Органические вещества клетки презентация. Презентация на тему "органические вещества в клетке". Органические вещества клетки




Существует 4 класса органических веществ, входящих в состав клеток: белки, жиры, углеводы и нуклеиновые кислоты.

Углеводы

Углеводы - органические вещества, в состав которых входят углерод, кислород и водород. Образуются в процессе фотосинтеза из воды и углекислого газа. Различают - моносахариды (состоят из одной молекулы) (глюкоза, рибоза и т.д.), дисахариды - соединение двух молекул (сахароза, мальтоза) и полисахариды - в их состав входит много молекул сахара (крахмал, гликоген, клетчатка, пектин, инулин, хитин).

Функции углеводов

1. Входят в состав многих органических веществ (рибоза - в состав РНК, АТФ, ФАД, НАД, НАДФ, дезоксирибоза - в состав ДНК)

2. Глюкоза - является источником энергии (окисляется при дыхании)

3. Многие углеводы являются запасными веществами - крахмал у растений, гликоген - у грибов и животных

4. Входят в состав многих компонентов клеток и тканей (гликокаликс, гепарин, кликопротеины, пектины, полисахариды, гемицеллюлоза, хитин, муреин, тейхоевые кислоты)

5. Защитная - в составе гликокаликса участвует в процессе клеточного распознавания, входят в состав иммуноглобулинов, входят в состав камеди (выделяется при повреждении стволов) и в состав клеточной стенки многих организмов

Белки

Белки - это органические вещества-полимеры, мономерами которых являются аминокислоты (гемоглобин, альбумин, коллаген, эластин и многие другие).

Белки имеют 4 структуры

Первичная - линейная последовательность аминокислот, соединенная в полипептиднуй цепь

Вторичная - спираль, состоящая из двух цепей, соединенных водородными связями

Третичная - глобула или фибриллярная структура (уложенные слои или суперскрученная спираль). Ионные, водородные, ковалентные (дисульфидные мостики), гидрофобные взаимодействия между составными частями

Четвертичная - несколько глобул или микрофибриллы, соединенные силами межмолекулярного притяжения

Бывают: собственно белки и ферменты.

Ферменты - биологические катализаторы, не только ускоряют, но и осуществляют большиснтво реакций в живых организмах.

Функции белков

1. Ферментативная - ускоряют, а в большинстве случаев осуществляют биохимические реакции в организме

2. Структурная - входят в состав всех мембран, являются компонентом соединительной ткани (костей, хрящей, сухожилий, кожи, волос, ногтей), входят в состав слизистых секретов (мукопротеины). Из белков состоят капсиды вирусов. Входят в состав каружного скелета насекомых.

3. Двигательная - из белков состоят микротрубочки (тубулин), двигательный аппарат жгутиков, актин и миозин - сократительные белки мышц.

4. Транспортная - транспорт через мембрану и внутри клетки, а также белки крови (гемоглобин переносит кислород, гемоцианин переносит кислород в крови беспозвоночных, сывороточный альбумин переносит жирные кислоты, глобулины переносят ионы металлов и гормоны)

5. Защитная - белки иммунитета (интерфероны), белки крови (предотвращают кровопотерю), антиоксиданты (гасят активные формы кислорода)

6. Рецепторная - белки гликокаликса (отвечают за клеточную совместимость), светочувствительные ферменты сетчатки глаза, фитохром у растений (реагирует на изменение длины светового дня)

7. Запасающая - белок-ферритин запасает железо в печени, селезенке, миоглобин запасает кислород в мышцах позвоночных

8. Питательная - белки - источники аминокислот

9. Регуляторная - многие гормоны являются белками (инсулин, соматотропин, пролактин, глюкагон)

10. Антибиотическая - многие антибиотики (противомикробные препараты) являются белками (грамицидин S, актиномицин)

11. Токсическая - многие токсины (опасные для живых организмов вещества) являются белками - ботулинический токсин, столбнячный, холерный, токсины грибов и пчел

Нуклеиновые кислоты: ДНК и РНК

В 1953 г. английские ученые Дж. Уотсон и Ф. Крик предложили модель пространственной струк- туры ДНК. Они показали, что ДНК состоит из двух полинуклеотидных цепей, спирально закрученных одна вокруг другой. Двойная спираль стабилизирована водородными свя- зями между азотистыми основаниями разных цепей так, что против аденина одной цепи всегда стоит ти- мин другой, а гуанина — цитозин. Многократное повторение этих связей придает большую устойчивость двойной спирали ДНК. При опреде- ленных условиях (действие кислот, щелочей, нагревание и т. п.) происходит денатурация ДНК — разрыв водородных связей между компле- ментарными азотистыми основани- ями. Денатурирован-ная ДНК может восстановить двуспи-ральное строение благодаря установлению водородных связей между комплементарными нуклеотидами — этот процесс называется ренатурацией.

Строение ДНК:

ДНК составляют 4 типа азотистых оснований: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).

Нуклеотиды соединяются по принципу комплементарности: А=Т, ГΞЦ

Функции ДНК:

1. Хранение генетической информации

2. Репликация ДНК

3. Синтез РНК

Строение РНК:

РНК бывает:

1. Рибосомальной (входит в состав рибосом)

2. Транспортной (приносит аминокислоты к рибосомам во время синтеза белка)

3. Информационной (передает информацию о первичной структуре белка на рибосомы)

Липиды

Липиды - жироподобные органические вещества, нерастворимые в воде, но растворимые в неполярных органических растворителях (бензоле, бензине и т.д.).

Состоят из глицерина и жирных кислот, при этом глицериновые головки являются гидрофильными, а углеводородные хвосты - гидрофобными. Таким образом, образуется в мембране билипидный слой, через который диффундирует вода и другие вещества.

Строение липидов:

Функции липидов:

1. Энергетическая - при окислении липидов выделяется много энергии

2. Резервная - жиры являются запасным веществом и в ходе окисления жиров выделяется вода, которая очень важны, например, для жителей пустыни

3. Структурная - из фосфолипидов состоят мембраны всех живых организмов, гликолипиды участвуют в межклеточных контактах в тканях животных, сфинголипиды обеспечивают электрическую изоляцию аксона, создавая условия для быстрого прохождения импульса, пчелы из воска строят соты

4. Защитная - термоизоляция и амортизация, воски являются водоотталкивающими веществами у растений, гликолипиды участвуют в распознавании токсинов

5. Регуляторная - некоторые гормоны - липиды (тестостерон, прогестерон, кортизон), существуют жирорастворимые витамины (A, D, E, K), гибберелины - регуляторы роста растений

Разнообразие липидов

Фосфолипиды - содержат остаток фосфорной кислоты, входят в состав клеточных мембран.

Гликолипиды - соединения липидов с углеводами. Являются составной частью тканей мозга и нервных волокон.

Липопротеиды - комплексные соединения разнообразных белков с жирами.

Стероиды - важные компоненты половых гормонов, витамина Д.

Воска - выполняют защитную функцию: у млекопитающих - смазывают кожу и волосы, у птиц - придают перьям водоотталкивающие свойства, у растений - предотвращают чрезмерное испарение воды.

АТФ

Аденозинтрифосфорная кислота (АТФ) — нуклеотид, в состав которого входит азотистое основание аденин, углевод рибоза и три остатка фосфорной кислоты. Молекула АТФ является универсальным химическим аккумулятором энергии в клетках. Остатки фосфорной кислоты связаны макроэргичными связями. Когда от АТФ отщепляется один остаток фосфорной кислоты, образуется АДФ — аденозиндифосфорная кислота и выделяется 40 кДж энергии

Презентация на тему "Органические вещества в клетке" по биологии в формате powerpoint. В данной презентации для школьников 9 класса рассказывается об особенностях строения и функциях белков, нуклеиновых кислот – органических веществ, составляющих основу всего живого на Земле. Работа содержит большое количество вопросов и заданий по теме. Автор презентации: Короткова Екатерина Викторовна, учитель биологии и химии.

Фрагменты из презентации

Биологический диктант

  1. Все органические вещества хорошо растворяются в воде
  2. Жиры являются источником энергии и воды
  3. Химические элементы в клетке - совсем другие, чем в неживой природе
  4. Железо накапливается в яблоках, а йод – в морской капусте
  5. Одни и те же элементы входят в состав живой и неживой природы, что свидетельствует об них единстве
  6. Самое распространенное неорганическое вещество – вода
  7. Чем активнее работает орган, тем в его клетках меньше воды
  8. Гемоглобин – это красный белок нашей крови
  9. Чтобы быть здоровым, человек должен в сутки получать с едой 100 г белка
  10. Углеводы нужны только растениям
  11. В состав клетки входят органические и неорганические вещества

Задача 1:

У больного низкий гемоглобин. Железодефицитная анемия, малокровье. Что вы можете предложить из лекарственных препаратов, фруктов, чтобы ему помочь?

Задача 2:

Больной очень нервный, раздражительный. Вероятно у него заболевание щитовидной железы – зоб. Что вы можете предложить?

Задача 3:

Преступник, чтобы скрыть следы преступления, сжег окровавленную одежду жертвы. Однако судебно-медицинская экспертиза на основании анализа пепла установила наличие крови на одежде. Каким образом?

Белки

  • Основная масса клетки 50-70%
  • Белки – это сложные органические вещества, представляющие собой полимерные молекулы, мономерами которых являются аминокислоты.

Функции белков

  • Ферментативная;
  • Транспортная;
  • Структурная;
  • Защитная …

Нуклеиновые кислоты

  • Дезоксирибонуклеиновая кислота - ДНК
  • Рибонуклеиновая кислота – РНК
  • Молекулы нуклеиновых кислот – это очень длинные полимерные цепочки (тяжи), мономерами которых являются нуклеотиды

Строение нуклеотида

Строение нуклеотида. Азотистые основания
  • Аденин
  • Гуанин
  • Цитозин
  • Тимин
  • Аденин
  • Гуанин
  • Цитозин
  • Урацил

ДНК

  • Состоит из двух полинуклеотидных цепочек
  • Г---Ц
  • Принцип комплементарности

Задание 1:

  • Составить цепь молекулы ДНК по принципу комплементарности, указать связи между азотистыми основаниями:
  • -Т-Г-Ц-Т-А-Г-Ц-Т-А-Г-Ц-А-А-Т-Т-

РНК в отличие от ДНК

  • Состоит из одной цепочки
  • Вместо дезоксирибозы – рибоза
  • Вместо Тимина – Урацил

Задание 2:

  • Самостоятельная работа с учебником § 6:
  • Найти функции молекулы РНК
  • Типы РНК по выполняемым функциям

Слайд 2

Органические вещества клетки:

  • Белки
  • Углеводы
  • Нуклеиновые кислоты
  • Слайд 3

    Белки

    БЕЛКИ, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-a-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи.

    Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений.

    Слайд 4

    Многие белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью-СО-NH-, которая образуется карбоксильной и a-аминогруппой соседних аминокислотных остатков (см. рис.): две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (-СООН) и аминогруппа (H2N-), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь.

    Участок цепи, на котором находится концевая Н2N-группа, называют N-концевым, а противоположный ему - С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами или олигопептидами, а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более аминокислот.

    Слайд 5

    Функции белков

    • Катализаторы (белки – ферменты)
    • Регуляторы биологических процессов (ферменты)
    • Транспортная (гемоглобин)
    • Двигательная (актин, миозин)
    • Строительная (кератин, коллаген)
    • Энергетическая – 1 г белка – 17кДж (казеин, яичный альбумин)
    • Защитная (иммуноглобулины, интерферон)
    • Антибиотики (неокарциностатин)
    • Токсины (дифтерийный)
    • Рецепторные белки (родопсин, холинорецепторы)
  • Слайд 6

    Структура белка

    • Первичная(линейная):состоит из пептидной связи (инсулин)
    • Вторичная (спиральная):имеются пептидная и водородная связи (волосы, когти и ногти)
    • Третичная: трехмерное расположение вторичной структуры молекулы белка. Связи: пептидная, ионная, водородная, дисульфидная, гидрофобная (клеточная мембрана)
    • Четвертичная: образуетсяиз 2-3-х глобул (третичных структур) (гемоглобин)
  • Слайд 7

    Денатурация белков

    Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структур белка, легко разрушаются, что сопровождается потерей его биологической активности. Разрушение исходной (нативной) структуры белка, называемое денатурацией, происходит в присутствии кислот и оснований, при нагревании, изменении ионной силы и других воздействиях. Как правило, денатурированные белки плохо или совсем не растворяются в воде. При непродолжительном действии и быстром устранении денатурирующих факторов возможна ренатурация белка с полным или частичным восстановлением исходной структуры и биологических свойств.

    Слайд 8

    Значение белков в питании

    Белки - важнейшие компоненты пищи животных и человека. Пищевая ценность белков определяется содержанием в них незаменимых аминокислот, которые в самом организме не образуются. В этом отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном, труднее перевариваются в желудочно-кишечном тракте. Отсутствие незаменимых аминокислот в пище приводит к тяжелым нарушениям азотистого обмена. В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания в кишечнике поступают в кровь и разносятся ко всем клеткам. Часть из них распадается до простых соединений с выделением энергии, используемой на разные нужды клеткой, а часть идет на синтез новых белков, свойственных данному организму.

    Слайд 9

    Углеводы

  • Слайд 10

    УГЛЕ˜ОДЫ – органические соединения, химическая структура которых часто отвечает общей формуле Cn(H2O)n(т. е. углерод и вода, отсюда название). Углеводы - первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеиды, гликолипиды, гликозиды и др.

    Слайд 11

    • МОНОСАХАРИДЫ, простые углеводы, содержащие гидроксильные и альдегидную (альдозы) или кетонную (кетозы) группы. По числу атомов углерода различают триозы, тетрозы, пентозы и т. д. В живых организмах в свободном виде (кроме глюкозы и фруктозы) встречаются редко. В составе сложных углеводов (гликозидов, олиго- и полисахаридов и др.) присутствуют во всех живых клетках.
    • ДИСАХАРИДЫ, углеводы, образованные остатками двух моносахаридов. В животных и растительных организмах распространены дисахариды: сахароза, лактоза, мальтоза, трегалоза.
    • ПОЛИСАХАРИДЫ, высокомолекулярные углеводы, образованные остатками моносахаридов (глюкозы, фруктозы и др.) или их производных (напр., аминосахаров). Присутствуют во всех организмах, выполняя функции запасных (крахмал, гликоген), опорных (целлюлоза, хитин), защитных (камеди, слизи) веществ. Участвуют в иммунных реакциях, обеспечивают сцепление клеток в тканях растений и животных.
  • Слайд 12

    Слайд 13

    Функции углеводов

    • Структурная (входят в состав оболочек клеток и субклеточных образований)
    • Опорная (у растений)
    • Резервная (запас гликогена и крахмала)
    • Энергетическая
    • Сигнальная (нервные импульсы)
    • участвуют в защитных реакциях организма (иммунитет).
    • Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности.
    • Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).
  • Слайд 14

    Жиры

    ЖИРЫ, органические соединения, в основном сложные эфиры глицерина и одноосновных жирных кислот (триглицериды); относятся к липидам. Один из основных компонентов клеток и тканей живых организмов. Источник энергии в организме; калорийность чистого жира 3770 кДж/100 г. Природные жиры подразделяются на жиры животные и масла растительные.

    Слайд 15

    Функции жиров:

    Структурная (входят в состав клеточных мембран)

    • Энергетическая (1г - 38.9 кДж энергии)
    • Запасающая
    • Терморегуляторная
    • Источник метаболической (эндогенной) воды
    • Защитно-механическая (защита от повреждений)
    • Каталитическая (входят в состав ферментов)
  • Слайд 16

    Нуклеиновые кислоты

    НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах из поколения в поколение. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты - дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Последовательность нуклеотидов в нуклеиновых кислотах определяет их первичную структуру.

    Слайд 17

    Химическая структура.

    В зависимости от химической структуры углеводного компонента нуклеиновые кислоты делят на два типа: дезоксирибонуклеиновые и рибонуклеиновые; первые содержат дезоксирибозу, а вторые - рибозу. Азотистые основания являются производными двух типов соединений - пуринов и пиримидинов. Основаниями они называются потому, что обладают основными (щелочными) свойствами, хотя и слабыми. В составе ДНК встречаются два пуриновых- аденин (А) и гуанин (G) и два пиримидиновых - цитозин (С) и тимин (Т) основания. В составе РНК вместо тимина обычно встречается урацил (U). Согласно правилам международной номенклатуры эти основания записываются начальными буквами их названий на английском языке, хотя в русскоязычной литературе часто используются начальные буквы русских названий; соответственно А, Г, Ц, Т и У.

    Слайд 18

    Строение молекул ДНК и РНК

    В молекулах нуклеиновых кислот нуклеотиды связаны между собой фосфодиэфирными связями (фосфатными «мостиками»), образующимися между остатками сахаров соседних нуклеотидов. Таким образом, цепи нуклеиновых кислот выглядят как остов из монотонно чередующихся фосфатных и пептозных групп, а основания можно рассматривать как присоединенные к нему боковые группы. Фосфатные остатки остова при физиологических значениях рН заряжены отрицательно. Пуриновые и пиримидиновые основания плохо растворимы в воде, то есть гидрофобны. О свойствах отдельных типов нуклеиновых кислот и их роли в процессах жизнедеятельности смотри в статьях Дезоксирибонуклеиновые кислоты и Рибонуклеиновые кислоты.

    Слайд 19

    ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (ДНК), нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов. В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) - ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни.

    Слайд 20

    Структура ДНК

    Слайд 21

    РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), семейство нуклеиновых кислот, содержащих в качестве углеводного компонента остаток рибозы. PНK присутствуют во всех живых клетках, участвуя в процессах, связанных с передачей генетической информации от дезоксирибонуклеиновой кислоты(ДНК) к белку. Из РНК образованы геномы многих вирусов.

    За редким исключением все PНK состоят из одиночных полинуклеотидных цепей. Их многомерные единицы - монорибонуклеотиды - содержат пуриновые- аденин и гуанин и пиримидиновые основания - цитозин и урацил.

    Слайд 22

    ДНК и РНК

    Посмотреть все слайды

    В организмах и продуктах их жизнедеятельности обнаружено большое количество углерод содержащих соединений, характерных только для живых клеток и организмов, получивших название органических веществ. Органические вещества клетки В состав клеток входит множество органических молекул, которых нет в неживой природе. К ним относятся, в частности, белки, углеводы, жиры, нуклеиновые кислоты, АТФ.


    Углерод Образует прочные ковалентные связи, обобществляя четыре электрона. Способен образовывать стабильные цепи и кольца, служащие скелетами макромолекул. Может образовывать кратные ковалентные связи с другими углеродными атомами, а также с азотом и кислородом. уникальное разнообразие органических молекул обеспечивают особые свойства углерода


    Полимеры Макромолекулы - Молекулы являющиеся многозвеньевыми цепями составляющие около 90 % массы обезвоженной клетки, синтезируются из более простых молекул, называемых МОНОМЕРАМИ ПОЛИМЕРЫ РЕГУЛЯРНЫЕ НЕРЕГУЛЯРНЫЕ Природные полимеры построенные из одинаковых мономеров, таких большинство (...- А - А - А - А -...) Полимеры, в которых нет определенной закономерности в последовательности мономеров (...А - Б - В - Б - А - В-...).


    БЕЛКИ протеины (греч. Protos - первый, главный) из органических веществ клетки стоят на первом месте по количеству и значению. (в вирусе табачной мозаики – около молекул) На долю белков приходится около половины сухой массы клетки. БЕЛКАМ присуща огромная молекулярная масса и колеблется от нескольких тысяч до нескольких миллионов. Например, Mr (инсулин) = 5700; Mr (яичный амбулин) = 36000; Mr (гемоглобин) =


    Самые сложные среди органических соединений. В их состав входят сотни (иногда – сотни тысяч) аминокислотных остатков. Потенциально многообразие белков очень велико – каждому белку соответствует своя особая последовательность аминокислот, контролируемая генетически. БЕЛКИ Углеводы и жиры способны в организме превращаться друг в друга. Белки также могут преобразовываться в жиры и углеводы. Однако жиры и углеводы непосредственно в белки не превращаются В состав белков кроме атомов углерода, водоро-да и кислорода (как в жирах и углеводах), входят атомы азота!, а также металлы Fe, Zn, Cu


    БЕЛКИ Есть белки, состоящие из 3-8 аминокислот, а есть белки, состоящие из аминокислотных остатков. Разные белковые молекулы могут отличаться друг от друга: По числу аминокислотных звеньев в молекуле белка. По порядку следования аминокислотных звеньев в цепи. По составу аминокислот в полипептиде. А3 – А17 – А5 – А5 – А13 – А4 –– А5 – … – А2


    АМИНОКИСЛОТЫ Растения синтезируют все необходимые им аминокислоты сами. Животные способны производить лишь половину из них, остальные должны получать с пищей в готовом виде. НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ Аминокислоты, которые не синтезируются в животном организме и должны поступать из окружающей среды.


    ОБРАЗОВАНИЕ ПОЛИПЕПТИДА Соединение аминокислот происходит через общие для них группировки: аминогруппа одной аминокислоты соединяется с карбоксильной группой другой с отщеплением молекулы воды. Между аминокислотами образуется прочная ковалентная связь -NH- CO2-, которая называется пептидной связью.


    ПРОСТРАНСТВЕННАЯ СТРУКТУРА БЕЛКА Каждому белку свойственна своя особая геометрическая форма, структура или конфигурация. Первичная структура инсулина была открыта Ф. Сэнгером в 1944–54 годах; в настоящее время известна первичная структура нескольких сотен белков.





    ДЕНАТУРАЦИЯ Во многих случаях он обратим, но не всегда. Существуют белки, которые после денатурации не способны восстанавливать утраченные структуры, т.е. не могут РЕНАТУРИРОВАТЬ процесс разрушения высших структур белка при воздействии на полипептидную молекулу разных факторов внешней среды (например, температуры).
    ПРОФЕССИИ БЕЛКОВ Структурообразующие функции. (коллаген, гистоны) Транспортные функции. (гемоглобин, преальбумин, ионные каналы) Защитные функции. (иммуноглобулин) Регуляторные функции (соматропин, инсулин) Катализ. (ферменты) Двигательные функции. (актин, миозин) Запасные функции.


    ДОМАШНЕЕ ЗАДАНИЕ Изучить § , с. 90–99 1.Вспомните, какую роль в организме человека играют белки: инсулин, пепсин, гемоглобин, фибриноген, миозин. С какой функцией белков она связана? 2. Как вы считаете, почему «жизнь есть способ существования белковых тел...»? 3. Подумать над выражением: «Все ферменты – белки, но не все белки – ферменты».

    Белки (протеины , полипептиды ) - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

    Мономерами белков являются аминокислоты , которые(имея в своём составе карбоксильную и амино- группы)обладают свойствами кислоты и основания (амфотерны).

    Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры и их называют макромолекулами .

    Структура белковой молекулы

    Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

    В молекулах белков встречается всего 20 видов различных аминокислот и огромное разнообразие белков создается за счет различного их сочетания.

    • Последовательность аминокислот в составе полипептидной цепи - это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
    • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между -СО и -NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль - вторичная структура белка .
    • Третичная структура белка - трёхмерная пространственная “упаковка” полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S-S связями).
    • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

    Структура белков может нарушаться (подвергаться денатурации ) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

    Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией .

    Разрушение первичной структуры необратимо.

    Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки, в состав которых могут входить углеводы (гликопротеины ), жиры (липопротеины ), нуклеиновые кислоты (нуклеопротеины ) и др.

    Функции белков

    • Каталитическая (ферментативная) функция. Специальные белки - ферменты - способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
    • Структурная (строительная) функция - одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия).
    • Транспортная функция - белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
    • Сигнальная функция . Прием сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
    • Сократительная (двигательная) функция - обеспечивается сократительными белками – актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
    • Защитная функция - антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
    • Регуляторная функция присуща белкам - гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
    • Энергетическая функция - при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.