Методы современного естествознания. Характерной особенностью современного естествознания является также то, что методы исследования всё в большей степени влияют на его результат. Методология и методы естествознания




Введение

«Учись так, словно точных знаний тебе вечно не хватает, и ты страшишься их растерять »

(Конфуций)

Стремление человека к познанию окружающего мира бесконечно. Одним из средств постижения тайн природы является естествознание. Эта наука активно участвует в формировании мировоззрения каждого человека отдельно и общества в целом. Разные исследователи определяют понятие «естествознание» по разному: одни считают, что естествознание – это сумма наук о природе, а другие что это единая наука . Разделяя вторую точку зрения, мы считаем, что структура естествознания иерархична. Будучи единой системой знаний, оно складывается из определенного количества входящих в эту систему наук, которые в свою очередь состоят из еще более дробных отраслей знания.

В целом, знания о природе человек получает из химии, физики, географии, биологии. Но они мозаичны, ибо каждая наука изучает определенные «свои» объекты. Между тем, природа едина. Целостную картину мироустройства позволяет создать особая наука, представляющая систему знаний об общих свойствах природы. Такой наукой может быть естествознание.

Во всех определения естествознания присутствуют два основных понятия - «природа» и «наука». В широком смысле слова «природа» - это все сути в бесконечном многообразии своих проявлений (Вселенная, материя, ткань, организмы и т.п.). Под наукой обычно понимают сферу человеческой деятельности, в рамках которой вырабатываются и систематизируются объективные знания о действительности.

Цель естествознания - раскрыть сущность явлений природы, познать их законы и объяснить на их основе новые явления, а также указать возможные пути использования на практике познанные законы развития материального мира.

«Естествознание так человечно, так правдиво, что я желаю удачи каждому, кто отдается ему»

Предмет и метод естествознания

Естествознание - это самостоятельная наука о картине окружающего мира и месте человека в системе природы, это интегрированная область знаний об объективных законах существования природы и общества. Она объединяет их в научную картину мира. В последней взаимодействуют два типа компонентов: естественнонаучный и гуманитарный. Их взаимоотношения достаточно сложны.

Европейская культура во многом была сформирована в эпоху Возрождения и имеет свои корни в античной натурфилософии. Естественные науки не только обеспечивают научно-технический прогресс, но и формируют определенный тип мышления весьма важный для мировоззрения современного человека. Оно определяется научными знаниями и умением разбираться в окружающем мире. В то же время гуманитарная составляющая включает искусство, литературу, науки об объективных законах развития общества и внутреннего мира человека. Все это составляет культурный, мировоззренческий багаж современного человека.

Из глубины веков в систему науки вошли две формы организации знаний: энциклопедическая и дисциплинарная.

Энциклопедизм - это свод знаний по всему кругу (энциклике) наук. К.А.Тимирязеву принадлежит определение меры образованности личности: «Образованный человек должен знать что-то обо всем, и все о чем-то».

Наиболее известная энциклопедия по естественной истории античного мира, принадлежащая перу Гая Плиния Старшего (23-73г) начинается с обзора античной картины мира: основные элементы мироздания, структура Вселенной, место Земли в ней. Затем идут сведения по географии, ботанике, зоологии, сельскому хозяйству, медицине и т.д. Исторический взгляд на окружающий мир развивал Жорж Луи Леклерк де Бюффон (1707 - 1788) в своем капитальном труде «Естественная история», где автор рассмотрел историю Вселенной и Земли, происхождение и развитие жизни вообще, растительного и животного мира, место человека в природе. В семидесятых годах двадцатого века вышла в свет книга немецкого натурфилософа Крауса Штарни «Werden and Vergehen», а в 1911 г. она была издана в России под названием «Эволюция мира». В десяти главах этого энциклопедического труда рассматривались последовательно проблемы макроструктуры Вселенной, химический состав звезд, туманности и т. п.; строение Солнечной системы и Земли («дневник Земли»), возникновение и развитие жизни на Земле, описывается растительный и животный мир.

Таким образом, энциклопедическая организация знаний дает гносеологическое отображение картины мира, основываясь на философских идеях о структуре мироздания, о месте Человека во Вселённой, о см ысле и целостности его лич ности.

Дисциплинарная форма знаний возникла в Древнем Риме (подобно Римскому праву в юриспруденции). Оно связано с расчленением окружающего мир на предметные области и предметы исследования. Все это привело к более точному и адекватному выделению мелких фрагментов мироздания.

На смену присущей энциклопедии модели «Круга знаний» пришла «лестница» дисциплин. При этом окружающий мир расчленяется по предметам исследования, а единая картина мира исчезает, знания о природе приобретают мозаичный характер.

В истории науки энциклопедизм или интегрированность знаний вошла в основе философского осмысления относительно большого количества фактов. В середине века, начиная с эпохи Возрождения, эмпирические знания стремительно накапливались, что активизировало дробление науки на отдельные предметные области. Началась эпоха «разбегания» наук. Однако, было бы неправильно считать, что дифференциация науки не сопровождается одновременно идущими в ней процессами интеграции. Это привело к укреплению межпредметных связей. Прошлый, ХХ век, характеризовался столь бурным развитием дисциплин, изучающих неживую и живую природу, что выявилась их тесная связь.

В результате обособились целые области знаний, где интегрировались некоторые из разделов естественнонаучного цикла: астрофизика, биохимия, биофизика, экология и др. Выявление междисциплинарных связей положило начало современной интеграции научных отраслей. Вследствие этого возникла энциклопедическая форма организации знаний на новом уровне, но с той же задачей – познать наиболее общие законы мироздания и определить место человека в природе.

Если в отдельных отраслях науки происходит накопление фактического материала, то в интегрированном, энциклопедическом знании важно получение наибольшей информации из наименьшего числа фактов, чтобы сделать возможным выделение общих закономерностей, позволяющих понять с единой точки зрения самые разные явления. В природе можно обнаружить достаточно много, казалось бы, разнокачественных явлений, которые, тем не менее, объясняются одним фундаментальным законом, одной теорией.

Рассмотрим некоторые из них. Так молекулярно-клеточная теория утверждает идею о дискретности веществ и объясняет протекание химических реакций, распространение запахов, процессы дыхания различных организмов, тургора, осмоса и т.д. Все перечисленные явления связаны с диффузией, обусловленной непрерывным хаотичным движением атомов и молекул.

Еще пример. Приведем такие факты: по небу движутся звезды и планеты, воздушный шар поднимается и парит в небе, а камень падает на Землю; в океанах остатки организмов медленно оседают на дно; у мыши тонкие ноги, а у слона огромные конечности; наземные животные не достигают размеров кита.

Возникает вопрос, что общего между всеми этими фактами? Оказывается, что вес они – результат проявления закона всемирного тяготения.

Таким образом, естествознание формирует у человека научную картину мира, являясь наукой энциклопедического типа. Оно опирается на достижения различных естественных и гуманитарных наук.

В любой науке есть свой предмет изучения. Например, в ботанике – растения, в зоологии – животные, предмет генетики – наследование признаков в ряду поколений, в астрономии – структура Вселенной и т.п.

Понятие, обозначающее предмет изучения естествознания, должно быть обобщающим. Оно должно включать и атом и человека, и Вселенную. Такое понятие введено В.И. Вернадским еще в тридцатые годы прошлого столетия. Это природное естественное тело: «Каждый объект естествознания есть естественное тело или естественное явление, создаваемое природными процессами».

В.И. Вернадский выделил три типа природных (естественных) тел: косные, живые и биокосные.

В целом основные различия живых и косных тел касаются не материально – энергетических процессов. Биокосные тела – это результат закономерного взаимодействия косных и живых природных тел. Они характерны для биосферы Земли. Им присуща биогенная миграция химических элементов. Биокосными является подавляющее большинство земных вод, почва и т.д.

Итак, предмет естествознания – природные тела и природные являения. Они достаточно сложны и многообразны; их существование и развитие происходит на основе множества более или менее частных закономерностей (молекулярно-кинетические явления, тепловые свойства тел, проявление гравитации и т.п.)

Наиболее общими законами существования и развития окружающего мира являются всего два закона: закон эволюции и закон с охранения веще ства и энергии.

Таблица 1.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31

Основу развития современных естественных наук составляет специфическая научная методология. В основу научной методологии положен опыт — основанное на практике чувственно-эмпирическое познание действительности. Под практикой подразумевается предметная человеческая деятельность, направленная на достижение материальных результатов.

В процессе своего развития классическое естествознание выработало специфический вид практики, получивший название “научный эксперимент”. Научный эксперимент — это также предметная деятельность людей, но направленная уже на проверку научных положений. Считается, что научное положение соответствует истине, если оно подтверждается опытом, практикой или научным экспериментом.

Кроме взаимодействия с экспериментом при разработке научных теорий иногда используют и чисто логические критерии : внутреннюю непротиворечивость, соображения симметрии и даже столь неопределенные соображения, как “красота” гипотезы. Однако окончательными судьями научной теории всегда остаются практика и эксперимент .

В качестве примера “красивой” гипотезы приведу гипотезу американского физика Фейнмана о тождественности элементарных частиц. Дело в том, что они обладают совершенно фантастическим свойством. Элементарные частицы одного вида, например, электроны — неразличимы. Если в системе находятся два электрона и один из них был удален, то мы никогда не сумеем определить, какой из них удалили, а какой остался. Чтобы объяснить такую неразличимость, Фейнман предположил, что в мире существует только один электрон, который может двигаться во времени взад-вперед. В каждый отдельный момент времени мы воспринимаем этот один электрон как множество электронов, которые, естественно, являются неразличимыми. Ведь это на самом деле один и тот же электрон. Не правда ли красивая гипотеза? Недурно было бы и вам суметь придумать что-нибудь подобное, но уже в области экономики.

Этапы решения научной задачи

Взаимодействие с опытом потребовало от науки разработки специфического механизма трактовки экспериментальных данных. Он заключается в применении к этим данным идеализации и абстрагирования.

Сущность идеализации состоит в отбрасывании сторон изучаемого явления, несущественных для ее решения.

Стороной явления или предмета называется присущее ему свойство, которое может быть, а может и не быть. Например, ручка пожарного топорика может быть покрашена в красный цвет, а может и не быть покрашена. Топорик при этом остальных своих свойств не изменит.

Стороны явления могут быть более или менее существенны в данном отношении. Так, цвет ручки топорика не играет никакой роли применительно к его основному назначению — рубке древесины. В то же время наличие яркого цвета существенно при поиске топорика в экстремальной ситуации. С эстетической же точки зрения использование ярко-красного цвета для окрашивания инструмента может показаться безвкусным. Таким образом, в процессе идеализации стороны явления всегда должны оцениваться в данном конкретном отношении.

В процессе идеализации стороны явления, несущественные в рассматриваемом отношении, отбрасываются. Оставшиеся существенные стороны подвергаются процессу абстрагирования.

Абстрагирование заключается в переходе от качественной оценки рассматриваемых сторон к количественной.

Качественные соотношения при этом облекаются в “одежду” математических соотношений. Обычно при этом привлекаются вспомогательные количественные характеристики и применяются известные законы, которым подчиняются эти характеристики. Процесс абстрагирования приводит к созданию математической модели изучаемого процесса.

Например, из окна шестого этажа дома новостройки падает коричневый боксерский мешок массой 80 кг и стоимостью 55 условных единиц. Требуется определить количество тепла, выделившееся в момент его соприкосновения с асфальтом.

Для решения поставленной задачи следует прежде всего произвести идеализацию. Так, стоимость мешка и его цвет — стороны несущественные в отношении решаемой задачи. При падении со сравнительно небольшой высоты трением о воздух также можно пренебречь. Поэтому форма и размер мешка оказываются несущественными применительно к данной задаче. Следовательно, при рассмотрении процесса падения к мешку можно применить модель материальной точки (Материальной точкой называют тело, формой и размерами которого можно пренебречь в условиях данной задачи).

Процесс абстрагирования дает высоту окна шестого этажа новостройки, примерно равной 15 м. Если считать, что процесс взаимодействия мешка с асфальтом подчиняется основным законам теории теплоты, то для определения количества тепла, выделившегося при его падении, достаточно найти кинетическую энергию этого мешка в момент соприкосновения с асфальтом. Окончательно задача может быть сформулирована следующим образом: найти кинетическую энергию, которую приобретет материальная точка массы 80 кг при падении с высоты 15 м. Помимо законов термодинамики в процессе абстрагирования используется еще и закон сохранения полной механической энергии. Расчет, использующий эти законы, приведет к решению поставленной задачи.

Совокупность математических соотношений, позволяющих решить задачу, представляет собой математическую модель решения.

Здесь следует отметить, что идеализация, по существу своему основанная на отбрасывании несущественных сторон явления, неизбежно приводит к некоторой потере информации об описываемом процессе. Парадигма узаконивает идеализацию и делает ее как бы само собой подразумевающейся. Поэтому под влиянием парадигмы идеализацию часто используют даже в тех случаях, когда она неоправданна, что, безусловно, приводит к ошибкам. Для того чтобы избежать таких ошибок, академик А. С. Предводителев предложил принцип двойственности. Принцип двойственности предписывает нам производить рассмотрение любой проблемы с двух альтернативных точек зрения, отбрасывая в процессе идеализации различные ее стороны. При таком подходе потери информации можно избежать.

Феноменологический и модельный методы

Имеются два вида взаимодействия научной теории с опытом: феноменологический и модельный.

Название феноменологического метода происходит от греческого слова “феномен”, что означает явление. Это метод эмпирический, т. е. основанный на эксперименте.

Предварительно задача должна быть поставлена. Это означает, что должны быть точно сформулированы начальные условия и цель решаемой задачи.

После этого метод предписывает для ее решения предпринимать следующие шаги:
  1. Накопление экспериментальных материалов.
  2. Обработка, систематизация и обобщение этих материалов.
  3. Установление соотношений и, как следствие, возможных связей между величинами, полученными в результате обработки. Эти соотношения составляют эмпирические закономерности.
  4. Получение на базе эмпирических закономерностей прогнозов, предсказывающих возможные результаты экспериментальной проверки.
  5. Экспериментальная проверка и сравнение ее результатов с предсказанными.

Если предсказанные данные и результаты проверки всегда совпадают с удовлетворительной степенью точности, то закономерность получает статус естественнонаучного закона.

Если же такое совпадение не достигнуто, то процедура повторяется, начиная с шага 1.

Феноменологическая теория обычно является обобщением экспериментальных результатов . Появление эксперимента, противоречащего этой теории, приводит к уточнению области ее применимости или к внесению уточнений в саму теорию. Таким образом, чем больше опровержений появляется у феноменологической теории, тем точнее она становится.

Примерами феноменологических теорий могут служить классическая термодинамика, феноменологические соотношения, относящиеся к области физической и химической кинетики, законы диффузии, теплопроводности и т. п.

Модельные теории используют дедуктивный метод. По-видимому, впервые научные обоснования этого метода были даны известным французским философом Рене Декартом. Обоснование дедуктивного метода содержится в его знаменитом трактате “О методе”.

Создание модельной теории начинается с выдвижения научной гипотезы — предположения, касающегося существа исследуемого явления. На основании гипотезы путем абстрагирования создается математическая модель, воспроизводящая основные закономерности исследуемого явления при помощи математических соотношений. Следствия, полученные из этих соотношений, сравниваются с экспериментом. Если эксперимент подтверждает результаты теоретических расчетов, сделанных на основе данной модели, то она считается правильной. Появление экспериментального опровержения приводит к отбрасыванию гипотезы и выдвижению новой.

Примером модельной теории может служить классическое описание дисперсии света. Оно основано на выдвинутом Дж. Томсоном представлении об атоме, как о сгустке положительного заряда, в который, как семечки в арбуз, вкраплены отрицательные электроны. Классическая теория дисперсии дает неплохое качественное соответствие с экспериментом. Однако уже опыты Резерфорда по определению структуры атома показали несостоятельность основной гипотезы и привели к полному отбрасыванию классической теории дисперсии.

Модельные теории на первый взгляд кажутся менее привлекательными, чем феноменологические. Тем не менее именно они позволяют глубже понять внутренние механизмы рассматриваемых явлений. Нередко модельные теории подвергаются уточнению и продолжают существовать в новом качестве. Так, для объяснения природы ядерных сил отечественные ученые Иваненко и Тамм выдвинули гипотезу, согласно которой взаимодействие ядерных частиц происходит за счет того, что они обмениваются электронами. Опыт показал, что характеристики электронов не соответствуют требуемому масштабу взаимодействия. Несколько позже, опираясь на модель Иваненко и Тамма, японец Юкава предположил, что ядерное взаимодействие осуществляется частицами, имеющими характеристики, сходные с характеристиками электронов, а массу приблизительно в двести раз большую. Впоследствии частицы, описанные Юкавой, были обнаружены экспериментально. Их называют мезонами.

Измерения — фундамент научной истины

Научный эксперимент требует получения точных количественных результатов. Для этого используют измерения. Измерения изучает специальная отрасль науки — метрология.

Измерения бывают прямыми и косвенными . Результаты прямого измерения получаются непосредственно, обычно путем отсчета со шкал и индикаторов измерительных приборов. Результаты косвенных измерений получают при помощи расчетов с использованием результатов прямых измерений.

Так, чтобы измерить объем прямоугольного параллелепипеда, следует измерить его длину, ширину и высоту. Это прямые измерения. Затем полученные измерения следует перемножить. Полученный в результате объем является уже результатом косвенного измерения, так как получен в результате вычисления на основе прямых измерений.

Измерение подразумевает сравнение двух или более объектов. Для этого объекты должны быть однородными в отношении критерия сравнения. Так, если вы хотите измерить количество студентов, пришедших на молодежный форум, то вам необходимо выделить из собравшихся всех тех, кто является студентом (критерий сравнения) и подсчитать их. Остальные их качества (пол, возраст, цвет волос) могут при этом быть произвольными. Однородность объектов в данном случае означает, что вы не должны брать в расчет слесарей, если они не являются студентами.

Техника измерений определяется объектами измерения. Однотипные объекты измерения составляют множество. Можно говорить, например, о множестве длин или множестве масс.

Для проведения измерений необходимо иметь меру на множестве измеряемых объектов и измерительный прибор. Так, мерой для множества длин является метр, а прибором может служить обыкновенная линейка. На множестве масс в качестве меры принят один килограмм. Измеряют массу чаще всего при помощи весов.

Множество измеряемых объектов подразделяются на непрерывные и дискретные.

Множество считается непрерывным, если для любых двух его элементов всегда можно найти третий, лежащий между ними. Все точки числовой оси составляют непрерывное множество. Для дискретного множества всегда можно найти два элемента, между которыми нет третьего. Например, множество всех натуральных чисел является дискретным.

Между непрерывными и дискретными множествами существует принципиальное различие. Дискретное множество содержит свою внутреннюю меру внутри себя. Поэтому для проведения измерений на дискретном множестве достаточно простого счета. Например, для того, чтобы найти расстояние между точками 1 и 10 натурального ряда, достаточно просто сосчитать количество чисел от одного до десяти.

Непрерывные множества внутренней меры не имеют. Ее приходится привносить извне. Для этого используют эталон измерения. Типичным примером измерения на непрерывном множестве является измерение длины. Для измерения длины используется стандартный прямолинейный отрезок длиной в один метр, с которым и сравнивается измеряемая длина.

Здесь следует заметить, что на протяжении практически всего времени развития современной техники измерение различных физических величин стремились свести к измерению длины. Так, измерение времени сводилось к измерению расстояния, пройденного стрелкой часов. Мерой угла в технике служит отношение длины дуги, стягиваемой углом, к длине радиуса этой дуги. Величины, измеряемые стрелочными приборами, определяются по расстоянию, пройденному стрелкой прибора. Изучая технику физико-химических измерений, невольно изумляешься тем ухищрениям, к которым прибегали ученые для того, чтобы свести измерение какой-нибудь величины к измерению длины.

Примерно в середине XX столетия в связи с созданием электронных пересчетных устройств была разработана принципиально новая методика измерения, получившая название цифровой. Суть цифровой методики заключается в том, что непрерывная измеряемая величина превращается в дискретную при помощи специально подобранных пороговых устройств. На полученном дискретном множестве измерение сводится к простому счету, осуществляемому пересчетной схемой.

Цифровое измерительное устройство содержит внутри себя аналого-цифровой преобразователь (АЦП), счетно-логическое устройство и индикатор. Основу аналого-цифрового преобразователя составляют дискретизатор, компаратор и сумматор. Дискретизатор — это устройство, способное создавать сигналы, имеющие фиксированные уровни. Разность этих уровней всегда равна наименьшему из них и называется интервалом дискретизации. Компаратор сравнивает измеряемый сигнал с первым интервалом дискретизации. Если сигнал оказался меньше, то на индикаторе отображается ноль. Если первый уровень дискретизации превышен, то сигнал сравнивается со вторым, а в сумматор посылается единица. Этот процесс продолжается до тех пор, пока уровень сигнала не будет превышен уровнем дискретизации. В сумматоре при этом окажется количество уровней дискретизации меньших или равных величине измеряемого сигнала. На индикатор выводится значение сумматора, умноженное на величину интервала дискретизации.

Так, например, работают цифровые часы. Специальный генератор формирует импульсы со строго стабилизированным периодом. Подсчет количества этих импульсов и дает величину измеряемого временного интервала.

Примеры подобной дискретизации несложно найти и в быту. Так, расстояние, пройденное вдоль дороги, можно было определить по телеграфным столбам. В Советском Союзе телеграфные столбы устанавливались через 25 м. Сосчитав количество столбов и умножив его на 25, можно было определить пройденное расстояние. Ошибка при этом составляла 25 м (интервал дискретизации).

Надежность и точность измерения

Основными характеристиками измерения являются его точность и надежность . Для непрерывных множеств точность определяется точностью изготовления эталона и возможными погрешностями, возникающими в процессе измерения. Скажем, при измерении длины эталоном может служить обычная масштабная линейка, а может и специальный инструмент — штангенциркуль. Длины различных линеек могут отличаться не более чем на 1 мм. Штангенциркули изготовляются так, что их длины могут различаться не более чем на 0,1 мм. Соответственно точность измерения масштабной линейкой не превышает 1 мм, а точность штангенциркуля в 10 раз выше.

Минимально возможная погрешность, возникающая при измерении данным прибором, составляет его класс точности. Обычно класс точности прибора указывают на его шкале. Если такое указание отсутствует, в качестве класса точности принимают минимальную цену деления прибора. Погрешности измерения, определяемые классом точности измерительного прибора, называют приборными.

Пусть результат измерения рассчитывается по формуле с привлечением прямых измерений, проводимых различными приборами, т. е. измерение является косвенным. Погрешность, связанная с ограниченной точностью этих приборов, называется ошибкой метода. Ошибка метода — это минимальная погрешность, которая может быть допущена при измерении по данной методике.

При измерении на дискретных множествах ошибки, определяемые точностью прибора, как правило, отсутствуют. Измерение на таких множествах сводится к простому счету. Поэтому точность измерения определяется точностью счета. Измерение на дискретном множестве в принципе может быть сделано абсолютно точным. На практике для подобных измерений используют механические или электронные счетчики (сумматоры). Точность таких сумматоров определяется их разрядной сеткой. Количество разрядов сумматора определяет максимальное число, которое может быть им отображено. При превышении этого числа сумматор “перескакивает” через нуль. Очевидно, что в этом случае будет выдано ошибочное значение.

Для цифровых измерений точность определяется погрешностями дискретизации и разрядной сеткой используемого в этом измерении сумматора.

Надежность полученных в результате измерения результатов показывает, насколько мы можем доверять полученным результатам. Надежность и точность связаны между собой так, что при возрастании точности надежность убывает и, наоборот, при возрастании надежности убывает точность. Например, если вам скажут, что длина измеряемого отрезка лежит между нулем и бесконечностью, то это утверждение будет обладать абсолютной надежностью. Говорить о точности в этом случае вообще не приходится. Если же определенное значение длины будет названо точно, то это утверждение будет обладать нулевой надежностью. Из-за погрешностей измерения указать можно только интервал, внутри которого, возможно, лежит измеряемая величина.

На практике стремятся проводить измерение так, чтобы и точность измерения, и его надежность удовлетворяли требованиям решаемой задачи. В математике такое согласование величин, ведущих себя противоположным образом, называют оптимизацией. Задачи оптимизации характерны для экономики. Например, вы, пойдя на рынок, стараетесь приобрести максимальное количество товара, затратив при этом минимум средств.

Помимо ошибок, связанных с классом точности измерительного прибора, в процессе измерения могут допускаться и другие погрешности, обусловленные ограниченными возможностями измеряющего. В качестве примера можно привести ошибку, связанную с параллаксом. Она возникает при измерении линейкой, если луч зрения ориентирован под углом к шкале линейки.

Помимо приборных и случайных ошибок в метрологии принято выделять систематические погрешности и грубые промахи. Систематические погрешности проявляются в том, что к измеряемой величине прибавляется регулярное смещение. Часто они бывают связаны со смещением начала отсчета. Для того чтобы компенсировать эти ошибки, большинство стрелочных приборов снабжают специальным корректором нуля. Грубые промахи появляются в результате невнимательности измеряющего. Обычно грубые промахи резко выделяются из ряда измеренных значений. Общая теория метрологии позволяет не рассматривать до 30% значений, предположительно являющихся грубыми промахами.

На свете есть вещи поважнее самых
прекрасных открытий - это знание
методов, которыми они были сделаны.
Г. В Лейбниц

Что такое метод? Чем различаются анализ и синтез, индукция и дедукция?

Урок-лекция

Что такое метод . Методом в науке называют способ построения знания, форму практического и теоретического освоения действительности. Фрэнсис Бэкон сравнивал метод со светильником, освещающим путнику дорогу в темноте: «Даже хромой, идущий по дороге, опережает того, кто идет без дороги». Правильно выбранный метод должен быть ясным, логичным, вести к определенной цели, давать результат. Учение о системе методов называют методологией.

Методы познания, которые используют в научной деятельности, - это эмпирические (практические, экспериментальные) - наблюдение, эксперимент и теоретические (логические, рациональные) - анализ, синтез, сравнение, классификация, систематизация, абстрагирование, обобщение, моделирование, индукция, дедукция. В реальном научном познании эти методы используют всегда в единстве. Например, при разработке эксперимента требуется предварительное теоретическое осмысление проблемы, формулирование гипотезы исследования, а после проведения эксперимента необходима обработка результатов с использованием математических методов. Рассмотрим особенности некоторых теоретических методов познания.

Например, всех учеников старших классов школы можно разделить на подклассы - «девушки» и «юноши». Можно выбрать и другой признак, например рост. В этом случае классификацию возможно проводить по-разному: например, выделить границу роста 160 см и классифицировать учеников на подклассы «низкие» и «высокие» или разбить шкалу роста на отрезки в 10 см, тогда классификация будет более детальная. Если сравнить результаты такой классификации по нескольким годам, это позволит эмпирическим путем установить тенденции в физическом развитии учеников.

КЛАССИФИКАЦИЯ И СИСТЕМАТИЗАЦИЯ . Классификация позволяет упорядочить исследуемый материал, группируя множество (класс) исследуемых объектов на подмножества (подклассы) в соответствии с выбранным признаком.

Классификация как метод может быть использована для получения новых знаний и даже служить основой для построения новых научных теорий. В науке обычно используют классификации одних и тех же объектов по разным признакам в зависимости от целей. Однако признак (основание для классификации) выбирается всегда один. Например, химики подразделяют класс «кислоты» на подклассы и по степени диссоциации (сильные и слабые), и по наличию кислорода (кислородсодержащие и бескислородные), и по физическим свойствам (летучие - нелетучие; растворимые - нерастворимые), и по другим признакам.

Классификация может изменяться в процессе развития науки. В середине XX в. исследование различных ядерных реакций привело к открытию элементарных (неделящихся) частиц. Первоначально их стали классифицировать по массе; так появились лептоны (мелкие), мезоны (промежуточные), барионы (крупные) и гипероны (сверхкрупные). Дальнейшее развитие физики показало, что классификация по массе имеет мало физического смысла, однако термины сохранились, в результате чего появились лептоны, значительно более массивные, чем барионы.

Классификацию удобно отражать в виде таблиц или схем (графов). Например, классификация планет Солнечной системы, представленная граф-схемой, может выглядеть так:

Обратите внимание на то, что планета Плутон в этой классификации представляет отдельный подкласс, не принадлежит ни к планетам земной группы, ни к планетам-гигантам. Это карликовая планета. Ученые отмечают, что Плутон по свойствам похож на астероид, каких может быть много на периферии Солнечной системы.

При изучении сложных систем природы классификация служит фактически первым шагом к построению естественно-научной теории. Следующим, более высоким уровнем является систематизация (систематика). Систематизация осуществляется на основе классификации достаточно большого объема материала. При этом выделяют наиболее существенные признаки, позволяющие представить накопленный материал как систему, в которой отражены все различные взаимосвязи между объектами. Она необходима в тех случаях, когда имеется многообразие объектов и сами объекты являются сложными системами. Результатом систематизации научных данных является систематика , или, иначе, таксономия. Систематика, как область науки, развивалась в таких областях знания, как биология, геология, языкознание, этнография.

Единицу систематики называют таксоном. В биологии таксоны - это, например, тип, класс, семейство, род, отряд и др. Они объединены в единую систему таксонов различного ранга по иерархическому принципу. Такая система включает описание всех существующих и вымерших организмов, выясняет пути их эволюции. Если ученые находят новый вид, то они должны подтвердить его место в общей системе. Могут быть внесены изменения и в саму систему, которая остается развивающейся, динамичной. Систематика позволяет легко ориентироваться во всем многообразии организмов - только животных известно около 1,5 млн видов, а растений - более 500 тыс. видов, не считая другие группы организмов. Современная биологическая систематика отражает закон Сент-Илера: «Все многообразие форм жизни формирует естественную таксономическую систему, состоящую из иерархических групп таксонов различного ранга».

ИНДУКЦИЯ И ДЕДУКЦИЯ . Путь познания, при котором на основе систематизации накопленной информации - от частного к общему - делают вывод о существующей закономерности, называют индукцией . Этот метод как метод изучения природы был разработан английским философом Фрэнсисом Бэконом. Он писал: «Надо брать как можно больше случаев - как таких, где исследуемое явление есть налицо, так и таких, где оно отсутствует, но где его можно было бы ожидать встретить; затем надо расположить их методически... и дать наиболее вероятное объяснение; наконец, постараться проверить это объяснение дальнейшим сравнением с фактами».

Индукция не единственный путь получения научного знания о мире. Если экспериментальная физика, химия и биология строились как науки в основном за счет индукции, то теоретическая физика, современная математика в своей основе имели систему аксиом - непротиворечивых, умозрительных, достоверных с точки зрения здравого смысла и уровня исторического развития науки утверждений. Тогда знание можно построить на этих аксиомах путем выведения умозаключений от общего к частному, перехода от предпосылки к следствиям. Этот метод называют дедукцией . Его развивал Рене Декарт - французский философ и ученый.

Ярким примером получения знания об одном предмете разными путями является открытие законов движения небесных тел. И. Кеплер на основе большого количества данных наблюдений за движением планеты Марс в начале XVII в. открыл методом индукции эмпирические законы движения планет в Солнечной системе. В конце этого же века Ньютон вывел дедуктивным путем обобщенные законы движения небесных тел на основе закона всемирного тяготения.

Портреты Ф. Бэкона и В. Ливанова в образе Ш. Холмса Почему портреты ученого и литературного героя расположены рядом?

В реальной исследовательской деятельности методы научных исследований взаимосвязаны.

  • Пользуясь справочной литературой, найдите и выпишите определения следующих теоретических методов исследования: анализ, синтез, сравнение, абстрагирование, обобщение.
  • Проведите классификацию и составьте схему известных вам эмпирических и теоретических методов научного познания.
  • Согласны ли вы с точкой зрения французского писателя Вовнарта: «Ум не заменяет знания»? Ответ обоснуйте.

Новосибирский государственный университет

Механико-математический факультет

По предмету: Концепции Современного Естествознания

На тему: «Методы научного познания»

Панов Л. В.

Курс 3, группа 4123

Наука является главной причиной перехода к постиндустриальному обществу, повсеместному внедрению информационных технологий, появления «новой экономики». Наука имеет развитую систему методов, принципов и императивов познания. Именно правильно выбранный метод наряду с талантом ученого помогает ему познавать глубинную связь явлений, вскрывать их сущность, открывать законы и закономерности. Количество научных методов постоянно увеличивается. Ведь в мире существует большое число наук и каждая из них имеет свои специфические методы и предмет исследования.

Цель данной работы – подробно рассмотреть методы научного экспериментального и теоретического познания. А именно, в чём заключается метод, основные черты метода, классификация, область применения и т.д. Также будет рассмотрены критерии научного познания.

Наблюдение.

Познание начинается с наблюдения. Наблюдение есть чувственное отражение предметов и явлений внешнего мира. Наблюдение - это целенаправленное изучение предметов, опирающе­еся в основном на такие чувственные способности человека, как ощущение, восприятие, представление. Это - исход­ный метод эмпирического познания, позволяющий получить не­которую первичную информацию об объектах окружающей дей­ствительности.

Научное наблюдение характеризуется рядом особенностей. Во-первых целенаправленностью ведь наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблю­дателя фиксироваться только на явлениях, связанных с этой задачей. Во-вторых планомерностью, поскольку наблюдение должно проводиться строго по плану. В-третьих активностью - исследователь должен активно искать, выде­лять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт.

При наблюдении отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия (например, наблюде­ние удаленных космических объектов), нежелательностью, ис­ходя из целей исследования, вмешательства в наблюдаемый процесс (фенологические, психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.

Научные наблюдения всегда сопровождаются описанием объекта познания. С помощью описания чувственная информация переводится на язык понятий, знаков, схем, рисунков, графиков и цифр, принимая тем самым форму, удобную для дальнейшей рациональной обработки. Важно, чтобы понятия, используемые для описа­ния, всегда имели четкий и однозначный смысл. При развитии науки и изменении ее основ преобразуются средства описания, часто создается новая система понятий.

По способу проведения наблюдения могут быть непосредствен­ными и опосредованными. При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Известно, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадца­ти лет Тихо Браге явились эмпирической основой для открытия Кеп­лером его знаменитых законов. Чаще всего на­учное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Если до начала XVII в. астрономы наблюдали за небесными телами невооруженным глазом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономи­ческие наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции позволило проводить наблюдения за такими объектами Вселенной как пульсары и квазары.

Развитие современного естествознания связано с повышени­ем роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо на­блюдаться ни с помощью органов чувств человека, ни с помо­щью самых совершенных приборов. Например, при изучении свойств заряжен­ных частиц с помощью камеры Вильсона эти частицы воспри­нимаются исследователем косвенно - по видимым треков, состоящих из множества капелек жидкости.

Экперимент

Эксперимент - более сложный метод эмпирического позна­ния по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие иссле­дователя на изучаемый объект для выявления и изучения тех или иных сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искус­ственные условия его изучения, вмешиваться в естественное течение процессов. В общей структуре научного исследования эксперимент занимает особое место. Именно эксперимент является связу­ющим звеном между теоретическим и эмпирическим этапами и уров­нями научного исследования.

Некоторые ученые утверждают, что умно продуманный и мастерски поставленный эксперимент выше теории, ведь теория, в отличии от опыта, может быть напрочь опровергнута.

Эксперимент включает в себя с одной стороны наблюдение и измерение, с другой обла­дает рядом важных особенностей. Во-первых, эксперимент позволяет изучать объект в «очи­щенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Во-вторых, в ходе эксперимента объект может быть постав­лен в некоторые искусственные, в частности, экстремальные условия, т. е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т. п. В-третьих, изучая какой-либо процесс, экспериментатор мо­жет вмешиваться в него, активно влиять на его протекание. В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия экс­перимента могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

Подготовка и проведение эксперимента требуют соблюдения ряда условий. Так, научный эксперимент предполагает наличие чет­ко сформулированной цели исследования. Эксперимент базируется на каких-то исходных теоретических положениях. Эксперимент требует определенного уровня развития технических средств познания, необходимого для его реализации. И наконец он должен проводиться людьми, имеющими достаточно высо­кую квалификацию.

По характеру решаемых проблем экс­перименты подразделяются на исследовательские и проверочные. Исследовательские эксперименты дают возможность обнару­жить у объекта новые, неизвестные свойства. Результатом та­кого эксперимента могут быть выводы, не вытекающие из имев­шихся знаний об объекте исследования. Примером могут слу­жить эксперименты, поставленные в лаборатории Э. Резерфорда, которые при­вели к обнаружению ядра атома. Проверочные эксперименты служат для проверки, подтвер­ждения тех или иных теоретических построений. Например, суще­ствование целого ряда элементарных частиц (позитрона, нейт­рино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем. Эксперименты можно разделить на качественные и количествен­ные. Качественные эксперименты позволяют лишь выявить действие тех или иных факторов на изучаемое явление. Количественные эксперименты устанавливают точные количественные зави­симости. Как известно, связь между электрическими и магнитными явлениями была впервые открыта датским физиком Эрстедом в результате чисто качественного эксперимента (поместив магнит­ную стрелку компаса рядом с проводником, через который про­пускался электрический ток, он обнаружил, что стрелка откло­няется от первоначального положения). После последовали количественные эксперименты французских ученых Био и Савара, а также опыты Ампера, на основе которых была выведена ма­тематическая формула. По области научного знания, в которой ставиться эксперимент, различа­ют естественнонаучный, прикладной и социально-экономичес­кий эксперименты.

Измерение и сравнение.

Научные эксперименты и наблюдения как правило вклю­чает в себя проведение разнообразных измерений. Измерение - это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

В основе операции измерения лежит сравнение. Чтобы провести сравнение нужно определить единицы измерения величины. В науке сравнение выступает также как сравнительный или сравни­тельно-исторический метод. Первоначально возникший в филоло­гии, литературоведении, он затем стал успешно применяться в пра­воведении, социологии, истории, биологии, психологии, истории ре­лигии, этнографии и других областях знания. Возникли целые отрасли знания, пользующиеся этим методом: сравнительная анатомия, срав­нительная физиология, сравнительная психология и т.п. Так, в срав­нительной психологии изучение психики осуществляется на основе сравнения психики взрослого человека с развитием психики у ребен­ка, а также животных.

Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, ис­пользующих определенные принципы и средства измерений. Под принципами измерений имеются в виду явления, которые положены в основу измерений.

Измерения подразделяют на статические и динамические. К статическим измерениям относят измерение размеров тел, постоянного давле­ния и т. п. Примерами динамических измерения является из­мерение вибрации, пульсирующих давлений и т. п. По способу получения результатов различают измерения пря­мые и косвенные. В прямых измерениях искомое значение из­меряемой величины получается путем непосредственного срав­нения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений. Например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и пло­щади поперечного сечения. Косвенные измерения широко ис­пользуются в тех случаях, когда искомую величину невозмож­но или слишком сложно измерить непосредственно.

С течением времени с одной стороны совершенствуются существующие измери­тельные приборы, с другой внедряются новые измерительные устройства. Так развитие квантовой физики суще­ственно повысило возможности измерений с высокой степенью точности. Использование эффекта Мессбауэра позволяет создать прибор с разрешающей способностью порядка 10 -13 процента измеряе­мой величины. Хорошо развитое измерительное приборостроение, разнооб­разие методов и высокие характеристики средств измерения спо­собствуют прогрессу в научных исследованиях.

Общая характеристика теоретических методов

Теория представляет собой систему понятий законов и принципов, позволяющая описать и объяснить некоторую группу явлений и наметить программу действий по их преобразованию. Следовательно, теоретическое познание осуществляется с помощью различных понятий, законов и принципов. Факты и теории не противостоят друг другу, а образуют единое целое. Разница между ними состоит в том, что факты выражают нечто единичное, а теория имеет дело с общим. В фактах и теориях можно выделить три уровня: событийный, психологический и лингвистический. Эти уровни единства можно представить следующим образом:

Лингвистический уровень: к теории относятся универсальные высказывания, к фактам единичные высказывания.

Психологический уровень: мысли (т)и чувства (ф).

Событийный уровень - общее единичных событий (т) и единичные события (ф)

Теория, как правило, строится таким образом, что описывает не окружающую действительность, а идеальные объекты, такие как материальная точка, идеальный газ, абсолютно черное тело и т.д. Такой научный концепт называется идеализацией. Идеализация представляет собой мысленно сконструированное понятие о таких объектах, процессах и явлениях, которые вроде бы не существуют, но имеют образы или прообразы. Например, прообразом материальной точки может служить маленькое тело. Идеальные объекты, в отличие от реальных, характеризуются не бесконечным, а вполне определенным числом свойств. Например, свойствами материальной точки является масса и возможность находиться в пространстве и времени.

Кроме того, в теории задаются взаимоотношения между идеальными объектами, описываемые законами. Из первичных идеальных объектов также можно конструировать производные объекты. В итоге теория, описывающая свойства идеальных объектов, взаимоотношения между ними и свойства конструкций, образованных из первичных идеальных объектов, способна описать все многообразие данных, с которым ученый сталкивается на эмпирическом уровне.

Рассмотрим основные методы, с помощью которых реализуется теоретическое знание. Такими методами являются: аксиоматический, конструктивистский, гипотетико-индуктивный и прагматический.

При использовании аксиоматического метода научная теория строится в виде системы аксиом (положений, принимаемых без логического доказательства) и правил вывода, позволяющих путем логической дедукции получить утверждения данной теории (теоремы). Аксиомы не должны противоречить друг другу, желательно также, чтобы они не зависели друг от друга. Более подробно об аксиоматическом методе будет рассказано ниже.

Конструктивистский метод, наряду с аксиоматическим, используется в математических науках и информатике. В этом методе развертывание теории начинается не с аксиом, а с понятий, правомерность использования которых считается интуитивно оправданной. Кроме того, задаются правила построения новых теоретических конструкций. Научными считаются лишь те конструкции, которые действительно удалось построить. Этот метод считается лучшим средством против появления логических противоречий: концепт сконструирован, следовательно, сам путь его построения непротиворечив.

В естествознании широко применяется гипотетико-дедуктивный метод или метод гипотез. Основу этого метода составляют гипотезы обобщающей силы, из которых выводится все остальное знание. Пока гипотеза не отвергнута, она выступает в качестве научного закона. Гипотезы, в отличие от аксиом, нуждаются в экспериментальном подтверждении. Подробно этот метод будет описан ниже.

В технических и гуманитарных науках широко применяется прагматический метод, суть которого составляет логика т.н. практического вывода. Например, субъект Л хочет осуществить A, при этом он считает, что не сможет осуществить A, если не осуществит с. Следовательно, А принимается за совершение с. Логические построения при этом выглядят так: А-> р-> с. При конструктивистском же методе построения имели бы следующий вид: А-> с-> р. В отличие от гипотетико-дедуктивного вывода, при котором информация о факте подводится под закон, при практическом выводе информация о средстве с должна соответствовать поставленной цели р, которая согласуется с некоторыми ценностями.

Кроме рассмотренных методов существуют еще т.н. описательные методы. К ним обращаются, если рассмотренные выше методы оказываются неприемлемы. Описание изучаемых явлений может быть словесным, графическим, схематическим, формально-символическим. Описательные методы часто являются той стадией научных исследований, которая ведет к достижению идеалов более развитых научных методов. Часто такой метод является наиболее адекватным, поскольку современная наука часто имеет дело с такими явлениями, которые не подчиняются слишком жестким требованиям.

Абстрагирование.

В процессе абстрагирования происходит отход от чувственно воспринимаемых конкретных объектов к абстрактным представлениям о них. Абстрагирование зак­лючается в мысленном отвлечении от каких-то менее суще­ственных свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или несколь­ких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией.

Переход от чувственно-конкретного к абстрактному всегда связан с известным упрощением действительности. Вместе с тем, восходя от чувственно-конкретного к абстрактному, теоретическому, исследователь получает возможность глубже понять изучаемый объект, раскрыть его сущность. Процесс перехода от чувственно-эмпирических, наглядных представлений об изучаемых явле­ниях к формированию определенных абстрактных, теоретичес­ких конструкций, отражающих сущность этих явлений, лежит в основе развития любой науки.

Поскольку конкретное есть совокупность множества свойств, сто­рон, внутренних и внешних связей и отношений, его невозмож­но познать во всем его многообразии, оставаясь на этапе чув­ственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, которое принято называть восхождением от чувственно-конкретного к абстрактному. Однако формирование научных абстракций, общих теоретичес­ких положений не является конечной целью познания, а пред­ставляет собой только средство более глубокого, разносторонне­го познания конкретного. Поэтому необходимо дальнейшее дви­жение познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования логически-конкретное будет качественно иным по сравнению с чувственно-конкретным. Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания. Оно содержит в себе уже не только чувственно воспринимае­мое, но и нечто скрытое, недоступное чувственному восприя­тию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.

Метод восхождения от абстрактного к конкретному приме­няется при построении различных научных теорий и может использоваться как в общественных, так и в естественных науках. Например, в теории газов, выделив основные законы идеального газа - уравнения Клапейрона, закон Авогадро и т. д., исследователь идет к конкретным взаимодействиям и свойствам реальных газов, характеризуя их существенные стороны и свой­ства. По мере углубления в конкретное вводятся все новые абст­ракции, которые выступают в качестве более глубокого ото­бражения сущности объекта. Так, в процессе развития теории газов было выяснено, что законы идеального газа характеризуют поведение реальных газов только при небольших давлениях. Учет этих сил привел к формулировке закона Ван-дер-Ваальса.

Идеализация. Мысленный эксперимент.

Идеализация представляет собой мысленное внесение определенных изменений в изучае­мый объект в соответствии с целями исследований. В результате таких изменений могут быть, например, ис­ключены из рассмотрения какие-то свойства, стороны, призна­ки объектов. Так, широко распространенная в механике идеа­лизация - материальная точка подразумевает тело, лишенное всяких размеров. Такой абстрактный объект, размерами которого пренебрегают, удобен при описании движения, самых разнообразных материальных объектов от атомов и молекул и до планет Солнечной системы. При идеализации объект может наделяться какими-то особыми свойствами, в реальной действительности неосуществи­мыми. Примером может служить введенная путем идеализа­ции в физику абстракция, известная под названием абсолютно черного тела. Это тело наделяется несуществующим в приро­де свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя.

Идеализация целесообразна тогда, когда подле­жащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности математичес­кого, анализа. Идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства объекта, которые затемняют сущность протекающих в нем про­цессов. Сложный объект представляется в «очищенном» виде, что облегчает его изучение.

В качестве примера мож­но указать на три разных понятия «идеального газа», сформи­ровавшихся под влиянием различных теоретико-физических представлений: Максвелла-Больцмана, Бозе-Эйнштейна и Фер­ми-Дирака. Однако полученные при этом все три варианта иде­ализации оказались плодотворными при изучении газовых со­стояний различной природы: идеальный газ Максвелла-Больц­мана стал основой исследований обычных молекулярных разре­женных газов, находящихся при достаточно высоких темпера­турах; идеальный газ Бозе-Эйнштейна был применен для изу­чения фотонного газа, а идеальный газ Ферми-Дирака помог решить ряд проблем электронного газа.

Мысленный эксперимент предполагает оперирование идеа­лизированным объектом, которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. Всякий реальный экспе­римент, прежде чем быть осуществленным на практике, снача­ла проделывается исследователем мысленно в процессе обду­мывания, планирования. В научном познании могут быть случаи, когда при исследо­вании некоторых явлений, ситуаций, проведение реальных экс­периментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы совре­менного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мыс­ленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции.

Основное достоинство идеализации как метода научного познания заключается в том, что получаемые на ее ос­нове теоретические построения позволяют затем эффективно ис­следовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскры­вающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явле­ния, то правомерны и положенные в ее основу идеализации.

Формализация. Аксиомы.

Формализация - особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических поло­жений и оперировать вместо этого некоторым множеством сим­волов (знаков).

Этот метод познания заключается в построении абстрактно-математи­ческих моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная зна­ковая модель некоторой предметной области, позволяющая обна­ружить структуру различных явлений и процессов при отвле­чении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.

Примером формализации являются широко исполь­зуемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследу­емых объектах, явлениях, но и выступает своего рода инстру­ментом в процессе дальнейшего их познания.

Из курса математической логики известно, что для построения формальной системы необходимо задать алфавит, задать правила образования формул, задать правила вывода одних формул из других. Важным достоинством формальной системы является возможность проведения в ее рамках исследо­вания какого-либо объекта чисто формальным путем, оперируя знаками. Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации.

Следует заметить, что формализованные искусственные языки не об­ладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойствен­ная естественным языкам. Они характеризуются точно постро­енным синтаксисом и однозначной семан­тикой.

Анализ и синтез. Индукция и дедукция. Аналогия

Эмпирический анализ - это просто разложение целого на его составные, более простые элементарные части. . В качестве таких частей могут быть вещественные эле­менты объекта или же его свойства, признаки, отношения.

Синтез - это, наоборот, - соединение компонентов сложного явления. Теоретический анализ предусматривает выделение в объекте основного и существенного, незаметного эмпирическому зрению. Аналитический метод при этом включает в себя результаты абстрагирования, упрощения, формализации. Теоретический синтез - это расширяющее знание, конструирующее нечто новое, выходящее за рамки имеющейся основы.

В процессе синтеза производится соединение воедино состав­ных частей (сторон, свойств, признаков и т. п.) изучаемого объек­та, расчлененных в результате анализа. На этой основе проис­ходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Анализ фик­сирует в основном то специфическое, что отличает части друг от друга. Синтез же вскрывает то существенно общее, что свя­зывает части в единое целое.

Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод: так, существуют конкретные методы математического, химического и со­циального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.

Индукция может быть определена как метод перехода от знания отдельных фактов к знанию общего. Дедукция - это метод перехода от знания общих закономерностей к частному их проявлению.

Индукция широко применяется в научном познании. Обна­руживая сходные признаки, свойства у многих объектов опре­деленного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса. Индуктивный метод сыграл важную роль в открытии некоторых законов при­роды - всемирного тяготения, атмосферного давления, теплово­го расширения тел.

Метод ин­дукции может реализовываться в виде следующих методов. Метод единственного сходства, при котором во всех случаях наблюдения какого-то явления обнаруживается лишь один общий фактор, все другие - различны. Этот единственный сход­ный фактор есть причина данного явления. Метод единственного различия, при котором причины воз­никновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и различаются лишь одним фактором, присутствующим только в первом случае. Делается вывод, что этот фактор и есть причина данного явления. Соединенный метод сходства и различия представляет собой комбинацию двух вышеуказанных методов. Метод сопутствующих изменений, в котором если определенные изменения одного явления всякий раз влекут за собой некото­рые изменения в другом явлении, то делается вывод о причинной связи этих явлений. Метод остатков, при котором если сложное явление вызывается много­факторной причиной, причем некоторые из этих факторов из­вестны как причина какой-то части данного явления, то отсюда следует вывод: причина другой части явления - остальные фак­торы, входящие в общую причину этого явления. На самом же деле вышеуказанные методы научной индук­ции служат главным образом для нахождения эмпирических зависимостей между экспериментально наблюдаемыми свойства­ми объектов и явлений.

Ф. Бэкон. трактовал индукцию чрезвычай­но широко, считал ее важнейшим методом открытия новых ис­тин в науке, главным средством научного познания природы.

Дедукция напротив есть получение част­ных выводов на основе знания каких-то общих положений. Дру­гими словами, это есть движение нашего мышления от общего к частному. Но особенно большое познавательное значение дедукции прояв­ляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае де­дукция является отправной точкой зарождения новой теорети­ческой системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений.

Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение де­дуктивный метод имеет в математике. Математики вынуждены чаще всего пользоваться дедук­цией. И математика является, пожалуй, единственной собствен­но дедуктивной наукой.

В науке Нового времени пропагандистом дедуктивного мето­да познания был видный математик и философ Р. Декарт.

Индукция и дедукция не при­меняются как изолированные, обособленные друг от друга. Каж­дый из этих методов используется на соответствующем этапе познава­тельного процесса. Более того, в процессе использования индуктивного метода зачастую «в скрытом виде» присутствует и дедукция.

Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Уста­новление сходства (или различия) между объектами осуществля­ется в результате их сравнения. Таким образом, сравнение ле­жит в основе метода аналогии.

Получения правильного умозаключения по аналогии зависит следующих факторов. Во-первых от числа общих свойств у сравниваемых объектов. Во-вторых от легкости обнаружения общих свойств. В-третьих от глубины понимания связей этих сходных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает ка­ким-нибудь свойством, не совместимым с тем свойством, о су­ществовании которого должен быть сделан вывод, то общее сход­ство этих объектов утрачивает всякое значение.

Существуют различные типы выводов по аналогии. Но об­щим для них является то, что во всех случаях непосредственно­му исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собствен­но и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в ре­зультате исследования первого объекта (модели), называется ори­гиналом или прототипом. Таким образом, модель всегда выступает как аналогия, т. е. модель и ото­бражаемый с ее помощью объект (оригинал) находятся в опре­деленном сходстве (подобии).

Метод аналогии применяется в самых различных областях науки: в математике, физике, химии, кибернетике, в гумани­тарных дисциплинах и т. д.

Моделирование

Метод моделирования основан на создании модели, которая является заместителем реального объекта в силу определенного сходства с ним. Главная функция моделирования, если брать его в самом широком понимании, состоит в материализации, опредмечивании идеального. Построение и исследование модели равнозначно исследованию и построению моделируемого объекта, с той лишь разницей, что второе совершается материально, а первое - идеально, не затрагивая самого моделируемого объекта.

Использование моделирования диктуется необходимостью раск­рыть такие стороны объектов, которые либо невозможно постиг­нуть путем непосредственного изучения, либо невыгодно изучать их таким образом из чисто экономических соображений. Человек, например, не может непосредственно наблюдать процесс естест­венного образования алмазов, зарождения и развития жизни на Земле, целый ряд явлений микромира и макромира. Поэтому прихо­дится прибегать к искусственному воспроизведению подобных явлений в форме, удобной для наблюдения и изучения. В ряде же случаев бывает гораздо выгоднее и экономичнее вместо непосред­ственного экспериментирования с объектом построить и изучить его модель.

В зависимости от характера модели различают несколько видов моделирования. К мысленному моделированию относятся различные мысленные представления в форме тех или иных воображаемых моделей. Сле­дует заметить, что мысленные (идеальные) модели нередко могут быть реализованы материально в виде чувственно вос­принимаемых физических моделей. Физическое моделирование характеризуется физи­ческим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих в реальных условиях.

В настоящее время физическое моделирование широко ис­пользуется для разработки и экспериментального изучения раз­личных сооружений, машин, для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.

Символическое моделирование связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям от­носятся разнообразные топологические и графовые представле­ния исследуемых объектов или, например, модели, представленные в виде хими­ческой символики и отражающие состояние или соотношение элементов во время химических реакций. Разновидностью символического (зна­кового) моделирования является математическое моделирова­ние. Символический язык математики позволяет выражать свой­ства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описы­вающими функционирование такого объекта или явления, мо­гут быть представлены соответствующими уравнениями (диф­ференциальными, интегральными, алгебраическими) и их системами. Численное моделирование основывается на ранее созданной матема­тической модели изучаемого объекта или явления и применя­ется в случаях больших объемов вычислений, необходимых для исследования данной модели.

Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внут­ренний механизм взаимодействия. Путем расчетов на компью­тере различных вариантов ведется накопление фактов, что дает возможность, в конечном счете, произвести отбор наиболее ре­альных и вероятных ситуаций. Активное использование мето­дов численного моделирования позволяет резко сократить сро­ки научных и конструкторских разработок.

Метод моделирования непрерывно развивается: на смену од­ним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуаль­ность, а иногда и незаменимость моделирования как метода научного познания.

Для определения критериев естественно-научного познания в методологии науки сформулировано несколько принципов – принцип верификации и принцип фальсификации. Формулировка принципа верификации: какое-либо понятие или суждение имеет значение, если оно сводимо к непосредственному опыту или высказываниям о нем, т.е. эмпирически проверяемо. Если же найти нечто эмпирически фиксируемое для такого суждения не удается, то оно либо представляет собой тавтологию, либо лишено смысла. Поскольку понятия развитой теории, как правило, не сводимы к данным опыта, то для них сделано послабление: возможна и косвенная верификация. Скажем, ука­зать опытный аналог понятию «кварк» невозможно. Но кварковая теория предсказывает ряд явлений, которые уже можно зафиксировать опытным путем, экспериментально. И тем самым косвенно верифицировать саму теорию.

Принцип верификации позволяет в первом приближении отграничить научное знание от явно ненаучного. Однако он не может помочь там, где система идей скроена так, что решительно все возможные эмпирические факты в состоянии истол­ковать в свою пользу - идеология, религия, астрология и т.п.

В таких случаях полезно прибегнуть еще к одному принципу разграничения науки и не науки, предложенному крупнейшим философом XX в. К. Поппером, - принципу фальсификации. Он гласит: критерием научного статуса теории является ее фальсифицируемость или опровержимость. Иначе говоря, только то знание может претендовать на звание «научного», которое в принципе опровержимо.

Несмотря на внешне парадоксальную форму этот принцип имеет простой и глубокий смысл. К. Поппер обратил внимание на значительную асимметрию процедур подтверждения и опровержения в познании. Никакое количество падающих яблок не является достаточным для окончательного подтверждения истинности закона всемирного тяготения. Однако достаточно всего лишь одного яблока, поле­тевшего прочь от Земли, чтобы этот закон признать ложным. Поэтому именно попытки фальсифицировать, т.е. опровергнуть теорию, должны быть наиболее эффективны в плане подтверждения ее истинности и научности.

Теория, неопровержимая в принципе, не может быть науч­ной. Идея божественного творения мира в принципе неопро­вержима. Ибо любую попытку ее опровержения можно пред­ставить как результат действия все того же божественного замысла, вся сложность и непредсказуемость которого нам про­сто не по зубам. Но раз эта идея неопровержима, значит, она вне науки.

Можно, правда, заметить, что последовательно проведенный принцип фальсификации делает любое знание гипотетичным, т.е. лишает его законченности, абсолютности, неизменности. Но это, наверное, и неплохо: именно постоянная угроза фальсификации держит науку «в тонусе», не дает ей застояться, почить на лаврах.

Таким образом, были рассмотрены основные методы эмпирического и теоретического уровня научного познания. Эмпирическое познание включает в себя проведение наблюдений и экспериментов. Познание начинается с наблюдения. Для подтверждения гипотезы или для исследования свойств предмета учёный ставит его в определённые условия – проводит эксперимент. В блок процедур эксперимента и наблюдения входят описание, измерение, сравнение. На уровне теоретического познания широко применяется абстрагирование, идеализация, формализация. Большое значение имеет моделирование, а с развитием вычислительной техники – численное моделирование, поскольку сложность и стоимость проведения эксперимента возрастают.

В работе описаны два основных критерия естественно-научного знания – принцип верификации и фальсификации.

1. Алексеев П.В, Панин А.В. «Философия» М.:Проспект, 2000

2. Лешкевич Т.Г. «Философия науки: традиции и новации» М.:ПРИОР, 2001

3. Рузавин Г.И. «Методология научного исследования» М.:ЮНИТИ-ДАНА, 1999.

4. Горелов А.А. «Концепции современного естествознания» – М.: Центр, 2003.

5. http://istina.rin.ru/philosofy/text/3763.html

6. http://vsvcorp.chat.ru/mguie/teor.htm

СЛОВЕСНЫЕ МЕТОДЫ ОБУЧЕНИЯ.

Словесные методы занимают ведущее место в системе методов обучения. Были периоды, когда они являлись почти единственным способом передачи знаний. Прогрессивные педагоги - Я.А. Коменский, К.Д. Ушинский и др. - выступали против абсолютизации их значения, доказывали необходимость дополнения их наглядными и практическими методами. В настоящее время нередко называют их устаревшими, “неактивными”. К оценке этой группы методов надо подходить объективно. Словесные методы позволяют в кратчайший срок передать большую по объему информацию, поставить перед обучаемыми проблемы и указать пути их решения. С помощью слова учитель может вызвать в сознании детей яркие картины прошлого, настоящего и будущего человечества. Слово активизирует воображение, память, чувства учащихся.

Словесные методы подразделяются на следующие виды: рассказ, объяснение, беседа, дискуссия, лекция, работа с книгой.

Рассказ – это монологическое изложение учебного материла, применяемого для последовательного, систематизированного, доходчивого и эмоционального преподнесения знаний. Этот метод чаще других применяется в начальной школе. К рассказу учитель обращается, когда детям необходимо сообщить яркие, новые для них факты, события, то, чего дети не могут наблюдать непосредственно. Рассказ – мощный источник влияния на мыслительную деятельность, воображение, эмоции младших школьников, расширение их кругозора.Основными средствами обучения являются: речь, иллю­стра­ции, мето­диче­ские и мне­мони­ческие приемы, логические приемы сравне­ния, сопоставле­ния, резю­миро­вания.

Основными условиями успешности этого метода являются:

· успешное сочетание сочета­ния с другими методами:

· положительно-эмо­цио­нальное воспри­ятие;

· усло­вия (время, ме­сто);

· неперегружен­ность фак­тами;

· умение учителя расска­зывать.

К рассказу, как методу изложения новых знаний, обычно предъявляется ряд педагогических требований:

Рассказ должен обеспечивать идейно-нравственную направленность преподавания;

Содержать только достоверные и научно проверенные факты;

Включать достаточное количество ярких и убедительных примеров, фактов, доказывающих правильность выдвигаемых положений;

Иметь четкую логику изложения;

Быть эмоциональным;

Излагаться простым и доступным языком;

Отражать элементы личной оценки и отношения учителя к излагаемым фактам, событиям.

Беседа - диалогический метод обучения, при котором учитель путем постановки тщательно продуманной системы вопросов подводит учеников к пониманию нового материала или проверяет усвоение ими уже изученного. Беседа относится к наиболее старым методам дидактической работы. Ее мастерски использовал Сократ, от имени которого и произошло понятие “сократическая беседа”. В зависимости от конкретных задач, содержание учебного материала, уровня творческой, познавательной деятельности учащихся, места беседы в дидактическом процессе выделяют различные виды бесед. Широкое распространение имеет эвристическая беседа (от слова “эврика” - нахожу, открываю). В ходе эвристической беседы учитель, опираясь на имеющиеся у учащихся знания и практический опыт, подводит их к пониманию и усвоению новых знаний, формулированию правил и выводов.Для сообщения новых знаний используются сообщающие беседы. Если беседа предшествует изучению нового материала, ее называют вводной или вступительной. Цель такой беседы состоит в том, чтобы вызвать у учащихся состояние готовности к познанию нового. Закрепляющие беседы применяются после изучения нового материала.

В ходе беседы вопросы могут быть адресованы одному ученику (индивидуальная беседа) или учащимися всего класса (фронтальная беседа). Одной из разновидностей беседы является собеседование. Оно может проводиться как с классом в целом, так и с отдельными группами учеников. Особенно полезно организовывать собеседование в старших классах, когда ученики проявляют больше самостоятельности в суждениях, могут ставить проблемные вопросы, высказывать свое мнение по тем или иным темам, поставленным учителем на обсуждение.

Успех проведения бесед во многом зависит от правильности постановки вопросов. Вопросы задаются учителем всему классу, чтобы все учащиеся готовились к ответу. Вопросы должны быть краткими, четкими, содержательными, сформулированными так, чтобы будили мысль ученика. Не следует ставить двойных, подсказывающих вопросов или наталкивающих на угадывание ответа. Не следует формулировать альтернативных вопросов, требующих однозначных ответов типа “да” или “нет”.

В целом, метод беседы имеет следующее преимущество:

Активизирует учащихся;

Развивает их память и речь;

Делает открытыми знания учащихся;

Имеет большую воспитательную силу;

Является хорошим диагностическим средством.

Недостатки метода беседы:

Требует много времени;

Содержит элемент риска (школьник может дать неправильный ответ, который воспринимается другими учащимися и фиксируется в их памяти);

Необходим запас знаний

Объяснение – словесное истолкование предметов, явлений, закономерностей, связей, чаще всего монологическое изложение. Объяснение бывает как в «чистом» виде, то есть учитель использует только этот метод, так и частью беседы, рассказа, или, наоборот, в структуру объяснения входят элементы беседы, рассказа и т.д. Использование метода объяснения требует:

Точного и четкого формулирования задачи, сути проблемы, вопроса;

Последовательного раскрытия причинно-следственных свя­зей, аргументации и доказательств;

Использования сравнения, сопоставления, аналогии;

Привлечения ярких примеров;

Безукоризненной логики изложения.

Объяснение как метод обучения широко используется в работе с детьми разных возрастных групп. Однако в среднем и старшем школьном возрасте, в связи с усложнением учебного материала и возрастающими интеллектуальными возможностями учащихся, использование этого метода становится более необходимым, чем в работе с младшими школьниками. Как самостоятельный метод объяснение чаще выступает в роли инструктирования: как писать изложение, как сделать лабораторную работу и т.д.

Работа с учебником и книгой - важнейший метод обучения. В начальных классах работа с книгой осуществляется главным образом на уроках под руководством учителя. В дальнейшем школьники все больше учатся работать с книгой самостоятельно. Существует ряд приемов самостоятельной работы с печатными источниками. Основные из них:

- Конспектирование - краткое изложение, краткая запись содержания прочитанного. Конспектирование ведется от первого (от себя) или от третьего лица. Конспектирование от первого лица лучше развивает самостоятельность мышления.

- Составление плана текста . План может быть простой и сложный. Для составления плана необходимо после прочтения текста разбить его на части и озаглавить каждую часть.

- Тезирование - краткое изложение основных мыслей прочтенного.

- Цитирование - дословная выдержка из текста. Обязательно указываются выходные данные (автор, название работы, место издания, издательство, год издания, страница).

- Аннотирование - краткое свернутое изложение содержания прочитанного без потери существенного смысла.

- Рецензирование - написание краткого отзыва с выражением своего отношения о прочитанном.

- Составление справки - сведений о чем-нибудь, полученных после поисков. Справки бывают статические, биографические, терминологические, географические и т.д.

- Составление формально-логической модели - словесно-схематического изображения прочитанного.

- Составление тематического тезауруса - упорядоченного комплекса базовых понятий по разделу, теме.

- Составление матрицы идей - сравнительных характеристик однородных предметов, явлений в трудах разных авторов.

ПРАКТИЧЕСКИЕ МЕТОДЫ ОБУЧЕНИЯ

НАЧАЛЬНОМУ ЕСТЕСТВОЗНАНИЮ.

Практические методы обученияв естествознании основаны на практической деятельности учащихся. Они способствуютформированию практические умения и навыки. В начальной школе в естествознании к практическим методам относится наблюдение, распознавание и определение признаков, моделирование и эксперимент илиопыт. Так же можно выделить разновидности практических работ, например с географической картой. Практические методы обучения охватывают весьма широкий диапазон различных видов деятельности учеников. Во время использования практических методов применяются приемы:

· постановки задания,

· планирования его выполнения,

· управления процессом выполнения,

· оперативного стимулирования, регулирования и контроля,

· анализа итогов практической работы,

· выявления причин недостатков,

· корригирования обучения для полного достижения цели.

На уроке необходимо принимать оптимальное решение при выборепрактических методов обучения, в прочем, как и любых других. Например:

· При решении каких задач этот метод применяется особенно успешно? Для развития практических умений и навыков.

· При каком содержании учебного материала особенно рационально применять этот метод? Когда содержание темы включает практические упражнения, проведение опытов.

· При каких особенностях учащихся рационально применять этот метод? Когда обучаемые готовы к выполнению практических заданий.

· Какие возможности должен иметь преподаватель для использования данного метода? Когда преподаватель располагает необходимым материалом для проведения опытов и упражнений.

Наблюдение.

Наблюдение, как метод обучения, представляет собой активную форму чувственного познания. Чаще этот метод используется при изучении учебных предметов естественного цикла. Наблюдения могут проводиться как под руководством учителя, так и самостоятельно учащимися по заданию учителя. При использовании данного метода требуется тщательная подготовка: необходимо предупредить учащихся о побочных явлениях, научить их фиксировать и обрабатывать данные наблюдений и пр. Этот метод способствует выработке навыков самостоятельной работы, имеет большое познавательное и воспитательное значение.

Виды наблюдений:

· в классе или на природе.

· за объектами неживой природы;

· за явлениями неживой природы;

· за объектами живой природы;

· фронтальный, групповые или индивидуальные.

Дети наблюдают самостоятельно или под непосредственным контролем учителя. Требования: 1) Конкретность 2) Систематичность Наблюдение – важный источник знаний об окружающем мире. Они дают основу, на которую в дальнейшем строятся мыслительные операции. Наблюдение является средством развития мышления. Любые наблюдения начинаются с постановки цели, определения объекта. Важным условием наблюдения является разумный отбор объектов. Этапы наблюдения: 1) Рассмотрение объекта в целом (чтобы сформировать целостное представление об объекте). 2) Работа по рассмотрению частей объекта. 3) Обобщение увиденного. Приемы закрепления наблюдения: 1) Рассмотреть объект, затем закрыть глаза и мысленно его представить. 2) Иммитация. 3) Сравнение. 4) Работа с иллюстрацией. 5) Самостоятельное проведение наблюдения.

Метод распознавания и определения признаков.

Основа метода – анализ внешних, морфологических и частично анатомических особенностей предметов. Применяется при работе с раздаточным материалом, когда возникает необходимость составить характеристику предметов, явлений, выделить их признаки, определить место данного предмета, явления. При использовании метода необходим инструктаж. Например: изучение особенностей растений, изучение термометра. Метод Моделирование. Виды: · материальные (глобус) · идеальные (умозрительные, мысленно построенные) · образные (строятся из · чувственно наглядных элементов) · знаковые (условные обозначения) То есть ребенок на основе созданного образа сам делает модель.

Познавательные (дидактические) игры.

Это специально соз данные ситуации, моделирующие реальность, из которых ученикам предлагается найти выход. Главное назначение данного метода - стимулировать познавательный процесс. Современные дидактические игры в начальной школе - это пре имущественно игры по правилам.

Игры имеют много функций: активизируют познавательные про цессы; воспитывают интерес и внимательность детей; развивают спо собности; вводят детей в жизненные ситуации; учат их действовать по правилам; развивают любознательность, внимательность; закрепляют знания, умения. Правильно построенная игра обогащает про цесс мышления индивидуальными чувствами, развивает саморегуляцию, укрепляет волю ребенка. Наиболее распространены сюжетно-ролевые игры, игры-упражне ния, игры-драматизации, игры-конструирования. В учебном процессе могут использоваться только элементы дидактической игры - игро вая ситуация, прием, упражнение. Основные требования, которые должны соблюдать учителя при планировании и проведении дидактических игр: игра должна орга нически вытекать из логики учебно-воспитательного процесса, а не быть к нему искусственно привязана; должна иметь интересное, при влекательное название; содержать действительно игровые элементы; иметь обязательные правила, которые нельзя нарушать; содержать считалки, рифмы, стихи.

Метод Эксперимент или опыты.

Применяя те или иные методы и приемы активизации, необходимо всегда учитывать имеющийся уровень развития познавательных способностей учащихся. Сложные познавательные задачи можно предъявлять лишь ученикам, обладающим высоким уровнем развития познавательных способностей. Задачи, не соотнесенные с уровнем развития познавательных сил учащегося, превышающие возможности ученика, предъявляющие к нему требования, значительно опережающие уровень имеющегося у него развития, не могут сыграть положительную роль в обучении. Они подрывают у учащихся веру в свои силы и способности.

Одним из важнейших практических методов обучения является эксперимент. Он играет особую роль в обучении.

Итак, что же такое эксперимент?

Слово "эксперимент" происходит от греческого слова и переводится как "проба, опыт".

"Современный словарь иностранных слов" (1994) содержит такое определение: эксперимент - это "1. научно поставленный опыт, наблюдение исследуемого явления в научно учитываемых условиях, позволяющих следить за ходом явления и многократно воспроизводить его при повторении этих условий; 2. вообще опыт, попытка осуществить что-либо".

"Большая Советская энциклопедия" добавляет: "Отличаясь от наблюдения активным оперированием изучаемым объектом, эксперимент осуществляется на основе теории, определяет постановку задач и интерпретацию его результатов".

"Эксперимент... - планомерное проведение наблюдения. Тем самым человек создает возможность наблюдений, на основе которых складывается его знание о закономерностях в наблюдаемом явлении" ("Краткая философская энциклопедия", 1994).

"Эксперимент... чувственно - предметная деятельность в науке; в более узком смысле слова - опыт, воспроизведение объекта познания, проверка гипотез и т.п.". "Советский энциклопедический словарь" (1997);

Из приведенных выше определений видно, что в узком смысле слова термины "опыт" и "эксперимент" являются синонимами: "Понятие опыт по существу совпадает с категорией практики, в частности, эксперимента, наблюдения" (БСЭ, 1974). Однако в широком понимании "опыт выступает и как процесс воздействия человека на внешний мир, и как результат этого воздействия в виде знаний и умений" ("Советский энциклопедический словарь"). В науке эксперимент используется для получения знаний, неизвестных человечеству в целом. В процессе обучения он применяется для получения знаний, неизвестных данному конкретному человеку. Эксперимент знакомит учащихся с самими явлениями. Он помогает вызвать интерес к предмету, научить наблюдать процессы, освоить приемы работы, сформировать практические навыки и умения.

Эксперимент можно разделить на два вида: демонстрационный и ученический. Демонстрационным называют эксперимент, который проводится в классе учителем, лаборантом или иногда одним из учащихся. Демонстрационный эксперимент дает возможность учителю формировать интерес к предмету у школьников, научить их выполнять определенные операции; приемам лабораторной техники. Требования:

- Наглядность

- Простота

- Безопасность эксперимента

- Надежность

-

Следует помнить, что эксперимент - это метод исследования, поэтому лучше провести меньшее их количество, но каждый опыт должен быть объяснен. Эксперимент, как метод обучения, обладает большими учебными возможностями в развитии познавательной деятельности школьников. Каждый учащийся должен понимать, для чего он делает опыт и как надо решить поставленную перед ним задачу. Он изучает вещества органолептически или с помощью приборов и индикаторов, рассматривает детали прибора или весь прибор. Выполняя опыт, учащийся овладевает приемами и манипуляциями, наблюдает и замечает особенности хода процесса, отличает важные изменения. Проделав опыт, он должен составить отчет.

Опора на конкретныйобраз, формирование его - функция наглядности.

Побудительная функция обусловлена возможностью эксперимента усилить познавательную активность учащихся и на этой основе формировать устойчивый интерес к предмету.

Мировоззренческую функцию трудно переоценить. Научное видение мира не может сложиться без наблюдений за явлениями, окружающими нас, без опытов с ними.

Методологическая функция состоит в том, что он позволяет четко обозначить этапы познания. Здесь эксперимент в подавляющем большинстве случаев является источником противоречий, ответственен за выделение группы исходных фактов, изучение поведения материальной модели при выделении гипотезы, наконец, только эксперимент может дать заключение о достоверности логических следствий из гипотезы. Во-вторых, четко отражаются структура, средства и методы научного эксперимента.

Обучающее - контролирующая функция обусловлена тем, что эксперимент стал ведущим наглядным и практическим методом обучения. Изучить глубину понимания предмета школьниками учитель может объективно, если в качестве одного из заданий предложит провести кратковременный опыт и объяснить полученные результаты.

Нравственно - трудовая функция предполагает формирование у учащихся положительного отношения к труду, воспитание таких нравственных качеств как настойчивость, ответственность, целеустремленность, аккуратность, бережливость, инициативу и т.д.

Рационально - личностная функция направлена на развитие у учащихся мышления и связанных с этим таких индивидуальных качеств как творчество и самостоятельность.

Главное достоинство применения метода эксперимента заключается в том, что в его процессе:

Дети получают реальные представления о различных сторонах изучаемого объекта, о его взаимоотношениях с другими объектами и со средой обитания.

Идет обогащение памяти ребенка, активизируются его мыслительные процессы, так как постоянно возникает необходимость совершать операции анализа и синтеза, сравнения и классификации, обобщения.

Развивается речь ребенка, так как ему необходимо давать отчет об увиденном, формулировать обнаруженные закономерности и выводы.

Происходит накопление фонда умственных приемов и операций, которые рассматриваются как умственные умения.

Он важен и для формирования самостоятельности, целеполагания, способности преобразовывать какие-либо предметы и явления для достижения определенного результата.

В процессе экспериментальной деятельности развивается эмоциональная сфера ребенка, творческие способности, формируются трудовые навыки, укрепляется здоровье за счет повышения общего уровня двигательной активности.

Классификацияэкспериментов.

Экспериментыклассифицируются по разным принципам.

По характеру объектов, используемых в эксперименте: опыты: с растениями; с животными; с объектами неживой природы; объектом которых является человек.

По месту проведения опытов: в групповой комнате;на участке; в лесу, в поле и т.д.

По количеству детей: индивидуальные; групповые; коллективные.

По причине их проведения: случайные; запланированные; поставленные в ответ на вопрос ребенка.

По характеру включения в педагогический процесс: эпизодические (проводимые от случая к случаю); систематические.

По продолжительности: кратковременные (5 - 15 мин.); длительные (свыше 15 мин.).

По количеству наблюдений за одним и тем же объектом: однократные; многократные, или циклические.

По месту в цикле: первичные; повторные; заключительные и итоговые.

По характеру мыслительных операций: констатирующие (позволяющие увидеть какое-то одно состояние объекта или одно явление вне связи с другими объектами и явлениями); сравнительные (позволяющие увидеть динамику процесса или отметить изменения в состоянии объекта); обобщающие (эксперименты, в которых прослеживаются общие закономерности процесса, изучаемого ранее по отдельным этапам).

По характеру познавательной деятельности детей: иллюстративные (детям все известно, и эксперимент только подтверждает знакомые факты); поисковые (дети не знают заранее, каков будет результат); решение экспериментальных задач.

По способу применения в аудитории: демонстрационные; фронтальные.

Каждый из видов экспериментирования имеет свою методику проведения, свои плюсы и минусы.

Так же эксперимент можно разделить на два вида: демонстрационный и ученический. Демонстрационным называют эксперимент, который проводится в классе учителем, лаборантом или иногда одним из учащихся. Демонстрационный эксперимент дает возможность учителю формировать интерес к предмету у школьников, научить их выполнять определенные операции; приемам лабораторной техники. Требования:

- Наглядность . Эксперимент следует проводить так, чтобы явление можно было наблюдать с любой точки класса. Стол преподавателя не должен быть загроможден лишними предметами, чтобы были видны руки учителя. Можно использовать подъемный столик или кодоскоп.

- Простота . Прибор, в котором демонстрируют эксперимент, не должен содержать лишних деталей и нагромождений, чтобы внимание обучаемых не отвлекалось от процесса. Не следует увлекаться эффектными опытами, так как менее эффектные опыты не будут пользоваться вниманием.

- Безопасность эксперимента . Учитель несет ответственность за безопасность учащихся, поэтому в кабинете должны находиться средства пожарной безопасности, вытяжной шкаф для проведения работ с вредными и пахучими веществами, средства для оказания первой. При проведении опасных опытов следует использовать защитный экран.

- Надежность . Опыт всегда должен удаваться, и с этой целью техника эксперимента перед его проведением должна быть тщательно отработана, все операции должны быть четкими, уверенными; недопустима неряшливость в оформлении опыта. Учитель должен следить за своим внешним видом и поведением. В случае неудачи, необходимо выяснить ее причину, и опыт на следующем уроке повторить.

- Необходимость объяснения эксперимента . Любой опыт должен сопровождаться словом учителя. Возникающие паузы можно использовать для организации диалога со школьниками, выяснения условий проведения эксперимента.

Следует помнить, что эксперимент - это метод исследования, поэтому лучше провести меньшее их количество, но каждый опыт должен быть объяснен.

Ученический эксперимент - это вид самостоятельной работы. Он не только обогащает учащихся новыми знаниями, понятиями, учениями, но и доказывает истинность приобретенных ими знаний, что обеспечивает более глубокое понимание и усвоение материала. Он позволяет более полно осуществлять принцип связи теории с практикой. Ученический эксперимент разделяют на лабораторные опыты и практические занятия.

Заключительным этапом эксперимента является подведение итогов и формулирование выводов. При формулировании выводов необходимо стимулировать развитие речи детей путем постановки неповторяющихся по содержанию вопросов, требующих от детей развернутого ответа. При анализе и фиксировании полученных результатов необходимо помнить, что непредусмотренный результат не является неправильным.

Упражнения.

Под упражнениями понимают повторное (многократное) выполнение умственного или практического действия с целью овладения им или повышения его качества. Упражнения применяются при изучении всех предметов и на различных этапах учебного процесса. Характер и методика упражнений зависит от особенностей учебного предмета, конкретного материала, изучаемого вопроса и возраста учащихся. Упражнения по своему характеру подразделяются на устные, письменные, графические и учебно-трудовые. При выполнении каждого из них учащиеся совершают умственную и практическую работу. По степени самостоятельности учащихся при выполнении упражнений выделяют: · упражнения по воспроизведению известного с целью закрепления - воспроизводящие упражнения; · упражнения по применению знаний в новых условиях - тренировочные упражнения; Если при выполнении действий ученик про себя или вслух проговаривает, комментирует предстоящие операции, такие упражнения называют комментированными. Комментирование действий помогает учителю обнаруживать типичные ошибки, вносить коррективы в действия учеников. Рассмотрим особенности применения упражнений. Устные упражнения способствуют развитию логического мышления, памяти, речи и внимания учащихся. Они отличаются динамичностью, не требуют затрат времени на ведение записей. Письменные упражнения используются для закрепления знаний и выработки умений в их применении. Использование их способствует развитию логического мышления, культуры письменной речи, самостоятельности в работе. Письменные упражнения могут сочетаться с устными и графическими. К графическим упражнениям относятся: · работы учащихся по составлению схем, чертежей, графиков, технологических карт, · изготовление альбомов, плакатов, стендов, выполнение зарисовок при проведении · лабораторно-практических работ, экскурсий и т.д. Графические упражнения выполняются обычно одновременно с письменными и решают единые учебные задачи. Применение их помогает учащимся лучше воспринимать, осмысливать и запоминать учебный материал, способствует развитию пространственного воображения. Графические работы в зависимости от степени самостоятельности учащихся при их выполнении могут носить воспроизводящий, тренировочный или творческий характер. К учебно-трудовым упражнениям относятся · практические работы учащихся, имеющие производственно-трудовую направленность. Целью этих упражнений является применение теоретических знаний учащихся в трудовой деятельности. Такие упражнения способствуют трудовому воспитанию учащихся. Упражнения являются эффективными только при соблюдении ряда требований к ним: · сознательный подход учащихся к их выполнению; · соблюдение дидактической последовательности в выполнении упражнений - сначала упражнения по заучиванию и запоминанию учебного материала, затем – на воспроизведение – применение ранее усвоенного - на · самостоятельный перенос изученного в нестандартные ситуации - на творческое · применение, с помощью которого обеспечивается включение нового материала в систему уже усвоенных знаний, умений и навыков. Крайне необходимы и проблемно-поисковые упражнения, которые формируют у учащихся способность к догадке, интуицию. Практические работы проводятся после изучения крупных разделов, тем и носят обобщающий характер. Они могут проводиться не только в классе, но и за пределами школы (измерения на местности, работа на пришкольном участке). Лабораторные работы. Лабораторные работы - это проведение учащимися по заданию учителя опытов с использованием приборов, применением инструментов и других технических приспособлений, т.е. это изучение учащимися каких-либо явлений с помощью специального оборудования. Проводятся лабораторные работы в иллюстративном или исследовательском плане. Разновидностью исследовательских лабораторных работ могут быть длительные наблюдения учащихся за отдельными явлениями, как-то: над ростом растений и развитием животных, над погодой, ветром, облачностью, поведением рек и озер в зависимости от погоды и т.п. В некоторых школах практикуются в порядке лабораторной работы поручения школьникам сбора и пополнения экспонатами местных краеведческих музеев или школьных музеев, изучение фольклора своего края и др. В любом случае учитель составляет инструкцию, а ученики записывают результаты работы в виде отчетов, числовых показателей, графиков, схем, таблиц. Лабораторная работа может быть частью урока, занимать урок и более.

НАГЛЯДНЫЕ МЕТОДЫ ОБУЧЕНИЯ.

К наглядным методам относится демонстрация натуральных объектов, демонстрация опытов, демонстрация изображений или объектов, или явлений. Наглядные методы применяются на всех этапах педагогического процесса. Их роль заключается в том, чтобы обеспечить всестороннее образное восприятие, дать опору для мышления. Демонстрация – это совокупность действий учителя, которая состоит в показе учащимся самих предметов, их моделей или изображений или соответствующее объяснение их признаков.

Основными средствами демонстрации являются: иссле­дуе­мые объ­екты(в нату­раль­ном виде), ис­кусст­вен­ные заме­нители на­ту­раль­ных объ­ектов.

Успешность данного метода является:

· активное уча­стие уче­ников;

· правиль­ный вы­бор объек­тов;

· умение педа­гога направить вни­мание учеников на су­щественныесто­роны явле­ний;

· со­четание с другими мето­дами.

При использовании наглядных методов обучения необходимо соблюдать ряд условий:

а) применяемая наглядность должна соответствовать возрасту учащихся;

б) наглядность должна использоваться в меру и показывать ее следует постепенно и только в соответствующий момент урока;

в) наблюдение должно быть организовано таким образом, чтобы все учащиеся могли хорошо видеть демонстрируемый предмет;

г) необходимо четко выделять главное, существенное при показе иллюстраций;

д) детально продумывать пояснения, даваемые в ходе демонстрации явлений;

е) демонстрируемая наглядность должна быть точно согласована с содержанием материала;

ж) привлекать самих учеников к нахождению желаемой информации в наглядном пособии или демонстрационном устройстве.

Наглядные методы обучения условно можно подразделить на две большие группы:

· методы иллюстраций;

· метод демонстраций.

Метод иллюстраций предполагает показ ученикам иллюстративных пособий: плакатов, карт, зарисовок на доске, картин, портретов ученых и пр.
Метод демонстраций обычно связан с демонстрацией приборов, опытов, технических установок, различного рода препаратов. К демонстрационным методам относят также показ кинофильмов и диафильмов. Такое подразделение средств наглядности на иллюстративные и демонстрационные исторически сложилось в практике преподавания. Оно не исключает возможности отнесения отдельных средств наглядности как к группе иллюстративных, так и демонстрационных методов. Это касается, например, показа иллюстраций через эпидиаскоп или кодоскоп.
В ходе применения наглядных методов используются приемы: показа, обеспечения лучшей видимости (экран, подкрашивание, подсвет, подъемные приспособления и др.), обсуждения результатов проведенных наблюдений, демонстраций и пр.
Условия эффективного применения наглядности.
Есть несколько методических условий, выполнение которых обеспечивает успешное использование наглядных средств обучения:

1) хорошее обозрение, которое достигается путем применения соответствующих красок при изготовлении подъемных столиков, экранов подсвечивания, рейтеров, указателей и пр.;

2) четкое выделение главного, основного при показе иллюстраций, так как они порой содержат и отвлекающие моменты;

3) детальное продумывание пояснений (вводных, по ходу показа и заключительных), необходимых для выяснения сущности демонстрационных явлений, а также для обобщения усвоенной учебной информации;

4) привлечение самих учеников к нахождению желаемой информации в наглядном пособии или демонстрационном устройстве, постановка перед ними проблемных заданий наглядного характера.
В условиях демонстрации химических, физических и других технических установок необходимо строго соблюдать правила техники безопасности, которые четко определены соответствующими инструктивными документами.