поясов в на-правлении, перпендикулярном плоскостям раскрепляемых ферм (из плоскости фермы), воспринимать горизонтальные нагрузки и со-здавать условия для высококачественного и удобного монтажа со-оружения.

Связи по конструкциям покрытия здания располагают:

  • в плоскости верхних поясов ферм — горизонтальные попереч-ные связевые фермы 1 и продольные элементы — распорки 2 между ними (рис. ниже);
  • в плоскости нижних поясов ферм — горизонтальные попереч-ные и продольные связевые фермы 3 и распорки 2 (рис. ниже);
  • между фермами — вертикальные связи 4 (рис. ниже).

Связи по покрытию

Горизонтальные связи в плоскости верхних (сжатых) поясов ферм обязательны во всех случаях. Они состоят из раскосов и сто-ек, образующих совместно с поясами стропильных ферм горизон-тальные связевые фермы с крестовой решеткой. Горизонтальные связи располагают между крайними парами ферм в торцах здания (или в торцах температурного отсека), но не реже, чем через 60 м.

Для связи между верхними поясами промежуточных стропиль-ных ферм ставят специальные распорки над опорами и у коньково-го узла при пролете ферм до 30 м; при больших пролетах добавля-ют промежуточные распорки для того, чтобы расстояние между ними не превышало 12 м. Горизонтальные связи по верхним по-ясам ферм обеспечивают устойчивость сжатых поясов из плоско-сти фермы во время монтажа: в этот период расчетная длина таких поясов равна расстоянию между распорками. В процессе эксплуа-тации здания смещению верхних узлов из плоскости фермы пре-пятствуют ребра кровельных плит или прогоны, но только при ус-ловии, что они закреплены от продольных смещений связями, рас-положенными в плоскости кровли.

Горизонтальные связи по нижним поясам ферм устанавливают в зданиях с крановым оборудованием.

Они состоят из поперечных и продольных связевых ферм и рас-порок. В зданиях с кранами легкого и среднего режима работы час-то ограничиваются только поперечными связевыми фермами, рас-полагаемыми между нижними поясами соседних ферм по торцам здания (или температурного отсека). Если длина здания или отсека велика, то устанавливают дополнительную поперечную связевую ферму, чтобы расстояние между такими фермами не превышало 60 м. Ширину продольной связевой фермы обычно принимают рав-ной опорной панели нижнего пояса стропильной фермы.

Горизонтальные связевые фермы воспринимают горизонталь-ные нагрузки от ветра и торможения (поперечного и продольного) кранов.

Стропильные фермы обладают незначительной боковой жест-костью, поэтому процесс монтажа без их предварительного взаим-ного раскрепления невозможен. Эту функцию выполняют верти-кальные связи между фермами, располагающиеся в плоскости опор-ных стоек ферм и в плоскости средних стоек (в фермах пролетом до 30 м) или стоек, ближайших к коньковому узлу, но не реже, чем че-, рез 12 м. Чаще всего вертикальные связи проектируют с крестовой решеткой, но при шаге ферм 12 м может быть применена и тре-угольная решетка. Средние стойки стропильных ферм, к которым прикрепляют вертикальные связи, проектируют крестового сечения.

СВЯЗИ в конструкциях - легкие конструктивные элементы в виде отдельных стержней или систем (ферм); предназначены для обеспечения пространственной устойчивости основных несущих систем (ферм, балок, рам и т. п.) и отдельных стержней; пространственной работы конструкции путем распределения нагрузки, приложенной к одному или нескольким элементам, на все сооружение; придания сооружению жесткости, необходимой для нормальных условий эксплуатации; для восприятия в отдельных случаях ветровых и инерционных (например, от кранов, поездов и т. п.) нагрузок, действующих на сооружения. Системы связей компонуются так, чтобы каждая из них выполняла несколько из перечисленных функций.

Для создания пространственной жесткости и устойчивости конструкций, состоящих из плоских элементов (ферм, балок), которые легко теряют устойчивость из своей плоскости, они соединяются по верхним и нижним поясам горизонтальными связями. Кроме того, по торцам, а при больших пролетах и в промежуточных сечениях ставятся вертикальные связи - диафрагмы. В результате образуется пространственная система, обладающая большой жесткостью при кручении и изгибе в поперечном направлении. Этот принцип обеспечения пространственной жесткости используется при проектировании многих сооружений.

В пролетных строениях балочных или арочных мостов две главные фермы соединяются горизонтальными системами связей по нижним и верхним поясам ферм. Эти системы связи образуют горизонтальные фермы, которые, помимо обеспечения жесткости, принимают участие в передаче ветровых нагрузок на опоры. Для получения необходимой жесткости при кручении ставятся поперечные связи, обеспечивающие неизменяемость поперечного сечения мостового бруса. В башнях квадратного или многоугольного сечения с этой же целью устраиваются горизонтальные диафрагмы.В покрытиях промышленных и общественных зданий с помощью горизонтальных и вертикальных связей две стропильные фермы соединяются в жесткий пространственный блок, с которым прогонами или тяжами (связями) соединяются остальные фермы покрытия. Такой блок обеспечивает жесткость и устойчивость всей системы покрытия.Наиболее развитую систему связей имеют стальные каркасы одноэтажных промышленных зданий.

Системы горизонтальных и вертикальных связей решетчатых ригелей рам (ферм) и фонарей обеспечивают общую жесткость шатра, закрепляют от потери устойчивости сжатые элементы конструкции (например, верхние пояса ферм), обеспечивают устойчивость плоских элементов в процессе монтажа и эксплуатации.Учет пространственной работы, обеспечиваемой соединением основных несущих конструкций системами связей, при расчете сооружений дает снижение веса конструкций. Так, например, учет пространственной работы поперечных рам каркасов одноэтажных промышленных зданий дает снижение расчетных величин моментов в колоннах на 25-30%. Разработана методика расчета пространственных систем пролетных строений балочных мостов. В обычных случаях связи не рассчитываются, а их сечения назначаются по предельной гибкости, устанавливаемой нормами.

Поперечная устойчивость каркаса деревянных зданий достигается путем защемления основных стоек в фундаментах при шарнирном соединении конструкции покрытия с этими стойками; применения рамных или арочных конструкций с шарнирным опиранием; создания жесткого диска покрытия, что используется в небольших зданиях.Продольная устойчивость здания обеспечивается постановкой (примерно через 20 м) специальной связи в плоскости каркасных стен и среднего ряда стоек. В качестве связей могут быть использованы и стеновые щиты (панели), соответствующим образом скрепленные с элементами каркаса.

Для обеспечения пространственной устойчивости плоскостных несущих деревянных конструкций ставятся соответствующие связи, принципиально аналогичные связи в металлических или железобетонных конструкциях.В арочных и рамных конструкциях, помимо обычного (как в балочных фермах) раскрепления сжатого верхнего пояса, предусматривается раскрепление нижнего пояса, имеющего, как правило, при односторонних нагрузках, сжатые участки. Это раскрепление осуществляется вертикальными связями, попарно соединяющими конструкции. Таким же образом обеспечивается устойчивость из плоскости нижних поясов в шпренгельных конструкциях. В качестве горизонтальных связей могут быть использованы полосы косого настила и щиты кровли. Пространственные деревянные конструкции в специальных связях не нуждаются.