Стеклопластиковые материалы. Надежные конструкции из стеклопластика. Коррозия бетона в морской воде




Основные понятия
Стеклопластик — система из стеклянных нитей связання реактопластами (необратимо твердеющими смолами).

Механизмы прочности-Адгезия между единичным волокном и полимером (смолой ) адгезия зависит от степени очистки поверхности волокна от аппрета (полиэтиленовые воски, парафин). Аппрет наносится на заводе изготовителе волокон или тканей для сохраниения предотвращения расслаивания при траспортно-технологических операциях.

Смолы — полиэфирные, характеризуются невысокой прочностью и значительной усадкой при твердении, это их минус. Плюс- быстрая полимеризация в отличии от эпоксидов.

Однако усадка и быстрая полимеризация вызывают сильные упругие напряжения в изделии и со временем изделие коробится, коробление незначительно, но на тонких изделиях дает неприятные блики кривой поверхности- см любой совеЦкий обвес для ВАЗов.

Эпоксиды- значительно более точно держат форму, значительно прочнее, однако дороже. Миф о дешевизне эпоксидов связан с тем, что стоимость отечественной эпоксидной смолы сравнивают со стоимостью импортной полиэфирной. Эпоксиды так же выигрывают по термостойкости.

Прочность стеклопластика- в любом случае зависит от количества стекла по объему- наиболее прочные с содержанием стекла 60 процентов, однако, такое можно получить только под давлением и при температуре. В «холодных условиях» прочный стеклопластик получить затруднительно.
Подготовка стекломатериалов перед выклейкой.

Поскольку процесс заключается в склеивании волокн между собой смолами, то требования к склеиваемым волокнам точно такие же как и при процессах склеивания- тщательное обезжиривание, удаление адсорбированной воды отжигом.

Обезжиривание, или удаление аппрета- можно произвести, в бензине БР2, ксилоле, толуоле, их смесях. Ацетон не рекомендуется из-за связывания воды из атмосверы и «намокания » поверзности волокон. Как способ обезжиривания можно применить и отжиг при температуре 300-400 градусов.В любительских условиях это можно сделать так- свернутая в рулон ткань помещается в заготовку от вентиляционной трубы или водосточной оцинкованной и наревается спиралью от электроплитки помещаемой внутрь рулона, можно использовать фен для удаления краски и др.

После отжига стекломатериалы не должны пролеживать на воздухе, поскольку поверхность стеклоткани адсорбирует на себя воду.
Слова некоторых «умельцев » о возможности выклеивать не удаляя аппрет вызывают грустную улыбку- ни кому в голову не придет склеивать стекло по слою парафина.Байки о том, что де «смола растворяет парафин» еще смешнее. намажте стекло парафином, натрите а теперь попробуйте к нему что нибудь приклеить. Выводы сделайте сами))

Выклейка.
Разделительный слой по матрице- наилучний поливиниловый спирт в воде, нанесенный распылителем и высушенный.Дает скользкую и эластичную пленочку.
Можно использовать специальные воски или восковые мастики на основе силикона, однако всегда нужно убедится что растворитель в смоле не растворяет разделительный слой, попробовав предварительно на чем то маленьком.

При выклейке- укладывать слой на слой прокатывая резиновым валиком выдавливая излишки смолы, воздушные пузырьки удалять прокалывая иглой.
Руководствоваться принципом- избыток смолы всегда вреден- смола только склеивает стеклянные волокна, но не является материалом для создания форм.
если деталь высокой точности, как например, крышка капота, желательно вводить в смолу минимум отвердителя и для полимеризации применять источники нарева, например инфракрасную лампу или бытовой «рефлектор ».

После твердения не снимая с матрицы очень желательно изделие равномерно прогреть- особенно на стадии «желатинизации » смолы. Эта мера снимет внутренние напряжения и деталь не будет коробится со временем. Относительно коробления — я говорю о появлении бликов а не о изменении размеров, размеры могут менятся всего на доли процента но при этом давать сильные блики.Обратите внимание на обвесы из пластика изготовленные в россии — никто из производителей не «заморачивается » результат- лето, постояла на солнышке, зимой пара морозов и…кривое все как..хотя новое выглядело отлично.
Кроме того, при постоянном действии влаги, особенно на местах сколов стеклоткань начинает вылезать наружу, и постепенно смачиваясь водой просто бахромится, вода рано или поздно проникая в толщу материала отслаивает стеклянные нити от основы (стекло адсорбирует влагу очень сильно)
через год.

Зрелище более чем печальное, ну такие изделия вы видите каждый день. что сделано из стали а что из пластика видно сразу.

Кстати, на рынке иногда появляются препреги — это листы стеклоткани уже покрытые смолой, остается из положить под давление и нагреть- они склеются в прекрасный пластик. Но техпроцесс сложнее, хотя я слышал что на препреги наносят слой смолы с отвердителем и получают прекрасные результаты. сам так не делал.

Это основные понятия об стеклопластиках, матрицу делать сообразуясь со здравым смыслом из любого подходящего материала.

Я использую сухую штукатурку «ротбанд » обрабатывается прекрасно, очень точно держит размер, после высыхания от воды пропитывается смесью 40 процентов эпоксидной смолы с отвердителем- остальное ксилол, после отверждения смолы такие формы можно отполировать или. очень прочные и размер держат превосходно.

Как отслоить изделие из матрицы?
у многих эта простая операция вызывает затруднения, вплоть до разрушения формы.

Отслоить просто — в матрице предварительно до выклейки слелать отверстие или несколько, заклеить тонким скотчем. после изготовления изделия в эти отверстия по очереди дунуть сжатым воздухом- изделие отслоится и сниматься очень легко.

Опять же, я могу сказать что использую я.

Смола- ЭД20 или ЭД6
отвердидель- полиэтиленполиамин он же ПЭПА.
Тиксотропная добавка — аэросил (при добавлении его смола теряет текучесть и делается желеобразной, очень удобно) добавляется по желаемому результату.
Пластификатор- дибутилфталат или касторовое масло, оклоло процента- четверти процента.
Растворитель- ортоксилол, ксилол, этилцеллозольв.
наполнитель в смолу для поверхностных слоев- алюминиевая пудра (скрывает стеклосетку)
стеклоткань- асстт, или стеклорогожа.

Вспомогательные материалы- поливиниловый спирт, силиконовый вазелин КВ
очень полезна тонкая полиэтиленовая пленка в качестве разделительного слоя.
полезно- отвакуумировать смолу после размешивания удалив пузырьки.

Стеклоткань я нарезаю в нужные куски, потом сворачиваю, помещаю в трубу и прокаливаю все это дело трубчатым ТЭНом помещенным внутрь рулона прокаливается ночь- так удобно.

Да, и вот еще.
Эпоксидную смолу не размешивать с отвердителем в одной емкости в количестве более 200 грамм. разогреется и вскипит в момент.

Экспресс контроь результатов- на пробном куске при разламывании стеклонити не должны торчать- излом пластика должен быть похож на излом фанеры.
сломайте любой пласктик из которого сделан обвес или обратите внимание на битый- сплошные лохмы. Это результат «никакой » связи стекла с полимером.

Ну и маленькие секреты.
очень удобно исправлять девекты типа царапин или раковин так- наносите на раковину каплю эпоксидной смолы, после чего сверзу, как обычно приклеиваете скотч (обычный , прозрачный), по бликам выравниваете поверхность пальцами или прикладывая что-нибудь упругое, после затвердевания скотч отклеивается легко и дает зеркальную поверхность. Обработки никакой не требуется.

Растворитель снижает прочность пластика и вызывает усадку в готовом изделии.
по возможности следует избегать его применения.
алюминиевая пудра добавляется только в поверхностные слои- усадку снижает очень сильно, характерная для пластиков сетка мне проявляется потом никакого, количество до консистенции густой сметаны.
обрабатываются эпоксиды хуже чем полиэфиры и это их недостаток.
цвет после добавления алюминиевой пудры не серебристый а серо-металлический.
некрасивый в общем.

Металлическое крепление вклеенное в пластик должно быть из алюминиевых сплавов или титана- потому что. На закладное изделие наносится очень тонкий слой силиконового герметика, и к нему прижимается стеклоткань, предварительно хорошо отожженная. Ткань должна прилипнуть но НЕ ДОЛЖНА пропитаться насквозь. через 20 минут эта ткань смачивается смолой БЕЗ РАСТВОРИТЕЛЯ и на нее приклеиваются остальные слои. это «боевая «технология в качестве силиконового герметика мы использовали советский КЛТ75 соединение вибро, термо стойко, морозоустойчиво, стойко к действию соленой воды. Подготовка поверхности металла- алюминиевый сплав промыть в чистом растворителе. протравить в смеси стиральной соды и стирального порошка, нагрев раствор до кипения, если есть возможность то в слабой щелочи, например 5% растворе едкого кали или натра, с нагревом высушить. прогреть до 200-400 град. После остывания вклеивать как можно быстрее.

Строительство – это сфера, в пользу которой неустанно трудится химическая промышленность, создавая новые сплавы и материалы для производства различных изделий. Одним из наиболее важных и перспективных достижений в этой сфере за последние годы можно назвать результаты, связанные с работой над таким композиционным материалом как стеклопластик. Многие инженеры и строители называют его материалом будущего, так как он сумел превзойти по своим качествам многие металлы и сплавы, в том числе, легированную сталь.

Что собой представляет стеклопластик? Это композит, имеющий две составляющие: армирующую и связующую основы. В роли первой выступает стекловолокно, вторая – это различные по своему химическому составу смолы. Вариации с количеством тех и других позволяют сделать стеклопластик устойчивым к условиям практически любой среды. Но следует понимать, что не существует универсального вида стеклопластика, каждый их них рекомендован к использованию в определенных эксплуатационных условиях.

Стеклопластик интересен проектировщикам тем, что готовая продукция из него появляется одновременно с самим материалом. Эта особенность дает большой простор для фантазии, позволяя изготовить изделие с индивидуальными физико-механическими характеристиками по заданным параметрам клиента.

Одним из наиболее распространенных строительных материалов из стеклопластика является решетчатый настил. В отличие от стальных настилов он производиться методом литья, что придает ему такие характеристики как низкая теплопроводность, изотропность, и конечно как и у материалов из стали - прочность и долговечность.

Из стеклопластикового решетчатого настила изготавливают лестничные ступени, впрочем, при этом и вся конструкция выполняется также из стеклопластиковых деталей: стойки, поручни, опоры, швеллера.

Безусловно, такие лестницы являются очень долговечными, им не страшна коррозия и воздействие химических веществ. Они легки в перевозке и монтаже. В отличие от металлоконструкций для их установки достаточно нескольких человек. Дополнительным плюсом является возможность выбора цвета, что повышает внешнюю привлекательность объекта.

Очень большую популярность приобрели сходни, изготавливаемые из стеклопластика. Их надежность обусловлена все теми же уникальными характеристиками описываемого нами композита. Пешеходные зоны, оборудованные сходнями из стеклопластика, не требуют особого ухода, их эксплуатационные возможности гораздо выше однотипных металлоконструкций. Доказано, что срок службы стеклопластика гораздо дольше последних и составляет более 20 лет.

Еще одним высокоэффективным предложением является система поручней из стеклопластика. Все запчасти перилл очень компактны и легки для ручной сборки. Кроме того, для клиента существует множество вариаций готовой конструкции, а также возможность осуществить собственный проект.

Благодаря диэлектрическим свойствам стеклопластика из него производят кабельные каналы. Изотропность этого материала повышает спрос на продукцию, планируемую к использованию на объектах, чувствительных к электромагнитным колебаниям.

В целом, можно отметить, что ассортимент продукции из стеклопластика достаточно широк. Работая с ним, строители и проектировщики могут реализовать самые фантастические идеи. Все предлагаемые нашей компанией конструкции надежны и прочны. Качество стеклопластика формирует сравнительно высокую цену на него, но при этом она является оптимальным соотношением преимуществ этого материала и спроса на него. Да и при том, важно понимать, что затраты на его покупку окупятся в дальнейшем благодаря сокращению расходов на его транспортировку, монтаж и последующее обслуживание.

Стеклопластиковая арматура занимает все более прочные позиции в современном строительстве. Это обусловлено, с одной стороны, ее высокой удельной прочностью (отношением прочности к удельной массе), с другой стороны, высокой коррозионной стойкостью, морозостойкостью, низкой теплопроводностью. Конструкции, где используется стеклопластиковая арматура, неэлектропроводны, что очень важно для исключения блуждающих токов и электроосмоса. В связи с более высокой стоимостью по сравнению со стальной арматурой, стеклопластиковая арматура используется, главным образом, в ответственных конструкциях, к которым предъявляются особые требования. К таким конструкциям относятся морские сооружения, особенно те их части, которые находятся в зоне переменного уровня воды.

КОРРОЗИЯ БЕТОНА В МОРСКОЙ ВОДЕ

Химическое действие морской воды обусловлено, главным образом, присутствием сернокислого магния, который вызывает два вида коррозии бетона - магнезиальную и сульфатную. В последнем случае в бетоне образуется комплексная соль (гидросульфоалюминат кальция), увеличивающаяся в объеме и вызывающая растрескивание бетона.

Другим сильным фактором коррозии является углекислота, которую выделяют органические вещества при разложении. В присутствии углекислоты нерастворимые соединения, обусловливающие прочность, переходят в хорошо растворимый бикарбонат кальция, вымываемый из бетона.

Морская вода действует наиболее сильно на бетон, находящийся непосредственно над верхним уровнем воды. При испарении воды в порах бетона остается твердый остаток, образующийся из растворенных солей. Постоянное поступление воды в бетон и последующее ее испарение с открытых поверхностей приводит к накоплению и росту кристаллов соли в порах бетона. Этот процесс сопровождается расширением и растрескиванием бетона. Кроме солей надводный бетон испытывает на себе действие попеременного замораживания и оттаивания, а также увлажнения и высыхания.

В зоне переменного уровня воды бетон разрушается в несколько меньшей степени, из-за отсутствия солевой коррозии. Подводная часть бетона, не подвергающаяся циклическому действию указанных факторов, разрушается редко.

В работе приведен пример разрушения железобетонного свайного пирса, сваи которого, высотой 2,5 м, в зоне переменного горизонта воды не были защищены. Уже через год было обнаружено почти полное исчезновение бетона из этой зоны, так что пирс держался на одной арматуре. Ниже уровня воды бетон остался в хорошем состоянии.

Возможность изготовления долговечных свай для морских сооружений заложена в применении поверхностного стеклопластикового армирования. Такие конструкции по коррозионной стойкости и морозостойкости не уступают конструкциям, выполненным полностью из полимерных материалов, а по прочности, жесткости и устойчивости их превосходят.

Долговечность конструкций с внешним стеклопластиковым армированием определяется коррозионной стойкостью стеклопластика. Благодаря герметичности стеклопластиковой оболочки бетон не подвергается воздействию среды и поэтому его состав может подбираться только исходя из требуемой прочности.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА И ЕЕ ВИДЫ

К бетонным элементам, где используется стеклопластиковая арматура, в основном применимы принципы проектирования железобетонных конструкций. Аналогична и классификация по видам применяемой стеклопластиковой арматуры. Армирование может быть внутренним, внешним и комбинированным, представляющим собой сочетание первых двух.

Внутреннее неметаллическое армирование применяется в конструкциях, эксплуатируемых в средах, агрессивных к стальной арматуре, но не агрессивных по отношению к бетону. Внутреннее армирование можно разделить на дискретное, дисперсное и смешанное. К дискретному армированию относятся отдельные стержни, плоские и пространственные каркасы, сетки. Возможна комбинация, например, отдельных стержней и сеток и др.

Наиболее простым видом стеклопластиковой арматуры являются стержни нужной длины, которые применяются взамен стальных. Не уступая стали по прочности, стеклопластиковые стержни значительно превосходят их по коррозионной стойкости и поэтому используются в конструкциях, в которых существует опасность коррозии арматуры. Скреплять стеклопластиковые стержни в каркасы можно с помощью самозащелкивающихся пластмассовых элементов или связыванием.

Дисперсное армирование заключается во введении в бетонную смесь при перемешивании рубленных волокон (фибр), которые в бетоне распределяются хаотично. Специальными мерами можно добиться направленного расположения волокон. Бетон с дисперсным армированием обычно называют фибробетоном.
В случае агрессивности среды к бетону эффектной защитой является внешнее армирование. При этом внешняя листовая арматура может выполнять одновременно три функции: силовую, защитную и функцию опалубки при бетонировании.

Если внешнего армирования недостаточно для восприятия механических нагрузок, применяется дополнительная внутренняя арматура, которая может быть как стеклопластиковой, так и металлической.
Внешнее армирование разделяется на сплошное и дискретное. Сплошное представляет собой листовую конструкцию, полностью покрывающую поверхность бетона, дискретное - элементы сетчатого типа или отдельные полосы. Наиболее часто осуществляется одностороннее армирование растянутой грани балки или поверхности плиты. При одностороннем поверхностном армировании балок целесообразно завести отгибы листа арматуры на боковые грани, что повышает трещиностойкость конструкции. Внешнее армирование может устраиваться как по всей длине или поверхности несущего элемента, так и в отдельных, наиболее напряженных участках. Последнее делают только в тех случаях, когда не требуется защита бетона от воздействия агрессивной среды.

ВНЕШНЕЕ СТЕКЛОПЛАСТИКОВОЕ АРМИРОВАНИЕ

Основная идея конструкций с внешним армированием состоит в том, что герметичная стеклопластиковая оболочка, надежно защищает бетонный элемент от воздействий внешней среды и, одновременно, выполняет функции арматуры, воспринимая механические нагрузки.

Возможны два пути получения бетонных конструкций в стеклопластиковых оболочках. Первый включает изготовление бетонных элементов, их сушку, а затем заключение в стеклопластиковую оболочку, путем многослойной обмотки стекломатериалом (стеклотканью, стеклолентой) с послойной пропиткой смолой. После полимеризации связующего обмотка превращается в сплошную стеклопластиковую оболочку, а весь элемент - в трубобетонную конструкцию.

Второй основан на предварительном изготовлении стеклопластиковой оболочки и последующем заполнении ее бетонной смесью.

Первый путь получения конструкций, где используется стеклопластиковая арматура, дает возможность создания предварительного поперечного обжатия бетона, что существенно повышает прочность и снижает деформативность получаемого элемента. Это обстоятельство особенно важно, так как деформативность трубобетонных конструкций не позволяет в полной мере воспользоваться значительным увеличением прочности. Предварительное поперечное обжатие бетона создается не только натяжением стеклонитей (хотя в количественном отношении оно составляет основную часть усилия), но и за счет усадки связующего в процессе полимеризации.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: КОРРОЗИОННАЯ СТОЙКОСТЬ

Стойкость стеклопластиков к воздействию агрессивных сред в основном зависит от вида полимерного связующего и волокна. При внутреннем армировании бетонных элементов стойкость стеклопластиковой арматуры должна оцениваться не только по отношению к внешней среде, но и по отношению к жидкой фазе в бетоне, так как твердеющий бетон является щелочной средой, в которой обычно применяемое алюмоборосиликатное волокно разрушается. В этом случае должна быть обеспечена защита волокон слоем смолы или использованы волокна другого состава. В случае неувлажняемых бетонных конструкций коррозии стекловолокна не наблюдается . В увлажняемых конструкциях щелочность бетонной среды можно существенно понизить, используя цементы с активными минеральными добавками.

Испытания показали , что стеклопластиковая арматура имеет стойкость в кислой среде более чем в 10 раз, а в растворах солей более чем в 5 раз выше стойкости стальной арматуры. Наиболее агрессивной для стеклопластиковой арматуры является щелочная среда. Снижение прочности стеклопластиковой арматуры в щелочной среде происходит в результате проникновения жидкой фазы к стекловолокну через открытые дефекты в связующем, а также посредством диффузии через связующее. Следует отметить, что номенклатура исходных веществ и современные технологии получения полимерных материалов позволяют в широких пределах регулировать свойства связующего для стеклопластиковой арматуры и получать составы с чрезвычайно низкой проницаемостью, а следовательно свести к минимуму коррозию волокна.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: ПРИМЕНЕНИЕ ПРИ РЕМОНТЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Традиционные способы усиления и восстановления железобетонных конструкций достаточно трудоемки и часто требуют продолжительной остановки производства. В случае агрессивной среды после ремонта требуется создать защиту сооружения от коррозии. Высокая технологичность, малые сроки твердения полимерного связующего, высокая прочность и коррозионная стойкость внешнего стеклопластикового армирования предопределили целесообразность его использования для усиления и восстановления несущих элементов сооружений. Применяемые для этих целей способы зависят от конструктивных особенностей ремонтируемых элементов.

СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА: ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ

Срок эксплуатации железобетонных конструкций при воздействии агрессивных сред резко сокращается. Замена их стеклопластбетонными ликвидирует затраты на капитальные ремонты, убытки от которых существенно возрастают, когда на время ремонта требуется остановка производства. Капиталовложения на возведение конструкций, где используется стеклопластиковая арматура, значительно больше, чем железобетонных. Однако через 5 лет они окупаются, а через 20 лет экономический эффект достигает двукратной стоимости возведения конструкций.

ЛИТЕРАТУРА

  1. Коррозия бетона и железобетона, методы их защиты / В. М. Москвин, Ф. М. Иванов, С. Н. Алексеев, Е. А. Гузеев. - М.: Стройиздат, 1980. - 536 с.
  2. Фролов Н. П. Стеклопластиковая арматура и стеклопластбетонные конструкции. - М.: Стройиздат, 1980.- 104с.
  3. Тихонов М. К. Коррозия и защита морских сооружений из бетона и железобетона. М.: Изд-во АН СССР, 1962. - 120 с.

В зарубежном строительстве из всех типов стеклопластика основ­ное применение нашел светопрозрачный стеклопластик, который с успе­хом используется в промышленных зданиях в виде листовых элементов волнистого профиля (как правило, в сочетании с волнистыми листами из асбестоцемента или металла), плоских панелей, куполов, простран­ственных конструкций.

Светопрозрачные ограждающие конструкции служат заменой трудо­емким и малоэкономичным оконным блокам и фонарям верхнего света промышленных, общественных и сельскохозяйственных зданий.

Светопрозрачные ограждения нашли широкое применение в сте­нах и кровле, а также в элементах вспомогательных сооружений: наве­сах, киосках, ограждениях парков и мостов, балконов, лестничных маршей и др.

В холодных ограждениях промышленных зданий волнистые листы из стеклопластика сочетаются с волнистыми листами из асбестоцемен­та, алюминия и стали. Это дает возможность наиболее рационально использовать стеклопластик, применяя его в виде отдельных включений в кровлю и стены в количествах, диктуемых светотехническими сооб­ражениями (20-30% общей площади), а также соображениями огне­стойкости. К прогонам и фахверку листы стеклопластика крепятся теми же крепежными деталями, что и листы из других материалов.

В последнее время в связи со снижением цен на стеклопластики и получением самозатухающего материала светопрозрачный стеклопла­стик начали применять в виде больших или сплошных площадей в ограждающих конструкциях промышленных и общественных зданий.

Типоразмеры волнистых листов охватывают все (или почти все) возможные комбинации с профильными листами из других материалов: асбестоцемента, плакированной стали, волнистой стали, алюминия и др. Так, например, английская фирма «Алан Блун» выпускает до 50 типо­размеров стеклопластика, включая профили, принятые в США и Ев­ропе. Примерно так же велик ассортимент профильных листов из ви­нипласта (фирма «Мэрли») и оргстекла (фирма «Ай-Си-Ай).

Одновременно со свегопрозрачными листами потребителям пред - лагают и комплектно поставляемые детали их крепления.

Наряду со светопрозрачными стеклопластиками в последние годы в ряде стран все большее распространение получает также жесткий светопрозрачный винипласт в основном в виде волнистых листов. Хотя этот материал больше, чем стеклопластик, чувствителен к температур­ным колебаниям, обладает меньшим модулем упругости и, по ряду данных, менее долговечен, он тем не менее имеет определенные перспек­тивы в связи с широкой сырьевой базой и определенными технологиче­скими преимуществами.

Купола из стеклопластика и оргстекла нашли широкое распростра­нение за рубежом в связи с высокими светотехническими характеристи­ками, небольшим весом, относительной простотой изготовления (осо­бенно куполов из оргстекла) и др. Они выпускаются сферической или пирамидальной формы круглого, квадратного или прямоугольного очертания в плане. В США и Западной Европе применяются преиму­щественно однослойные купола, в странах же с более холодным клима­том (Швеция, Финляндия и др.) - двухслойные с воздушной про­слойкой и специальным приспособлением для отвода конденсата, сделанным в виде небольшого желоба по периметру опорной части купола.

Область применения светопрозрачных куполов - промышленные и общественные здания. Массовым выпуском их заняты десятки фирм во Франции, Англии, США, Швеции, Финляндии и других странах. Купо­ла из стеклопластика обычно выпускаются размером от 600 до 5500 мм, А из оргстекла от 400 до 2800 мм. Есть примеры применения куполов (составных) значительно больших размеров (до 10 м и более).

Имеются также примеры применения куполов из армированного винипласта (см. главу 2).

Светопрозрачные стеклопластики, которые еще совсем недавно применялись только в виде волнистых листов, сейчас начинают широко использоваться и для изготовления крупногабаритных конструкций, в особенности стеновых и кровельных панелей стандартных размеров, способных конкурировать с подобными конструкциями из традицион­ных материалов. Лишь одна американская фирма «Колуолл», выпуска­ющая трехслойные светопрозрачные панели длиной до б м, применила их в нескольких тысячах зданий.

Особый интерес представляют разработанные принципиально но­вые светопрозрачные панели капиллярной структуры , обладающие по­вышенной теплоизоляционной способностью при высокой светопрозрач- ности. Эти панели представляют собой сердечник из термопласта с ка­пиллярными каналами (капилляропласта), оклеенный с двух сторон плоскими листами из стеклопластика или оргстекла. Сердечник пред­ставляет собой по существу светопрозрачный сотопласт с ячейками не­больших размеров (0,1-0,2 мм). Он содержит 90% твердого вещества и 10% воздуха и изготовляется в основном из полистирола, реже - оргстекла. Возможно также применение полокарбоната - термопласта повышенной огнестойкости. Основным преимуществом этой свегопро­зрачной конструкции является высокое термическое сопротивление, что дает существенную экономию на отоплении и препятствует образованию конденсата даже при высокой влажности воздуха. Должно быть также отмечено повышенное сопротивление ее сосредоточенным, в том числе ударным нагрузкам.

Стандартные размеры панелей капиллярной структуры -3X1 м, но они могут изготовляться длиной до 10 м и шириной до 2 м. На рис. 1.14 показаны общий вид и детали промышленного здания, где в каче­стве световых ограждений кровли и стен применены панели капилляр­ной структуры размером 4,2X1 м. Панели укладываются по длинным сторонам на V-образные прокладки и стыкуются сверху при помощи металлических накладок на мастике.

В СССР стеклопластик нашел в строительных конструкциях весь­ма ограниченное применение (для отдельных опытных сооружений) в связи с недостаточным его качеством и ограниченным ассортиментом

(см. главу 3). В основном выпускаются волнистые листы с небольшой высотой волны (до 54 мм), которые применяются преимущественно в виде холодных ограждений для построек «малых форм» - киосков, навесов, легких навесов.

Между тем, как показали технико-экономические исследования , наибольший эффект может дать применение стеклопластика в промышленном строительстве в качестве светопрозрачных ограждений стен и кровли. При этом исключаются дорогие и трудоемкие фонарные надстройки. Эффективно также применение светопрозрачных огражде­ний в общественном строительстве.

Ограждения, выполненные сплошь из светопрозрачных конструк­ций, рекомендуются для временных общественных и вспомогательных зданий и сооружений, в которых применение светопрозрачных ограж­дений из пластмасс продиктовано повышенными светотехническими или эстетическими требованиями (например, выставочные, спортивные зда­ния и сооружения). Для других зданий и сооружений общая площадь световых проемов, заполняемых светопрозрачными конструкциями, оп­ределяется светотехническим расчетом.

ЦНИИПромзданий совместно с ЦНИИСК, Харьковским Пром- стройниипроектом и ВНИИ стеклопластиков и стекловолокна разрабо­тал ряд эффективных конструкций для промышленного строитель­ства . Простейшей конструкцией являются светопрозрачные листы, укладываемые по каркасу в сочетании с волнистыми листами из непро­
зрачных материалов (асбестоцемента, стали или алюминия). Предпо­чтительно использовать стеклопластик с поперечной волной в рулонах, что исключает необходимость стыка листов по ширине. При продольной волне целесообразно использовать листы увеличенной длины (на два пролета) для сокращения числа стыков над опорами.

Уклоны покрытий в случае комбинации волнистых листов из свето­прозрачных материалов с волнистыми листами из асбестоцемента, алю­миния или стали следует назначать в соответствии с требованиями,

Предъявляемыми к покрытиям из несветопрозрачных волнистых листов. При устройстве покрытий сплошь из светопрозрачных волнистых лгстов уклоны должны быть не менее 10% в случае стыкования листов по длине ската, 5% в случае отсутствия стыков.

Длина нахлестки светопрозрачных волнистых листов в направле­нии ската покрытия (рис. 1.15) должна быть 20 см при уклонах от 10 до 25% и 15 см при уклонах более 25%. В стеновых ограждениях дли­на нахлестки должна быть 10 см.

Серьезное внимание при применении таких решений необходимо обращать на устройство креплений листов к каркасу, которые во мно­гом определяют долговечность конструкций. Крепление волнистых лис­тов к прогонам осуществляется болтами (к стальным и железобетон­ным прогонам) или шурупами (к деревянным прогонам), установлен­ными по гребням волн (рис. 1.15). Болты и шурупы должны быть оцинкованы или кадмированы.

Для листов с размерами волн 200/54, 167/50, 115/28 и 125/35 креп­ления ставятся на каждой второй волне, для листов с размерами волн 90/30 и 78/18 - на каждой третьей волне. Все крайние гребни волн каж­дого волнистого листа должны быть закреплены.

Диаметр болтов и шурупов принимают по расчету, но не менее 6 мм. Диаметр отверстия под болты и шурупы должен быть на 1-2 мм Больше диаметра крепежного болта (шурупа). Металлические шайбы под болты (шурупы) должны быть изогнуты по кривизне волны и снаб­жены эластичными герметизирующими подкладками. Диаметр шайбы принимается по расчету. В местах крепления волнистых листов уста­навливают деревянные или металлические подкладки, препятствующие оседанию волны на опоре.

Стык поперек направления ската может осуществляться болтовы­ми или клеевыми соединениями. При болтовых соединениях длина на­хлестки волнистых листов берется не менее длины одной волны; шаг болтов 30 см. Стыки волнистых листов на болтах следует герметизиро­вать ленточными прокладками (например, из эластичного пенополиуре­тана, пропитанного полиизобутиленом) или мастиками. При клеевом соединении длину нахлестки принимают по расчету, а протяженность одного стыка не более 3 м.

В соответствии с принятыми в СССР установками на капитальное строительство основное внимание в исследованиях уделено крупнораз­мерным панелям. Одна из таких конструкций состоит из металличес­кого обрамления, работающего на пролет 6 м, и опертых на него вол­нистых листов, работающих на пролет 1,2-2,4 м .

Предпочтителен вариант с заполнением двойными листами, как от­носительно более экономичный. Панели такой конструкции размером 4,5X2,4 м были установлены в опытном павильоне, сооруженном в Москве.

Достоинством описанной панели с металлической рамой является простота изготовления и использование материалов, выпускаемых в на­стоящее время промышленностью. Однако более экономичными и пер­спективными являются трехслойные панели с обшивками из плоских листов, обладающие повышенной жесткостью, лучшими теплотех­ническими свойствами и требующие минимального расхода ме­талла.

Небольшой вес таких конструкций позволяет применять элементы значительных размеров, однако их пролет, так же как и волнистых листов, ограничивается предельно допустимыми прогибами и некоторы­ми затруднениями технологического порядка (необходимость крупнога­баритного прессового оборудования, стыковки листов и т. д.).

В зависимости от технологии изготовления стеклопластиковые па­нели могут быть клееными или цельноформованными. Клееные панели изготовляют путем соединения на клею плоских обшивок с элементом среднего слоя: ребрами из стеклопластика, металла или антисептиро - ванной древесины . Для их изготовления могут быть широко использованы стандартные стеклопластиковые материалы, производи­мые непрерывным методом: плоский и волнистые листы, а также раз­личные профильные элементы. Клееные конструкции позволяют в зави­симости от потребности сравнительно широко варьировать высоту и шаг элементов среднего слоя. Их основным недостатком, однако, явля­ется большее по сравнению с цельноформованными панелями число технологических операций, что делает более сложным их изготовление, а также менее надежное, чем в цельноформованных панелях, соедине­ние обшивок с ребрами.

Цельноформованные панели получаются непосредственно из ис­ходных компонентов - стекловолокна и связующего, из которых фор­муется коробчатый элемент путем намотки волокна на оправки прямо­угольной формы (рис. 1.16). Такие элементы еще до отверждения свя­зующего спрессовываются в панель путем создания бокового и вертикального давления. Ширина этих панелей определяется длиной коробчатых элементов и применительно к модулю промышленных зда­ний принимается равной 3 м.

Рис. 1.16. Светопрозрачные цельноформованные панели из стеклопластиков

А - схема изготовления: 1 - намот­ка стеклопластикового наполнителя на оправки; 2 - боковое сжатие; 3-вертикальное давление; 4-го­товая панель после извлечения оп­равок; б-общий вид фрагмента панели

Применение для цельноформованных панелей непрерывного, а не рубленого стекловолокна позволяет получить в панелях материал с по­вышенными значениями модуля упругости и прочности. Важнейшим преимуществом цельноформованных панелей является также односта - дийность процесса и повышенная надежность соединения тонких ребер среднего слоя с обшивками.

В настоящее время еще трудно отдать предпочтение той или иной технологической схеме изготовления светопрозрачных стеклопластико - вых конструкций. Это можно будет сделать лишь после того, как будет налажено их производство и получены данные по эксплуатации различ­ных видов светопрозрачных конструкций.

Средний слой клееных панелей может устраиваться в различных вариантах. Панели с волнистым средним слоем сравнительно просты в изготовлении и имеют хорошие светотехнические свойства. Однако высота таких панелей ограничивается максимальными размерами волны

(50-54 мм) , в связи с чем А) 250^250г250 такие панели имеют огра­

Ниченную жесткость. Бо­лее приемлемые в этом отношении являются па­нели с ребристым сред­ним слоем.

При подборе разме­ров поперечного сечения светопрозрачных ребри­стых панелей особое мес­то занимает вопрос о ши­рине и высоте ребер и ча­стоте их размещения. Применение тонких, невы­соких и редко расставлен­ных ребер обеспечивает большее светопропуска - ние панели (см. ниже), но вместе с тем приводит к снижению ее несущей спо­собности и жесткости. При назначении шага ре­бер следует также учиты­вать несущую способ­ность обшивки в услови­ях ее работы на местную нагрузку и пролет, рав­ный расстоянию между ребрами.

Пролет трехслойных панелей благодаря их значительно большей жесткости, чем у волни­стых листов, может быть доведен для плит кровли до 3 м, а для панелей стен - до 6 м.

Трехслойные клееные панели со средним слоем из деревянных ребер при­менены, например, для служебных помещений Киевского отделения ВНИИНСМ.

Особый интерес представляет использование трехслойных панелей для устройства зенитных фонарей в кровле промышленных и общест­венных зданий. Разработка и исследование светопрозрачных конструк­ций для промышленного строительства проводились в ЦНИИПромзда - ний совместно с ЦНИИСК . На основе комплексных исследований раз­
работай ряд интересных решений зенитных фонарей из стеклопластика и оргстекла, а также осуществлены опытные объекты.

Зенитные фонари из стеклопластика могут решаться в виде купо­лов или панельной конструкции (рис. 1.17). В свою очередь последние могут быть клееными или цельноформованными, плоскими или криво­линейными. В связи с пониженной несущей способностью стеклопласти­ка опирание панелей производится по длинным сторонам на соседние глухие панели, которые для этой цели должны быть усилены. Возмож­но также устройство специальных опорных ребер.

Поскольку сечение панели, как правило, определяется расчетом ее по прогибам, в части конструкций использована возможность умень­шения прогибов путем соответствующего крепления панели на опорах. В зависимости от конструкции такого крепления и жесткости самой па­нели прогиб панели может быть уменьшен как за счет развития опор­ного момента, так и появления «цепных» усилий, способствующих раз­витию в панели дополнительных растягивающих напряжений. В послед­нем случае необходимо предусмотреть конструктивные меры, которые исключали бы возможность сближения опорных кромок панели (на­пример, путем крепления панели к специальной раме или к соседним жестким конструкциям).

Значительное уменьшение прогибов может быть достигнуто также путем придания панели пространственной формы. Криволинейная па­нель сводчатого типа лучше, чем плоская, работает на статические на­грузки, а ее очертание способствует лучшему удалению грязи и воды с наружной поверхности. Конструкция этой панели аналогична приня­той для светопрозрачного покрытия бассейна в г. Пушкино (см. ниже).

Зенитные фонари в виде куполов обычно прямоугольного очерта­ния устраиваются, как правило, двойными, учитывая наши сравнитель­но суровые климатические условия. Они могут устанавливаться отдель-

4 А. Б. Губенко

Ными куполами или быть сблокированными на плите покрытия. Пока в СССР практическое применение нашли лишь купола из органическо­го стекла в связи с отсутствием стеклопластика нужного качества и размеров.

В покрытии московского Дворца пионеров (рис. 1.18) над залом лектория установлено с шагом около 1,5 м 100 сферических куполов диаметром 60 см. Этими куполами освещается площадь около 300 м2. Конструкция куполов возвышается над кровлей, что обеспечивает их лучшую очистку и сброс дождевой воды.

В этом же здании над зимним садом применена другая конструк­ция, которая состоит из треугольных пакетов, склеенных из двух плос­ких листов органического стекла, уложенных по стальному каркасу сферического очертания. Диаметр купола, образованного пространст­венным каркасом, около 3 м. Пакеты из органического стекла уплотня­ли в каркасе пористой резиной и герметизировали мастикой У 30-м. Теплый воздух, который скапливается в подкупольном пространстве, препятствует образованию конденсата на внутренней поверхности купола.

Наблюдения за куполами из органического стекла московского Дворца пионеров показали, что бесшовные светопрозрачные конструк­ции имеют неоспоримые преимущества перед сборными. Объясняется это тем, что эксплуатация сферического купола, состоящего из тре­угольных пакетов, более затруднительна, чем бесшовных куполов ма­лого диаметра. Плоская поверхность стеклопакетов, частое расположе­ние элементов каркаса и герметизирующая мастика затрудняют сток воды и сдувание пыли, а в зимнее время способствуют образованию снежных заносов. Эти факторы значительно снижают светопропуска - ние конструкций и приводят к нарушению герметизации между эле­ментами.

Светотехнические испытания этих покрытий дали хорошие резуль­таты. Было установлено, что освещенность от естественного света гори­зонтальной площади на уровне пола зала лектория почти такая же, как при искусственном освещении. Освещение является практически рав­номерным (колебание 2-2,5%). Определение влияния снегового по­крова показало, что при толщине последнего 1-2 см освещенность по­мещения падает на 20%. При плюсовых температурах выпавший снег подтаивает.

Зенитные купола из оргстекла нашли также применение при стро­ительстве ряда промышленных зданий: Полтавского завода алмазных инструментов (рис. 1.19), Смоленского завода по переработке , лабораторного корпуса Ногинского научного центра АН СССР и др. Конструкции куполов в указанных объектах аналогичны. Размеры купо­лов по длине 1100 мм, по ширине 650-800 мм. Купола двухслойные, опорные стаканы имеют наклонные грани.

Стержневые и другие несущие конструкции из стеклопластика при­меняются сравнительно редко, в связи с его недостаточно высокими ме­ханическими свойствами (особенно малой жесткостью). Область приме­нения этих конструкций носит специфический характер, связанный в основном с особыми условиями эксплуатации, как, например, при тре­бовании повышенной коррозионной стойкости, радиопрозрачности, высо­кой транспортабельности и др.

Сравнительно большой эффект дает применение стеклопластиковых конструкций, подверженных воздействию различных агрессивных веществ, которые быстро разрушают обычные материалы. В 1960 г. на изготовление коррозиестойких стеклопластиковых конструкций только
в США было израсходовано около 7,5 млн. долл. (общая стоимость свето­прозрачных стеклопластиков, произведенных в 1959 г. в США, составля­ет примерно 40 млн. долл.). Интерес к коррозиестойким стеклопласти - ковым конструкциям объясняется, по данным фирм, в первую очередь их хорошими экономическими эксплуатационными показателями. Их вес

Рис. 1.19. Купола из ор­ганического стекла на кровле Полтавского за­вода алмазных инстру­ментов

А - общий вид; б - конст­рукция опорного узла: 1 - купол; 2 - желоб для сбора конденсата; 3 - моро­зостойкая губчатая резина;

4 - деревянная рама;

5 - прижимная металличе­ская кляммера; 6 -фартук из оцинкованной стали; 7 - гидроизоляционный ко­вер; 8 - уплотненная шла­ковата; 9 - металлический опорный стакан; 10 -плит­ный утеплитель; 11 - ас­фальтовая стяжка; 12 -от­сыпка из гранулированного

Шлака

Намного меньше стальных или деревянных конструкций, они значительно долговечнее последних, легко возводятся, ремонтируются и очищаются, могут быть изготовлены на основе самозатухающих смол, а светопро­зрачные емкости не нуждаются в водомерных стеклах. Так, серийная ем­кость для агрессивных сред высотой 6 м и диаметром 3 м весит около 680 кг , в то время как подобная стальная емкость весит около 4,5 т. Вес вытяжной трубы диаметром 3 м и высотой 14,3 му предназначенной для металлургического производства, составляет 77-Vio веса стальной тру­бы при одинаковой несущей способности; хотя стеклопластиковая тру­ба в изготовлении обошлась в 1,5 раза дороже, она экономичнее сталь­
ной, поскольку, по данным зарубежных фирм, срок службы таких соору­жений, изготовленных из стали, исчисляется неделями, из нержавеющей стали - месяцами, подобные же сооружения из стеклопластика эксплуа­тируются без повреждения годами. Так, труба высотой 60 ж и диаметром 1,5 м эксплуатируется седьмой год. Ранее же установленная труба из не­ржавеющей стали прослужила всего 8 меся­цев, а ее изготовление и установка обош­лись только в два раза дешевле. Таким об­разом, стоимость трубы из стеклопластика окупилась уже через 16 месяцев.

Примером долговечности в условиях аг­рессивной среды являются также емкости из стеклопластика. Такая емкость диаметром и высотой 3 ж, предназначенная для различ­ных кислот (в том числе серной), с темпера­турой около 80° С эксплуатируется без ре­монта 10 лет, прослужив в 6 раз больше, чем соответствующая металлическая; лишь одни ремонтные расходы на последнюю за пятилетний период равны стоимости емко­сти из стеклопластика.

В Англии, ФРГ и США широкое распро­странение также нашли емкости в виде складов и резервуаров для воды значитель­ной высоты (рис. 1.20).

Наряду с указанными крупногабарит­ными изделиями в ряде стран (США, Анг­лия) в серийном порядке из стеклопласти­ков изготовляются трубы, секции воздуховодов и другие подобные эле­менты, предназначенные для эксплуатации в условиях агрессивных сред.

Стеклопластиковые профили - это визуально-известные, стандартные профили, предназначенные для различного применения в строительстве и дизайне, изготовленные из стеклопластика.

Обладая теми же внешними параметрами, как и профили из традиционных материалов, профилированный стеклопластик, имеет ряд уникальных характеристик.

Стеклопластиковые профили имеют один из самых высоких показателей в соотношении прочности к весу по сравнению с любыми другими структурными изделиями, а также превосходную антикоррозионную стойкость. Изделия обладают высокой стойкостью к ультрафиолетовому излучению, широким диапазоном рабочих температур (-100°C до +180°C), а так же пажаростойкостью, что позволяет использовать данный материал в различных областях строительства, особенно при эксплуатации в зонах опасного напряжения, и в химической промышленности.

ПРОИЗВОДСТВО СТЕКЛОПЛАСТИКОВЫХ ТРУБ И ПРОФИЛЕЙ

Профили изготавливаются методом пултрузии, особенность технологии котор ого заключается в непрерывной протяжке ровинга из нитей-волокон, предварительно пропитанного многокомпонентной системой на основе связующих из различных смол, отвердителей, разбавителей, наполнителей, красителей.

Стекловолокно пропитывается смолой, а затем пропускается через разогретую фильеру нужной формы, в которой смола затвердевает. В результате этого получается профиль заданной формы. Стеклопластиковые профили по поверхности упрочнены нетканым специальным полотном (мат), благодаря которому изделия приобретают дополнительную жесткость. Каркас профиля обтягивается флисом, пропитанным в эпоксидной смоле, который наделяет изделие стойкостью к ультрафиолетовому излучению.

Особенностью пултрузионной технологии является выпуск прямолинейных изделий с постоянным сечением по всей длине.

Сечение стеклопластикового профиля может быть любым, а его длина определяется в соответствии с пожеланиями заказчиком.

Структурный профиль из стеклопластика поставляется в широком диапазоне форм, включая двутавр, равнополочный треугольник, равнополочный профиль, квадратную трубу, круглую трубу, а также уголок для закладки при бетонировании самых разных размеров, который можно использовать вместо традиционного металлического уголка, подверженного быстрому разрушению от ржавчины.

Чаще всего стеклопластиковый профиль изготавливается из ортофталевой смолы.

В зависимости от условий эксплуатации возможно изготовление профилей из других видов смол:

  • - винилэстеровая смола : предназначена для эксплуатации в условиях, где требуется от материала высокая коррозионная стойкость;

- эпоксидная смола : обладает особыми электрическими свойствами, благодаря чему изделия из нее являются оптимальными при эксплуатации в зонах опасного напряжения;

- акриловая смола : изделия из нее обладают низким дымовыделением в случае пожара.

СТЕКЛОПЛАСТИКОВЫЕ ПРОФИЛИ СТАЛЬПРОМ

В нашей компании Вы можете приобрести стандартные и нестандартные стеклопластиковые профили любых размеров согласно пожеланиям и требованиям. Основной перечень стеклопластиковых профилей следующий:

Уголок

Габариты данного материала могут быть различными. Используются практически во всех конструкциях из стеклопластика. Конструктивно применяются в стеклопластиковых лестничных клетках, осветительных установках, в основаниях мостиков, переходов из стеклопластикового настила.

Условное обозначение уголка:
a – ширина,
b – высота,
c – толщина.

С-образный профиль (С-профиль)

Благодаря своей коррозионной стойкости стеклопластиковые С-образные профили применяются преимущественно в химической промышленности.

Условное обозначение С-образного профиля:
a – ширина,
b – высота,
c – ширина проема,
d – толщина.

Балка стеклопластиковая

Может использоваться либо как деталь комплексного решения, либо как независимая конструкция (стеклопластиковые перила).

Условное обозначение балки:
a – ширина,
b – высота.

Двутавры

Стеклопластиковые двутавры наиболее часто используются в качестве несущих конструкций, которые перекрывают большие пролеты и способны нести различные нагрузки. Двутавры являются оптимальным конструктивным решением в виде основы для стеклопластикового настила, лестничных клеток, осветительных установок, мостков и др.

Условное обозначение двутавра:
a – ширина,
b – высота,
c – толщина.

Профиль "Шляпа"

Используется как изолирующий профиль преимущественно в электронной промышленности.

Условное обозначение профиля:
a – ширина,
b – размер верхней части профиля,
c – толщина.

Прямоугольные трубы

Изделия способны нести как вертикальные нагрузки, так и горизонтальные.

Условное обозначение трубы:
a – ширина,
b – высота,
c – толщина стенок.

Стеклопластиковый пруток используется в качестве стеклопластиковой антенны, солнечных зонтиков, профилей в моделестроении и др.

Условные обозначения прутка:
a – диаметр.

Тавры

Применяются в качестве дополнительных конструкций в стеклопластиковых мостках, сценах, несущих поверхностях и пр.

Условные обозначения тавра:
a – высота,
b – ширина,
c – толщина.

Труба круглого сечения

Такие трубы из стеклопластика не применяются в конструкциях с внутренним давлением.

Условные обозначения труб:
a – внешний диаметр,
b – внутренний диаметр.

Предназначен для использования в качестве основы конструкции, например, лестницы, лестничной или рабочей площадки, сходней.

Условные обозначения швеллера:
a – ширина,
b – высота,
c/d – толщина стенок.

Z-образный профиль (Z-профиль)

Предназначен для применения в газоочистительных сооружениях.

Условные обозначения профиля:
a – ширина верхней части профиля,
b – высота,
c – ширина нижней части профиля.

Габариты данного материала могут быть различными. Используются практически во всех конструкциях из стеклопластика.