Связи по покрытию в металлическом каркасе. Горизонтальные решетчатые связи для обеспечения жесткости. Система связей в покрытиях производственных зданий




Металлический каркас, как многим известно, представляет собой основную структуру каркасно-панельных зданий. В его состав входят самые разнообразные конструктивные элементы: , балки, фермы, фахверки, распорки и другие. В данном обзоре мы рассмотрим такие конструктивные элементы, как связи.
Металлические связи предназначены для общей устойчивости металлокаркаса в продольном и поперечном направлениях, поэтому их значение достаточно велико. Именно они противодействуют основной горизонтальной нагрузке на каркас, происходящей от ветра. Наибольший эффект здесь заметен при использовании антикоррозийных материалов. Какие же факторы и материалы надо учитывать? Сайдинг серии "Mitten" и все виды сайдинга от производителя. Важны также септики из стеклопластика для канализации жилищного сектора или загородного дома, где предусмотрены ремонт и обустройство. Благодаря им можно достичь положительных результатов. И, конечно, важны фундаментные работы, предваряемые земельными мероприятиями. Какие из них выделить? Бурение скважин на воду, водоочистка и водоснабжение круглый год - все это актуально для промышленного здания. Впрочем, интересны любые объекты недвижимости. Мода на недвижимость позволяет купить квартиру в новостройке по удобным условиям. Чем это обосновано? Огромный выбор. Новостройки москвы от застройщиков. Без комиссии.
Связи в металлическом каркасе бывают трех видов: перекрестные, угловые и портальные. Такую продукцию сегодня легко приобрести не только у промышленных предприятий-производителей, особенно выделяется оборудование марки "Евростандарт". Эти изделия есть и в интернете. Согласно мнению специалистов, стоимость создания строительного интернет-магазина невелика, поэтому металлические изделия там покупать весьма выгодно. Оценить себестоимость поможет, независимо от расчетов, энергоаудит.
Перекрестные связи представляют классический и самый простой вариант, когда элементы связей пересекаются и крепятся между собой посередине длины. Такие технологии, как замечают профессионалы, часто применяются при монтаже подсобных помещений и сооружений. Что можно отметить? Кабины и контейнеры с биотуалетом. Туалетные кабины, по утверждениям специалистов, имеют широкий спектр. В настоящее время они очень популярны. Как свидетельствует практика, надо здесь только. Установка прочных металлических дверей при существующей модернизации за 4 часа будет отличным технологичным решением для данных конструкций. Актуально это и для фасада. Спешите купить при рациональном подходе фасадные термопанели с клинкерной и легкой плиткой по специальной цене! Закажите для этого машину. Вперед! Авто в кредит - это почти выкуп автомобилей. Юридические консультации здесь тоже уместны.
Угловые связи, как правило, применяются для небольших пролетов и располагаются в ряд по несколько частей. Они меньше по высоте, чем перекрестные связи. Конечно, здесь рекомендуется применять изоляционные материалы. Сегодня это не проблема. Достаточно посмотреть на рекламные заявки некоторых фирм, которые требуют покупать утеплитель "технологичный" на выгодных условиях - только с лучшим наполнением! И это, по утверждениям специалистов, правильный подход к строительству.
Портальные связи - самые большие по размерам рабочей площади. Они имеют П-образный вид и находят свое применение в тех пролетах металлического каркаса, где предусмотрены оконные или дверные проемы или элементы мебели. Узнайте все секреты мебельщиков: кухни на заказ с мебелью по индивидуальным заказам. Предусмотрен также отличный ремонт однокомнатной и сложной квартиры на заказ.
Если говорить о , которые используют для изготовления связей, то чаще всего это уголок или гнутый квадратный или прямоугольный профиль, реже - швеллер или двутавр.
Из существующих каркаса для связей наиболее применимы болтовые соединения, как технологически и конструктивно наиболее эффективные и удобные при монтаже.
В соответствии с правилами металлокаркаса связи располагаются как в продольном направлении проектируемого сооружения, так и в поперечном - по его торцам. В данном случае речь идет о вертикальных металлических связях. Они применяются во многих системах, даже в быту. Что можно взять в пример? Электрическая система парогенераторов и кондиционеров - вот уникальное сочетание. Это очень популярное современное технологическое устройство.
Иногда конструктивная схема металлокаркаса требует и использования горизонтальных связей. По большей части, это имеет место в крупных масштабов, с длинными пролетами и значительной для типовых колонн высотой. Горизонтальные связи здесь обычно бывают перекрестного типа и располагаются по нескольку модулей в ряд в продольных пролетах между фермами, которые всегда проектируются для крупноразмерных металлокаркасов.
Что же касается обозначений металлических связей в металлического каркаса, то для них обычно используется толстая штрих-пунктирная линия.

Система связей в покрытиях производственных зданий

Связи в покрытиях предназначены для обеспечения пространственной жесткости, устойчивости и неизменяемости каркаса здания, для восприятия горизонтальных ветровых нагрузок, действующих на торцы здания и фонари, горизонтальных тормозных усилий от мостовых опорных и подвесных кранов и передачи их на элементы каркаса.

Связи подразделяются на горизонтальные (продольные и поперечные) и вертикальные . Система связей зависит от высоты здания, величины пролета, шага колонн, наличия мостовых кранов и их грузоподъемности. Кроме того, конструкция всех видов связей, необходимость их установки, местоположение в покрытии определяется расчетом в каждом конкретном случае и зависит от вида несущих конструкций покрытия.

В данном разделе рассмотрены примеры устройства системы связей в покрытиях с плоскостными несущими конструкциями из металла, железобетона и дерева.

Связи в покрытиях с металлическими плоскостными несущими конструкциями

Система связей в покрытиях зданийс металлическимифермами зависит от типа ферм, шага стропильных конструкций, условий района строительства и других факторов. Она состоит из горизонтальных связей в плоскости верхних и нижних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по верхним поясам стропильных ферм чаще всего предусматривают только при наличии фонарей и располагают в подфонарном пространстве.

Горизонтальные связи в плоскости нижних поясов стропильных ферм предусмотрены двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм, распорок и растяжек. Связи второго типа состоят только из поперечных связевых ферм, распорок и растяжек.

Поперечные связевые фермы располагают в торцах температурного отсека здания. При длине температурного отсека более 96 м устанавливают промежуточные поперечные связевые фермы через каждые 42-60 м.

Продольные горизонтальные связевые фермы по нижним поясам стропильных ферм для связей первого типа располагают в одно-, двух - и трехпролетных зданиях вдоль крайних рядов колонн. В зданиях с количеством пролетов более трех продольные связевые фермы располагают также и вдоль средних рядов колонн с таким расчетом, чтобы расстояние между смежными связевыми фермами не превышало двух-трех пролетов.

Связи первого типа являются обязательными в зданиях:

а) с мостовыми опорными кранами, требующими устройства галерей для прохода вдоль крановых путей;

б) с подстропильными фермами;

в) с расчетной сейсмичностью 7 - 9 баллов;

г) с отметкой низа стропильных конструкций более 24 м, (для однопролетных зданий - более 18 м);

д) в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью более 50 т при шаге ферм 6 м и грузоподъемностью более 20 т при шаге ферм 12 м;

е) в зданиях с кровлей по стальному профилированному настилу –

в одно - и двухпролетных зданиях, оборудованных мостовыми опорными кранами грузоподъемностью более 16 т и в зданиях с количеством пролетов более двух с мостовыми опорными кранами грузоподъемностью более 20 т.

В остальных случаях должны применяться связи второго типа , при этом при шаге стропильных ферм 12 м и наличии стоек продольного фахверка вдоль колонн крайних рядов следует предусматривать продольные связевые фермы.

Вертикальные связи располагают в местах размещения поперечных связевых ферм по нижним поясам стропильных ферм на расстоянии 6 (12) м друг от друга.

Монтажные крепления связей к конструкциям покрытия принимаются на болтах или на сварке в зависимости от величины силовых воздействий. Элементы связей разработаны из горячекатаных и гнутосварных профилей.

На рисунках 5.2.1 – 5.2.10 приведены схемы расположения связей в покрытии с фермами из парных уголков. Связи в покрытиях с применением широкополочных тавров, широкополочных двутавров и круглых труб решаются аналогично. Конструктивное решение вертикальных связей пролетом 6 и 12 м приведены на рисунке 5.2.11, 5.2.12

Связи в покрытии с фермами из замкнутых гнутосварных профилей типа «Молодечно» приведены на рисунках 5.2.13 - 5.2.16.

За основу неизменяемости покрытия в горизонтальной плоскости принят сплошной диск, образованный профилированным настилом, закрепленным по верхним поясам ферм. Настил развязывает верхние пояса ферм из плоскости по всей длине и воспринимает все горизонтальные силы, передающиеся на покрытие.

Нижние пояса ферм развязаны из плоскости вертикальными связями и распорками, которые передают все усилия с нижнего пояса ферм на верхний диск покрытия. Вертикальные связи устанавливаются через 42 – 60 м по длине температурного отсека.

В зданиях с конструкциями покрытия типа «Молодечно» с уклоном верхнего пояса 10% расположение вертикальных связей и распорок аналогично приведенному на рисунках 5.2.14 - 5.2.16. Вертикальная связь в этом случае выполняется V-образной пролетом 6 м (рис. 5.2.11).

Рис.5.2.5. Схемы расположения вертикальных связей в покрытиях

с применением профилированного настила

(разрезы обозначены на рис. 5.2.1, 5.2.2)

Рис.5.2.8. Схема расположения вертикальных связей в покрытиях с применением железобетонных плит

1 марта 2012

Для придания цеху пространственной жесткости, а также для обеспечения устойчивости элементов рам устраиваются связи, располагаемые между рамами.

Различают связи: горизонтальные — в плоскости верхних и нижних поясов ферм — и вертикальные — как между , так и между колоннами.

Назначение горизонтальных связей по верхним поясам ферм было рассмотрено в разделе . Эти связи обеспечивают устойчивость верхнего пояса ферм из их плоскости. На фигуре показан пример расположения связей по верхним поясам ферм в покрытии с прогонами.

В беспрогонных покрытиях, в которых крупнопанельные железобетонные плиты привариваются к верхним поясам ферм, жесткость кровли настолько велика, что, казалось бы, нет необходимости в постановке связей.

Учитывая, однако, необходимость обеспечения надлежащей жесткости конструкций на время монтажа плит, а также и то обстоятельство, что нагрузка от плит не приложена строго вертикально по оси ферм и потому может вызвать кручение, считают необходимым ставить связи по верхним поясам ферм по краям температурных отсеков. Столь же необходимы распорки у конька ферм, у опор и под фонарными стойками.

Эти распорки служат для завязки верхних поясов всех промежуточных ферм. Гибкость верхнего пояса между раскрепленными на время монтажа плит точками не должна превышать 200 — 220. Связи по верхним поясам стропильных ферм крепятся к поясам черными болтами.

При изготовлении связей важно точно приварить фасонку к уголку, обеспечив соответствующий угол наклона, так как при помощи связей частично контролируется правильность геометрической схемы смонтированного сооружения.

Поэтому приварку фасонок к элементам связей рекомендуется производить в кондукторах. На фигуре показан простейший тип кондуктора в виде швеллера, на котором точно пробиты отверстия под необходимым углом.

Горизонтальные связи по нижним поясам ферм располагаются как поперек цеха (поперечные связи), так и вдоль цеха (продольные связи). Поперечные связи, расположенные у торцов цеха, используются в качестве ветровых ферм.

На них опираются стойки каркаса торцовой стены цеха, воспринимающего давление ветра. Поясами ветровой фермы служат нижние пояса стропильных ферм. Такие же поперечные связи по нижним поясам ферм устраивают у температурных швов (в целях образования жесткого диска).

При большой длине температурного блока поперечные связи ставятся также в средней части блока с тем, чтобы расстояние между поперечными связями не превышало 50 — 60 м. Это приходится делать потому, что соединение связей часто производится на черных болтах, допускающих большие сдвиги, вследствие чего влияние связей ре распространяется на большие расстояния.

Поперечная деформация каркаса от местной (крановой) нагрузки: а — при
отсутствии продольных связей; б — при наличии продольных связей.

Горизонтальные продольные связи по нижним поясам ферм имеют своим главным назначением вовлечение в пространственную работу соседних рам при действии местных, например крановых, нагрузок; тем самым уменьшаются деформации рамы и увеличивается поперечная жесткость цеха.

Особо важное значение приобретают продольные связи при тяжелых кранах и в цехах с тяжелым режимом работы, а также при легких и нежестких кровлях (из волнистой стали, асбестоцементных листов и т. п.). В зданиях с тяжелым режимом работы связи следует приваривать к нижнему поясу.

Для связевых ферм, как правило, принимают крестовую решетку, считая, что при воздействии нагрузок с какой-либо одной стороны работает только система вытянутых раскосов, а другая часть раскосов (сжатых) выключается из работы. Такое предположение справедливо, если раскосы гибкие (λ > 200).

Поэтому элементы крестовых связей, как правило, проектируют из одиночных уголков. При проверке гибкости перекрестных растянутых раскосов связей из одиночных уголков радиус инерции уголка принимается относительно оси, параллельной полке.

При треугольной решетке связевых ферм во всех раскосах могут возникнуть сжимающие усилия, а потому их необходимо проектировать с гибкостью λ < 200, что менее экономично.

В пролетах более 18 м из-за ограничения боковой гибкости нижних поясов ферм во многих случаях приходится ставить дополнительные распорки по середине пролета. Этим устраняется дрожание ферм при работе кранов.

Вертикальные связи между фермами обычно устанавливают у опор ферм (между колоннами) и в середине пролета (либо под стойками фонаря), располагая их по длине цеха в жестких панелях, т. е. там, где расположены поперечные связи по поясам ферм.

Основное назначение вертикальных связей заключается в приведении в жесткое неизменяемое состояние пространственной конструкции, состоящей из двух стропильных ферм и поперечных связей по верхнему и нижнему поясам ферм.

В цехах с кранами легкого, а иногда и среднего, режима работы при наличии жесткой кровли из крупнопанельных железобетонных плит, приваренных к стропильным фермам, система вертикальных связей может заменить систему поперечных связей по поясам ферм (кроме торцовых ветровых ферм).

При этом промежуточные фермы должны быть связаны распорками.

Конструкция вертикальных связей принимается в виде креста из одиночных уголков с обязательным горизонтальным замыкающим элементом или в виде фермочки с треугольной решеткой. Крепление вертикальной связи к стропильной ферме осуществляется на черных болтах.

Вследствие незначительности усилий, действующих в элементах связей покрытия, при конструировании их креплений может быть допущено незначительное отступление от центрирования.

Вертикальные связи между колоннами устанавливают вдоль цеха для обеспечения устойчивости цеха в продольном направлении, а также для восприятия сил продольного торможения и давления ветра на торец здания.

Если в поперечном направлении рамы, защемленные в фундаментах, являются неизменяемой конструкцией, то в продольном направлении ряд установленных рам, шарнирно связанных подкрановыми балками, представляет собой изменяемую систему, которая при отсутствии вертикальных связей между колоннами может сложиться (опоры колонн в продольном направлении надо считать шарнирными).

Поэтому сжатые элементы связей между колоннами (ниже подкрановых балок), а в зданиях с тяжелым режимом работы и растянутые элементы этих связей, имеющих существенное значение для устойчивости всего сооружения в целом, делают достаточно жесткими, чтобы избежать их дрожания. С этой целью ограничивают предельную гибкость таких элементов значением λ = 150.

Для прочих растянутых элементов связей между колоннами гибкость не должна превышать λ = 300, а сжатых λ = 200. Элементы крестовых связей между колоннами обычно делают из уголков. Особо мощные крестовые связи делают из парных швеллеров, соединенных решеткой или планками.

При определении гибкости пересекающихся стержней (в крестовой решетке) расчетная длина их в плоскости решетки принимается от центра узла до точки их пересечения. Расчетная длина стержней из плоскости фермы принимается по таблице.

Расчетная длина из плоскости фермы стержней перекрестной решетки

Характеристика узла пересечения стержней решетки При растяжении в поддерживающем стержне При неработающем поддерживающем стержне При сжатии в поддерживающем стержне
Оба стержня не прерываются 0,5 l 0,7 l l
Поддерживающий стержень прерывается и перекрывается фасонкой 0,7 l l l

Расчет крестовых связей обычно производится в предположении, что работают только растянутые элементы (на полную нагрузку). В случае, если учитывается работа элементов крестовой решетки также и на сжатие, нагрузка распределяется между раскосами поровну.

Для обеспечения свободы температурных продольных деформаций каркаса вертикальные связи между колоннами лучше всего располагать в середине температурного блока или вблизи от нее.

Но так как монтаж сооружения обычно начинается с краев, то желательно первые две колонны связать в раму так, чтобы они были устойчивы. Это заставляет конструировать связи так, как показано на фигуре Связи по нижним поясам ферм и между колоннами б, т. е. в крайних панелях устанавливать связи только в пределах верхней части колонн.

Такие связи допускают деформацию изгиба нижних частей колонн при изменениях температуры. В то же время один из раскосов, работая от ветровой нагрузки на растяжение, передает эти усилия на подкрановую балку.

Дальнейший путь ветровых усилий показан на фигуре Связи по нижним поясам ферм и между колоннами б; они передаются по жестким подкрановым балкам до средних связей и по ним спускаются в землю. Желательно выбирать такую схему связей, чтобы они примыкали к колоннам под углом, близким к 4 — 5°. В противном случае получаются слишком вытянутые тяжелые фасонки.

Рамные вертикальные связи: а — при шаге колонн 6 м;
б — при шаге колонн не меньше 12 м.

В случае, если по технологическим условиям нельзя полностью занять под связи ни одного пролета, а также при больших шагах колонн устраивают рамные связи; при этом считают, что от односторонней нагрузки работают на растяжение связи одного угла, а элементы другого угла из-за большой гибкости (λ = 200 / 250) выключаются из работы. При такой схеме работы конструкции мы получаем «трехшарнирную арку».

Вертикальные связи устанавливаются ниже подкрановой балки в плоскости подкрановой ветви колонны, а выше подкрановой балки — по оси сечения колонны. В цехах с тяжелым режимом работы связи ниже подкрановых балок прикрепляются к колоннам на заклепках (преимущественно) или на сварке.

«Проектирование стальных конструкций»,
К.К.Муханов


Выбор поперечного профиля многопролетных цехов зависит не только от заданного полезного габарита цеха и габарита мостовых кранов, но и от ряда общестроительных требований, в первую очередь от организации отвода воды с крыши и от устройства освещения средних пролетов. Отвод воды может быть как наружным, так и внутренним. Наружные водостоки устраиваются в нешироких цехах, а также…

СВЯЗИ в конструкциях - легкие конструктивные элементы в виде отдельных стержней или систем (ферм); предназначены для обеспечения пространственной устойчивости основных несущих систем (ферм, балок, рам и т. п.) и отдельных стержней; пространственной работы конструкции путем распределения нагрузки, приложенной к одному или нескольким элементам, на все сооружение; придания сооружению жесткости, необходимой для нормальных условий эксплуатации; для восприятия в отдельных случаях ветровых и инерционных (например, от кранов, поездов и т. п.) нагрузок, действующих на сооружения. Системы связей компонуются так, чтобы каждая из них выполняла несколько из перечисленных функций.

Для создания пространственной жесткости и устойчивости конструкций, состоящих из плоских элементов (ферм, балок), которые легко теряют устойчивость из своей плоскости, они соединяются по верхним и нижним поясам горизонтальными связями. Кроме того, по торцам, а при больших пролетах и в промежуточных сечениях ставятся вертикальные связи - диафрагмы. В результате образуется пространственная система, обладающая большой жесткостью при кручении и изгибе в поперечном направлении. Этот принцип обеспечения пространственной жесткости используется при проектировании многих сооружений.

В пролетных строениях балочных или арочных мостов две главные фермы соединяются горизонтальными системами связей по нижним и верхним поясам ферм. Эти системы связи образуют горизонтальные фермы, которые, помимо обеспечения жесткости, принимают участие в передаче ветровых нагрузок на опоры. Для получения необходимой жесткости при кручении ставятся поперечные связи, обеспечивающие неизменяемость поперечного сечения мостового бруса. В башнях квадратного или многоугольного сечения с этой же целью устраиваются горизонтальные диафрагмы.В покрытиях промышленных и общественных зданий с помощью горизонтальных и вертикальных связей две стропильные фермы соединяются в жесткий пространственный блок, с которым прогонами или тяжами (связями) соединяются остальные фермы покрытия. Такой блок обеспечивает жесткость и устойчивость всей системы покрытия.Наиболее развитую систему связей имеют стальные каркасы одноэтажных промышленных зданий.

Системы горизонтальных и вертикальных связей решетчатых ригелей рам (ферм) и фонарей обеспечивают общую жесткость шатра, закрепляют от потери устойчивости сжатые элементы конструкции (например, верхние пояса ферм), обеспечивают устойчивость плоских элементов в процессе монтажа и эксплуатации.Учет пространственной работы, обеспечиваемой соединением основных несущих конструкций системами связей, при расчете сооружений дает снижение веса конструкций. Так, например, учет пространственной работы поперечных рам каркасов одноэтажных промышленных зданий дает снижение расчетных величин моментов в колоннах на 25-30%. Разработана методика расчета пространственных систем пролетных строений балочных мостов. В обычных случаях связи не рассчитываются, а их сечения назначаются по предельной гибкости, устанавливаемой нормами.

Поперечная устойчивость каркаса деревянных зданий достигается путем защемления основных стоек в фундаментах при шарнирном соединении конструкции покрытия с этими стойками; применения рамных или арочных конструкций с шарнирным опиранием; создания жесткого диска покрытия, что используется в небольших зданиях.Продольная устойчивость здания обеспечивается постановкой (примерно через 20 м) специальной связи в плоскости каркасных стен и среднего ряда стоек. В качестве связей могут быть использованы и стеновые щиты (панели), соответствующим образом скрепленные с элементами каркаса.

Для обеспечения пространственной устойчивости плоскостных несущих деревянных конструкций ставятся соответствующие связи, принципиально аналогичные связи в металлических или железобетонных конструкциях.В арочных и рамных конструкциях, помимо обычного (как в балочных фермах) раскрепления сжатого верхнего пояса, предусматривается раскрепление нижнего пояса, имеющего, как правило, при односторонних нагрузках, сжатые участки. Это раскрепление осуществляется вертикальными связями, попарно соединяющими конструкции. Таким же образом обеспечивается устойчивость из плоскости нижних поясов в шпренгельных конструкциях. В качестве горизонтальных связей могут быть использованы полосы косого настила и щиты кровли. Пространственные деревянные конструкции в специальных связях не нуждаются.


СВЯЗЕВАЯ КОНСТРУКТИВНАЯ СХЕМА КАРКАСНЫХ ЗДАНИЙ

РАМНО-СВЯЗЕВАЯ КОНСТРУКТИВНАЯ СХЕМА КАРКАСНЫХ ЗДАНИЙ

РАМНАЯ КОНСТРУКТИВНАЯ СХЕМА КАРКАСНЫХ ЗДАНИЙ

Для строительства многоэтажных П. з. применяют главным образом железобетонные каркасы рамного типа, воспринимающие горизонтальные усилия жёсткими узлами рам либо решенные по рамно-связевой схеме с передачей горизонтальных усилий на диафрагмы, стены лестничных клеток и лифтовых шахт. Каркасы многоэтажных П. з., как правило, выполняют сборными или сборно-монолитными с балочными или безбалочными конструкциями междуэтажных перекрытий.

Рамная схема каркасного несущего остова зданий представляет собой систему колонн, ригелей и перекрытий, соединенных в конструктивных узлах в жесткую и устойчивую пространственную систему воспринимающую горизонтальные (ветровые и другие) усилия.Пространственный каркас несущего остова при рамной схеме должен обладать необходимой жесткостью не только в одной плоскости, но и в перпендикулярном направлении, что достигается жестким решением всех узловых стыков вертикальных и горизонтальных элементов конструкций как в продольном, так и в поперечном направлении.

Рамный каркас многоэтажного здания может быть выполнен в монолитном и сборном железобетоне или в стальных конструкциях, которые в целях противопожарной безопасности объекта должны быть обетонированы.

Жесткость и устойчивость каркасного здания обеспечиваются решением его несущего остова по рамной, связевой или рамно-связевой схеме.Рамно-связевая схема(см. рисунок справа) состоит из ряда плоских рам, расположенных в вертикальных плоскостях всех поперечных осей. Рамы обеспечивают поперечную жесткость и устойчивость здания, но ограничивают свободу планировки этажей. Продольная жесткость достигается введением на некоторых участках вертикальных стенок жесткости. Стенки жесткости выполняют из железобетонных панелей. Вставляемых в просветы, ограниченные с двух сторон колоннами, а сверху и снизу ригелями перекрытий. Стенки жесткости устанавливают одну над другой на всю высоту здания. Что в сочетании с жесткими дисками перекрытий образует устойчивый каркасный остов. В ж-б стенках жесткости можно устанавливать проемы для дверей или окон при условии соответствующего усиления отверстия обрамляющим бортом с дополнительным армированием по расчету. Вертикальность поперечных поэтажных рам каркаса обеспечивают продольными стенами жесткости. Жесткие диски междуэтажных перекрытий и покрытий, монтируемых из крупных панелей, фиксируют прямолинейность ригелей по всей их длине и их параллельность друг другу. Жесткость перекрытий обеспечивается соединением связевых и рядовых панелей между собой и ригелями путем сварки закладных деталей и заполнением раствором швов в цельный жесткий диск так же, как в крупнопанельных зданиях. В несущем остове каркасного многоэтажного здания, в котором поперечные стены жесткости размещаются по каждому поперечному ряду колонн, все поперечные рамы не имеют ригелей, а панели перекрытий опираются непосредственно на стены жесткости так же, как в крупнопанельных домах, что частично разгружает колонны от вертикальных нагрузок.



Рамно-связевая схема применяется главным образом при строительстве жилых многоэтажных зданий (гостиничного типа), административных и т.п.

Связевая схема отличается от рамной тем, что в ней конструктивные узлы могут иметь не только неподвижное – жесткое, но и подвижное – шарнирное решение, причем все горизонтальные усилия полностью передаются на систему дополнительных связей жесткости.

Существует три варианта связей жесткости: в виде наклонных(чаще всего диагональных) растяжек с натяжными устройствами (4), жестких косых стержней которые после установки и замоноличивания образуют стенку жесткости (5), сборных стенок или панелей жесткости, монтируемых из ж-б плит, вставляемых между стойками и ригелями каркаса (5) с жестким креплением к ним (на сварке или на болтах) не менее чем в восьми местах – по два крепления на каждой стороне контура панели. В зданиях со связевым каркасом стенки жесткости распологают с интервалами в несколько конструктивных шагов(второй рисунок). Это позволяет при необходимости в каждом этаже выделять большие помещения (с редко стоящими стойками) для научных, проектных организации и др., а также торговых залов универмагов и т. п. Каркасный остов связевого типа имеет широкое применение при строительстве многоэтажных, повышенной этажности, а также высотных жилых и общественных зданий.

Вертикальные связи между стальными колоннами а - связи-распорки; б - крестовые; в - портальные; 1 - ось температурного шва; 2 - связевой блок; 3 - подкрановые балки; 4 - распорки

Связевая схема отличается от рамной тем, что в ней конструктивные узлы могут иметь не только неподвижное – жесткое, но и подвижное – шарнирное решение, причем все горизонтальные усилия полностью передаются на систему дополнительных связей жесткости. Существует три варианта связей жесткости: в виде наклонных(чаще всего диагональных) растяжек с натяжными устройствами (4), жестких косых стержней которые после установки и замоноличивания образуют стенку жесткости (5), сборных стенок или панелей жесткости, монтируемых из ж-б плит, вставляемых между стойками и ригелями каркаса (5) с жестким креплением к ним (на сварке или на болтах) не менее чем в восьми местах – по два крепления на каждой стороне контура панели. В зданиях со связевым каркасом стенки жесткости распологают с интервалами в несколько конструктивных шагов(второй рисунок). Это позволяет при необходимости в каждом этаже выделять большие помещения (с редко стоящими стойками) для научных, проектных организации и др., а также торговых залов универмагов и т. п. Каркасный остов связевого типа имеет широкое применение при строительстве многоэтажных, повышенной этажности, а также высотных жилых и общественных зданий.

В связевом каркасе соединение колонн и ригелей шарнирное, поэтому необходимы вертикальные связи жесткости (крестообразные, портальные и т. п.) или диафрагмы жесткости (специальные железобетонные перегородки). Соединенные между собой плиты перекрытия образуют жесткий горизонтальный элемент здания.

Устойчивость стальных колонн в продольном направлении обеспечивается вертикальными связями между колоннами. Связи располагают по середине здания или температурного отсека. При длине здания или температурного отсека более 120 м между колоннами ставят две системы вертикальных связей.

Вертикальные связи между стальными колоннами а - связи-распорки; б - крестовые; в - портальные; 1 - ось температурного шва; 2 - связевой блок; 3 - подкрановые балки; 4 - распорки

Наиболее простая схема вертикальных связей крестовая. При небольшом шаге, но большой высоте колонн устанавливают две крестовые связи по высоте нижней части колонны. Вертикальные связи ставят по всем рядам здания. При большом шаге колонн средних рядов, а также, чтобы не мешать передаче продукции из пролета в пролет, конструируют портальные связи. Связи между колоннами на уровне опорных частей стропильных ферм в связевом блоке и торцовых шагах проектируют в виде фермы, а осталь-ных местах ставят распорки.

Связи по конструкции покрытия здания для обеспечения пространственной жесткости каркаса располагают:

В плоскости верхних поясов стропильных ферм - поперечные связевые фермы и продольные распорки между ними;

В плоскости нижних поясов стропильных ферм - поперечные и продольные связевые фермы;

Между стропильными фермами в плоскости конька - вертикальные связи;

По фонарям - горизонтальные связи в уровне верхних поясов фонарей и вертикальные связи между фонарями (также как связи между стропильными фермами).

Связи по покрытию: а - по верхним поясам ферм; б - по нижним поясам ферм; в - вертикальные связи между фермами

Выполняют связи из уголков или швеллеров. Крепление связей осуществляется болтами, а иногда заклепками.

8. ОБЪЁМНО-БЛОЧНАЯ КОНСТРУКТИВНАЯ СИСТЕМА ЗДАНИЙ(16)