Экологические факторы закономерности их действия. Общие закономерности влияния экологических факторов на живые организмы (основные экологические законы)




В характере воздействия факторов среды и ответных реакциях живых организмов выявлен ряд общих закономерностей, которые укладываются в некоторую общую схе-му действия экологического фактора разной дозы на жизнедеятельность организмов.

Количественное выражение экологического фактора в пределах зоны толерантности определяется в основном значениями, представленными тремя кардинальными точками - минимума, оптимума и максимума, и на рис. 5.2 кривая 1 имеет вид куполообразной кривой, так называемой кривой толерантности. Крайние пороговые значения (точки минимума и максимума) называются нижним и верхним пределами выносливости.

Зона, непосредственно прилегающая к точке оптимума, называется зоной оптимума или зоной комфорта. В этой зоне организм максимально адаптирован к действию экологического фактора, и количество последнего соответствует экологическим потребностям организма. Значение оптимума не является абсолютной величиной для конкретного вида, а зависит от стадии онтогенеза, периода жизни и действия других факторов. Зона, прилегающая к зоне оптимума, называется зоной нормы. Ей соответствует такое количество экологического фактора, при котором все жизненно важные процессы протекают нормально, однако для поддержания их на этом уровне необходимы дополнительные энергетические затраты.

В зоне пессимума нормальный ход процессов жизнедеятельности затруднен.

Повторяемость описанных тенденций позволяет рассматривать их как фундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, стрессовые зоны и пределы выносливости в отношении каждого фактора среды.

Адаптация к каждому фактору связана с затратами энергии. В зоне оптимума адаптивные механизмы отключены и энергия расходуется только на фундаментальные жизненные процессы (энергозатраты на базальный метаболизм).

При выходе значений фактора за пределы оптимума включаются адаптивные механизмы, функционирование которых сопряжено с определенными затратами энергии - тем большими, чем дальше значение фактора отклоняется от оптимального. При этом усиление энергорасходов на адаптацию ограничивает возможный набор форм жизнедеятельности организма: чем дальше от оптимума находится количественное выражение фактора, тем больше энергии направленно расходуется на адаптацию и тем меньше «степеней свободы» в проявлении иных форм деятельности. В конечном итоге нарушение энергетического баланса организма наряду с повреждающим действием недостатка или избытка фактора ограничивает диапазон переносимых им изменений. Размах адаптивных изменений количественного выражения фактора определяется как экологическая валентность или экологическая пластичность вида по данному фактору. Величина ее различна у разных видов.


Экологически непластичные, т. е. маловыносливые виды, для существования которых необходимы строго определенные, относительно постоянные условия внешней среды, называются стенобионтными (от греч. stenos - узкий, bios - жизнь), а те, которые могут жить в широком диапазоне изменчивости условий среды, - эврибионтными (от греч. eurys - широкий).

В зависимости от конкретного фактора среды различают организмы стено- и эвритермные по отношению к температуре, стено- и эврифотные по отношению к свету, стено- и эврибатные по отношению к давлению, стено- и эвригалинные по отношению к концентрации солей. Важно подчеркнуть, что явление стенобионтности фактически используется в практике экологической индикации качества окружающей среды. Узкоспециальные по отношению к ряду факторов видовые популяции могут

служить более чувствительными показателями качества среды, чем физические и химические.

Экологическая валентность как видовое свойство эволюционно формируется в качестве приспособления к той степени колебаний данного фактора, которая свойственна естественным местам обитания вида. Поэтому, как правило, переносимый данным видом диапазон колебаний фактора соответствует его естественной динамике: обитатели континентального климата выдерживают более широкие колебания температуры, чем жители приэкваториальных муссонных регионов. Сходные отличия обнаруживаются и на уровне различных популяций одного вида, если они занимают не одинаковые по условиям места обитания.

Помимо величины экологической валентности, виды (и популяции одного вида) могут отличаться и местоположением оптимума на шкале количественных изменений фактора. Виды, приспособленные к высоким дозам данного фактора, терминологически обозначаются окончанием -фил (от греч. phyleo - любить): термофилы (теплолюбивые виды), оксифилы (требовательны к высокому содержанию кислорода), гигрофилы (населяют места с высокой влажностью) и т. д. Виды, обитающие в про тивоположных условиях, обозначаются термином с окончанием -фоб (от греч. phobos - страх): галлофобы - обитатели пресных водоемов, не переносящие осолонения, хианофобы - виды, избегающие глубокоснежья, и т. п. Нередко такие формы характеризуют «от обратного»: например, виды, не переносящие избыточного увлажнения, чаще называют ксерофильными (сухолюбивыми), чем гигрофобными; подобным же

образом взамен термина «термофоб» чаще употребляют «криофил» (холодолюбивый).

Информация об оптимальных значениях отдельных факторов и диапазоне переносимых ими колебаний достаточно полно характеризует отношение вида (популяции) к каждому исследованному фактору. Следует, однако, иметь в виду, что рассмотренные категории дают лишь общее представление о реакции вида на воздействие отдельных факторов. Это важно при общей экологической характеристике вида и решении ряда прикладных задач экологии (например, проблема акклиматизации вида в новых условиях), хотя и не определяет полного объема взаимодействия вида с условиями среды в сложной природной обстановке.

В совокупности условий существования всегда можно выделить фактор, который сильнее других влияет на состояние организма или популяцию. Так, дефицит одного из важных ресурсов (вода, свет, пища, незаменимая аминокислота) будет ограничивать жизнедеятельность даже тогда, когда все остальные условия оптимальны. Фактор,который при определенном наборе условий окружающей среды ограничивает какое-либо проявление жизнедеятельности, называется лимитирующим. Понятие лимитирующего фактора связано с законом минимума Либиха. Еще в середине XIX в. Известный немецкий химик Ю. Либих, разрабатывая систему применения минеральных удобрений, сформулировал правило минимума, в соответствии с которым возможность существования данного вида в определенном районе и степень его «процветания» зависят от факторов, представленных в наименьшем количестве. Ученый установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах (СО2, Н2О и др.), поскольку они, как правило, присутствуют в изобилии, а теми, которые необходимы в малых количествах и которых в почве недостаточно. Классическими примерами воздействия лимитирующего фактора на развитие растений являются исчерпание запасов бора в почве в результате возделывания одной и той же культуры в течение длительного времени или количество доступной

влаги в засушливых аридных районах.

Позднее действие закона минимума Либиха было дополнено двумя принципами. Первый - ограничительный: закон может быть применим лишь в условиях стационарного состояния, т. е. когда приток и отток энергии и веществ сбалансированы.

Второй принцип - взаимодействие различных факторов. Например, некоторым рас-тениям нужно меньше цинка, если они растут не на ярком солнечном свету, а в тени; значит, концентрация цинка в почве с меньшей вероятностью может быть лимитирующей для растений в тени, чем для растений на свету.

Лимитирующим может быть не только недостаток (минимум), но и избыток (максимум) экологического фактора. Представление о лимитирующем влиянии максимума наряду с минимумом развил американский зоолог В. Шелфорд в 1913 г.

Закон толерантности Шелфорда: лимитирующим фактором процветания может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величину толерантности, выносливости организма к данному фактору.

Интересный пример действия закона толерантности В. Шелфорда (много «хорошо» - тоже нехорошо) приводит Ю. Одум (1986). Создание утиных ферм вдоль рек, впадающих в южную бухту в проливе Лонг-Айленд близ Нью-Йорка, стало причиной сильного удобрения вод утиным пометом, из-за чего значительно увеличилась численность фитопланктона и, самое главное, произошла его структурная перестройка: дино флагелляты и диатомовые водоросли Nitzschia оказались почти полностью

заменены зелеными жгутиковыми, относящимися к родам Nannochloris и Stichococcus.

Знаменитые голубые устрицы, ранее процветавшие на рационе из традиционного фи-

топланктона и бывшие предметом выгодного водного хозяйства, постепенно исчезли, не адаптировавшись к новому виду пищи. Таким образом, избыток биогенов оказал лимитирующее воздействие на устриц.

Существует ряд вспомогательных принципов, дополняющих «закон толерантности».

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении других факторов.

2. Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены. Например, карась, карп и многие другие рыбы переносят довольно низкое (менее 2 мг/л) содержание кислорода в воде, большую ее мутность, высокий диапазон температур. Поэтому они широко распространены в водоемах разных типов. Форель, напротив, встречается в реках, где концентрация кислорода более 2 мг/л. При содержании кислорода менее 1,6 мг/л она гибнет.

3. Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам. Напри- мер, при недостатке азота снижается засухоустойчивость злаков, т. е. растениям для выживания требуется больше воды.

4. В природе организмы часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного фактора, определенному в лаборатории. В этом случае для жизнедеятельности организма более важным оказывается иной фактор. Например, некоторые тропические орхидеи в лаборатории при невысоких температурах лучше развиваются на солнце, чем в тени. В природе же они растут исключительно в тени, так как не переносят воздействия прямых солнечных лучей.

5. Периоды размножения обычно являются критическими для организмов. Многие факторы среды в это время становятся лимитирующими. Пределы толерантности для размножающихся особей и зародышей обычно у́ же, чем для неразмножающихся взрослых животных и растений. Взрослые голубые крабы рода Portunus хорошо переносят солоноватую и пресную воду с высоким содержанием хлоридов, поэтому часто заходят в реки вверх по течению, однако не размножаются, так как для личинок крабов нужна высокая соленость. Зрелый кипарис способен расти как на сухом нагорье, так и на полностью заливаемой почве, тогда как для прорастания семени требуется увлажненная, но не заливаемая почва. Географическое распространение промысловых птиц часто определяется влиянием климатических факторов на стадиях раннего онтогенеза, а не на взрослых особей. К недостатку пищи более устойчивы взрослые особи. Таким образом, в течение индивидуального развития (онтогенеза) реакция животных и растений на экологические факторы меняется.

Изменения факторов среды наблюдаются в течение года и суток, в случае приливов и отливов в океане, при бурях, ливнях, обвалах, похолодании или потеплении климата.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой состав почвы важен для минерального питания растений, но безразличен для большинства наземных животных.

Взаимодействие факторов в комплексах. Совокупное действие на организм нескольких факторов среды обозначают термином «констелляция». Экологически важно то обстоятельство, что констелляция не представляет собой простой суммы влияния факторов: при комплексном воздействии между отдельными факторами устанавливаются особые взаимодействия, когда влияние одного фактора в какой-то мере изменяет (усиливает, ослабляет и т. п.) характер воздействия другого.

Известно, например, что реакции газообмена у рыб существенно отличаются в условиях разной солености воды. В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Ю. Одум (1975) приводит такой пример: некоторые моллюски (в частности, Mytilus galloprovincialis) при отсутствии или дефиците кальция могут строить свои раковины, частично заменяя кальций стронцием при достаточном содержании в среде последнего. В пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время. Так, в пустыне туманов Намиб (Африка) среднегодовое количество осадков составляет примерно 30 мм, а с росой за 200 дней с туманом дополнительно поступает 40-50 мм осадков в год.

Климатические факторы могут замещаться биотическими (вечнозеленые виды южных растений в более континентальном климате могут расти в подлеске под защитой верхних ярусов, создавая собственный биоклимат). Такая компенсация факторов обычно создает условия для физиологической акклиматизации вида - эвриби-онта, имеющего широкое распространение. Акклиматизируясь в данном конкретном месте, он создает своеобразную популяцию, экотип, пределы толерантности которой

соответствуют местным условиям.

Однако полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых: света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами.

Экологические факторы действуют на живые организмы по-разному. Они могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; ограничители, обусловливающие невозможность существования в данных условиях; модификаторы, вызывающие морфологические и анатомические изменения организмов. Таким образом, воздействие экологических факторов на кон-кретные организмы способно:

1) устранять те или иные виды с той или иной территории;

2) приводить к существенным популяционным перестройкам, изменять плодовитость особей, сроки жизни и т. д.;

3) изменять конкурентноспособность видов и приводить к перестройкам в сообществах разных типов;

4) вызывать появление адаптивных изменений у видов;

5) через воздействие на отдельные виды оказывать существенное влияние на биогеохимические циклы в биосфере.

СРЕДЫ ЖИЗНИ

Первой средой жизни, освоенной организмами, была водная среда, или гидросфера.

Это самая обширная область, занимающая до 71 % площади нашей планеты. Основное количество воды (97 %) сосредоточено в морях и океанах и лишь менее 0,5 % находится в реках, озерах, болотах. Большая же часть пресной воды заключена в ледниках.

В водной среде обитает около 150 тыс. видов животных и более 10 тыс. видов растений, называемых гидробионтами.28 5.Экологияорганизмов

Главным фактором, определяющим условия передвижения гидробионтов и создающим давление на разных глубинах, является плотность воды. Для дистиллированной воды она равна 1 г/см3 при +4 °С, а при содержании растворенных солей может достигать 1,35 г/см3. На плотность пресной воды сильное влияние оказывает температура:

она наибольшая при температуре +4 °С. При повышении или понижении температуры плотность воды уменьшается. При замерзании вода расширяется, увеличивая свой объем, и становится легче. Благодаря этому свойству лед располагается на поверхности водоема, в то время как наиболее плотная жидкая вода с положительной температурой находится подо льдом.

При активном передвижении гидробионты преодолевают сопротивление плотной воды за счет обтекаемой торпедообразной формы их тела. Вместе с тем высокая плотность воды и ее выталкивающая сила создают возможность опоры на нее. Поэтому в толще водной среды выделяют особые экологические группировки гидробионтов:

планктон (пассивно «парящие» организмы) и нектон (активно плавающие и способные преодолевать течения). Большинство рыб, некоторые беспозвоночные животные и цианобактерии имеют гидростатические аппараты (плавательный пузырь, газовые вакуоли и др.), позволяющие им флотировать в толще воды и «зависать» в ней на определенных глубинах. Благодаря способности воды удерживать в ее толще живые организмы (фито-, зоо-, бактериопланктон) и мертвую органическую взвесь у многих

водных животных (подвижных, малоподвижных и прикрепленных) развился особый способ добычи пищи - фильтрационный.

Высокая плотность воды создает возрастающее с глубиной давление, равное при-мерно 1 атм. на каждые 10 м.

Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды и, прежде всего, с высокой величиной удельной теплоемкости. Чтобы изменить температуру 1 г воды на 1 °С, нужно затратить 4,19 Дж тепла (в 500 раз больше, чем для воздуха). Благодаря этому свойству вода, медленно нагреваясь и остывая, уменьшает амплитуду суточных и сезонных колебаний температур,

стабилизируя ее. Так, амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15 °С, а в континентальных водоемах - 30-35 °С. Глубокие слои водоема имеют постоянные и более низкие величины температур. В экваториальных водах среднегодовая температура поверхностных слоев +26-27 °С, в полярных - около

0 °С и ниже. Более устойчивый температурный режим водоемов по сравнению с наземно-воздушной средой сформировал стенотермность большинства населяющих их гидробионтов. Эвритермные виды встречаются главным образом в мелких континентальных водоемах и литоральной зоне морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.

Вода обладает большой скрытой теплотой плавления: для превращения 1 г льда в воду без изменения температуры необходимо затратить 80 кал.

У воды самая высокая из известных скрытая теплота парообразования. При испарении 1 г воды поглощается 537 кал. Благодаря этому свойству происходит смягчение климата.

Вода - хороший растворитель разнообразных минеральных веществ. В зависимости от концентрации растворенных в ней солей выделяют пресные (до 0,5 г/л), солоноватые (0,5-16 г/л), морские (16-47 г/л) и пересоленные (47-350 г/л) воды. Заселение

организмами водоемов с разной соленостью связано напрямую с их способностью к осморегуляции. Большинство гидробионтов являются стеногалинными организмами.

С повышением солености возрастает плотность воды и понижается температура ее замерзания.

В воде растворяются и газы. Однако кислорода в ней содержится в 30 раз меньше, чем при той же температуре в равном объеме воздуха, тогда как углекислого газа, 5.4.Средыжизни 29 напротив, в воде больше, чем в воздухе. Содержание кислорода и углекислого газа

в водоемах сильно изменится в течение суток: в светлое время содержание кислорода в воде повышается, а углекислого газа понижается вследствие осуществления фотосинтеза фотоавтотрофными гидробионтами; в ночное время происходит противоположное явление. Коэффициент диффузии кислорода в воде примерно в 320 тыс. раз ниже, чем в воздухе. В водоемах обогащение кислородом происходит за счет фото-синтетической аэрации и диффузии из воздуха. Диффузии способствуют ветер и движение воды. При повышении температуры воды, снижающей растворимость кислорода, отсутствии циркуляции воды за счет ветрового перемешивания в слоях, сильно заселенных живыми организмами, а также богатых мертвым органическим веществом в донной области водоемов, может создаваться резкий дефицит кислорода, особенно в ночное время, приводящий к гибели водных организмов - замору. Вследствие этого кислород в воде является лимитирующим фактором для жизни гидробионтов.

Свет проникает в толщу водоемов на разную глубину в зависимости от содержания в ней минеральных и органических взвешенных и растворенных веществ, а также угла наклона солнечных лучей, падающих на поверхность воды. Поэтому прозрачность природных вод невелика и находится в пределах от 0,1 до 66,5 м (величину прозрачности определяют путем погружения закрепленного на тросе белого диска Секки в воду до предельной глубины его видимости). Самые прозрачные воды в Саргассовом море - 66,5 м, в мелких морях прозрачность составляет 5-15 м, в реках - 1-1,5 м.

Нижняя граница прозрачности по диску Секки соответствует 5 % падающего на поверхность солнечного излучения. Фотосинтез продолжает идти и при меньшей освещенности, однако пятипроцентный уровень соответствует нижней границе основной фотосинтетической (эуфотической) зоны. Граница зоны фотосинтеза поэтому сильно варьирует в разных водоемах. В самых чистых водах эуфотическая зона простирается до глубин не ниже 200 м, сумеречная, или дисфотическая, зона занимает глубины до

1000-1500 м, а более глубокая афотическая зона полностью лишена солнечного света.

Количество света в верхних слоях водоемов сильно меняется и зависит от широты местности, а также времени года. Так, например, длинные полярные ночи, наличие ледяного покрова на водоемах сильно ограничивают время, пригодное для фотосинтеза.

Световые лучи с разной длиной волны поглощаются неодинаково: красные поглощаются уже в поверхностных слоях водоема, в то время как синие и в особенности зеленые части солнечного спектра проникают значительно глубже. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, имеющие разные специализированные пигменты для улавливания света с разной длиной волны.

Наземно-воздушная среда жизни освоена в ходе эволюции значительно позднее, чем водная. Она является наиболее разнообразной как во времени, так и в пространстве.

Тела живых организмов окружены воздухом - газообразной подвижной средой с низкой плотностью (в 800 раз меньше, чем у воды), невысоким и постоянным давлением (около 760 мм рт. ст.), высоким содержанием кислорода и малым количеством водяных паров. Это сильно изменяет условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Поэтому наземные организмы имеют в своем теле хорошо развитые механические ткани и опору на поверхность земли. Низкое сопротивление воздуха при движении позволяет животным передвигаться со значительно большей скоростью, чем гидробионтам.

Жизнь во взвешенном состоянии в воздухе невозможна. Лишь микроскопические организмы, пыльца, семена, споры временно присутствуют в воздухе и переносятся воздушными потоками, с помощью которых они расселяются. Определенные животные (насекомые, птицы, рукокрылые) способны к активному полету. Однако они используют его только для расселения и поиска пищи. Все остальные функции осуществляются на поверхности земли.

Газовый состав воздуха в приземном слое атмосферы довольно однороден и стабилен (азот - 78 %, кислород - 21 %, аргон - 0,9 %, углекислый газ - 0,03 % по объему) благодаря высокой диффузионной способности газов и постоянному его перемешиванию конвекционными и ветровыми потоками.

земных организмов по сравнению с первичноводными. Именно в наземной среде на базе высокой эффективности окислительных процессов в организме возникла гомойотермия животных (у птиц и млекопитающих). Кислород из-за постоянно высокого его содержания в воздухе не лимитирует жизнь в наземной среде.

Режимы влажности на суше очень разнообразны - от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Велика также суточная и сезонная изменчивость содержания водяных паров в атмосфере. Наземные организмы постоянно сталкиваются с проблемой потери воды. Эволюция наземных организмов проходила

в направлении приспособления к добыванию и сохранению влаги.

Свет является источником энергии для фотосинтеза и тепла. Наземные растения используют в процессе фотосинтеза электромагнитные волны главным образом синей и красной части видимой области солнечного спектра (390-760 нм). Интенсивность и количество света в наземно-воздушной среде наиболее велики и практически не лимитируют жизнь зеленых растений. Для подавляющего большинства животных с дневной и даже ночной активностью зрение играет важную роль в ориентации, по-

иске добычи, способов маскировки и т. п.

Рельеф местности и свойства грунта оказывают существенное влияние на жизнь наземных организмов, формируя особенности светового, температурного режимов, влажности.

Большой размах температурных колебаний в сочетании с различным режимом влажности, облачности, осадков, силы и направления ветра создает большое разнообразие погодных условий, действию которых подвергаются организмы. В различных географических районах складываются сходные погодные условия, формирующие их климат.

Для большинства наземных организмов (в особенности мелких) каждой климатической зоны важны также условия их непосредственного местообитания, зависящего от особенностей рельефа, экспозиции, наличия растительности, что в совокупности формирует микроклимат. Например, температура поверхности дерева, обращенной к югу, будет намного выше, чем на северной. Резко отличаются температура, влажность,

сила ветра, освещенность на открытых пространствах и в лесу, а зимой - на открытых участках почвы и под снегом, слоем опавших листьев, в норах, дуплах, пещерах и т. п.

Разнообразие микроклиматов создало гораздо больше вариантов условий в наземновоздушной среде, что способствовало возникновению в ходе эволюции более значительного количества видов наземных организмов по сравнению с водными.

Почва представляет собой сложную систему, состоящую из твердых минеральных частиц и органических остатков (перегноя), окруженных воздухом и водой. В зависимости от типа почвы - глинистая, песчаная, глинисто-песчаная и др. - она в большей или меньшей степени пронизана полостями, заполненными смесью газов и водными растворами. В почве, по сравнению с приземным слоем воздуха, сглажены темпера-

турные колебания, а на глубине 1 м не ощутимы и сезонные изменения температуры.

Верхний горизонт почвы содержит определенное количество перегноя (гумуса), от которого зависит продуктивность растительного покрова. Расположенный под ним.

Основные закономерности действия экологических факторов

Реакция организмов на влияние абиотических факторов. Воздействие экологических факторов на живой организм весьма многообразно. Одни факторы оказывают более сильное влияние, другие действуют слабее; одни влияют на все стороны жизни, другие на определенный жизненный процесс. Тем не менее в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей, которые укладываются в некоторую общую схему действия экологического фактора на жизнедеятельность организма.

Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума), при которых ещё возможно существование организма. Данные точки называются нижним и верхним пределами выносливости (толерантности) живых существ по отношению к конкретному фактору среды.Подобная закономерность реакции организмов на воздействие экологических факторов позволяет рассматривать её как фундаментальный биологический принцип˸ для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, пессимальные зоны и пределы выносливости по отношению к каждому фактору среды. Разные виды живых организмов заметно отличаются друг от друга как по положению оптимума, так и по пределам выносливости. Например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80 С (от +30 до -55 С), некоторые тепловодные рачки выдерживают изменения температуры воды в интервале не более 6 С (от 23 до 29 С), нитчатая цианобактерия осциллатория, живущая на острове Ява в воде с температурой 64 С, погибает при 68 С уже через 5 10 мин. Точно так же одни луговые травы предпочитают почвы с довольно узким диапазоном кислотности при рН = 3,5 4,5 (например, вереск обыкновенный, белоус торчащий, щавель малый служат индикаторами кислых почв), другие хорошо растут при широком диапазоне рН от сильнокислого до щелочного (например, сосна обыкновенная). В связи с этим организмы, для существования которых необходимы строго определенные, относительно постоянные условия среды, называют стенобионтными (греч. stenos узкий, bion живущий), а те, которые живут в широком диапазоне изменчивости условий среды, эврибионтными (греч. eurys широкий). При этом организмы одного и того же вида могут иметь узкую амплитуду по отношению к одному фак тору и широкую к другому (например, приспособленность к узкому диапазону температур и широкому диапазону солености воды). Кроме того, одна и та же доза фактора должна быть оптимальной для одного вида, пессимальной для другого и выходить за пределы выносливости для третьего.Способность организмов адаптироваться к определенному диапазону изменчивости факторов среды называютэкологической пластичностью. Эта особенность является одним из важнейших свойств всего живого˸ регулируя свою жизнедеятельность в соответствии с изменениями условий среды, организмы приобретают возможность выживать и оставлять потомство. Значит, эврибионтные организмы явлются эколог ически наиболее пластичными, что обеспечивает их широкое распространение, а стенобионтные, напротив, отличаются слабой экологической пластичностью и, как следствие, обычно имеют ограниченные ареалы распространения.Взаимодействие экологических факторов. Ограничивающий фактор.
Размещено на реф.рф
Экологические факторы воздействуют на живой организм совместно и одновременно. При этом действие одного фактора зависит от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействие факторов. Например, жару или мороз легче переносить при сухом, а не при влажном воздухе. Скорость испарения воды листьями растений (транспирация) значительно выше, в случае если температура воздуха высокая, а погода ветреная.В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Например, увядание растений можно приостановить как увеличением количества влаги в почве, так и снижением температуры воздуха, уменьшающего транспирацию; в пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время; в Арктике продолжительный световой день летом компенсирует недостаток тепла.Вместе с тем ни один из необходимых организму экологических факторов не должна быть полностью заменен другим. Отсутствие света делает жизнь растений невозможной, несмотря на самые благоприятные сочетания других условий. Поэтому если значение хотя бы одного из жизненно необходимых экологических факторов приближается к критической величине или выходит за её пределы (ниже минимума или выше максимума), то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие факторы называются ограничивающими (лимитирующими). Природа ограничивающих факторов должна быть различной. Например, угнетение травянистых растений под пологом буковых лесов, где при оптимальном тепловом режиме, повышенном содержании углекислого газа, богатых почвах возможности развития трав ограничиваются недостатком света. Изменить такой результат можно только воздействием на ограничивающий фактор.Ограничивающие факторы среды определяют географический ареал вида. Так, продвижение вида на север может лимитироваться недостатком тепла, а в районы пустынь и сухих степей недостатком влаги или чересчур высокими температурами. Фактором, ограничивающим распространение организмов, могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для цветковых растений.Выявление ограничивающих факторов и устранение их действия, т. е. оптимизация среды обитания живых организмов, составляет важную практическую цель в повышении урожайности сельскохозяйственных культур и продуктивности домашних животных.

В настоящее время количество экологических факторов, оказывающих то или иное воздействие на живые организмы достаточно велико. И если действие одних (температура окружающей среды, влажность и т.д.) учёным уже очень хорошо известно, то, например, изменение сил гравитации изучено ещё не до конца. В то же время в характере в характере воздействия всех экологических факторов прослеживается ряд закономерностей.

Понятие о законе оптиума

Сформулированный В.Шелфордом закон оптимума описывает наличие оптимального значения экологического фактора при котором возможно существования отдельного организма или биоценоза в целом. За пределами зоны оптимума находятся зоны угнетения, существование жизни за которыми не представляется возможным.

Очень важным является различное отношение организмов к действие различных экологических факторов. Таким образом, максимальные возможности организм проявляет при комплексном достижении факторами точки оптимума.

Как показано на рисунке, между критическими точками существует некая зона экологической толерантности, в пределах которой организм может ещё хоть как-то существовать. В наибольшей степени данная характеристика зависит от среды обитания живых организмов.

Разнообразие индивидуальных реакций организмов на факторы среды

Как известно, зоны оптимума для различных организмов находятся в разных пределах. Те организмы, для которых они имеют значительный диапазон, называются эврибионтами. Организмы с узким диапазоном толерантности принято называть стенобионтами. Так, например, в относительно стабильной по своим свойствам среде преимущественно преобладают стенобионты, в динамичной же среде большее количество шансов на выживание получают эврибионты.

Однако, как правило, экологическая валентность не остается одной и той же для организма в течение его жизни. Так, например, личинки насекомых по отношению к температуре являются стенобионтами, в то время как взрослые особи могут являться эврибионтами.

Замечание 1

Стоит отметить, что действие каждого экологического фактора по-разному отражается на функциях организма. Например, высокая температура у холоднокровных организмов может увеличивать скорость обмена веществ, но в то же время тормозить их двигательную активность. Личинки крабов жить в пресной воде не способны, тогда как взрослые особи очень часто встречаются в устьевой зоне рек.

Взаимодействие экологических факторов

Ученые давно доказали возможность смещения пределов выносливости относительно какого-либо экологического фактора в зависимости от силы одновременного воздействия других факторов. Так, например, виды, которые адаптировались к существованию в широком диапазоне температурных условий могут оказаться не в состоянии выдерживать колебания влажности почвы или солености воды. В то же время одни экологические факторы могут с лёгкостью усиливать или смягчать силу действия других факторов. Например, снижение влажности воздуха может смягчать избыток тепла. А увеличение количества влаги и снижение температуры воздуха может затормозить процесс увядания растения.

Повышение концентрации углекислого газа в воздухе может компенсировать недостаток света для обеспечения фотосинтеза и т.д. Однако это не говорит о взаимозаменяемости факторов. Например, оптимальные условия в почве не смогут компенсировать полное отсутствие света, что в скором времени приведёт к гибели растения.

Замечание 2

Исходя из всего выше сказанного следует, что существование живых организмов на нашей планете возможно лишь при оптимальном соотношении факторов окружающей природной среды.

ЛЕКЦИЯ №5

ТЕМА: ОБЩИЕ ЗАКОНОМЕРНОСТИ ДЕЙСТВИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ НА ОРГАНИЗМЫ

ПЛАН:

1. Совокупное воздействие экологических факторов.

2. Закон минимума Либиха.

3. Закон лимитирующих факторов Шелфорда.

4. Реакция организмов на изменения уровня экологических факторов.

5. Изменчивость.

6. Адаптация.

7. Экологическая ниша организма.

7.1. Понятия и определения.

7.2. Специализированные и общие экологические ниши.

8. Экологические формы.

Экологические факторы динамичны, изменчивы во вре­мени и пространстве. Теплое время года регулярно сменяется холодным, в течение суток наблюдается колебание температу­ры и влажности , день сменяет ночь и т. п. Все это природные (естественные) изменения экологических факторов, однако, в них может вмешиваться человек. Антропогенное влияние на природную среду проявляется в изменении либо режимов эко­логических факторов (абсолютных значений или динамики), либо состава факторов (например, разработка, производство и применение не существовавших ранее в природе средств за­щиты растений, минеральных удобрений и др.).

1. Совокупное воздействие экологических факторов

Экологические факторы среды воздействуют на орга­низм одновременно и совместно. Совокупное воздействие фак­торов – констелляция, в той или иной мере взаимоизменяет характер воздействия каждого отдельного фактора. Хорошо изучено влияние влажности воздуха на восприя­тие животными температуры. С повышением влажности умень­шается интенсивность испарения влаги с поверхности кожи, что затрудняет работу одного из наиболее эффективных меха­низмов приспособления к высокой температуре. Низкие тем­пературы также легче переносятся в сухой атмосфере, имею­щей меньшую теплопроводность (лучшие теплоизоляционные свойства). Таким образом, влажность среды меняет субъектив­ное восприятие температуры у теплокровных животных, в том числе у человека.

В комплексном действии экологических факторов среды значение отдельных экологических факторов неравноценно. Среди них выделяют ведущие (главные) и второстепенные факторы.

Ведущими являются те факторы, которые необходимы для жизнедеятельности, второстепенными - существующие или фоновые факторы. Обычно у разных организмов различные ве­дущие факторы, даже если организмы живут в одном месте. Кроме того, смену ведущих факторов наблюдают при переходе организма в другой период своей жизни. Так, в период цвете­ния ведущим фактором для растения может быть свет, а в период формирования семян - влага и питательные вещества.

Иногда недостаток одного фактора частично компенсиру­ется усилением другого. Например, в Арктике продолжитель­ный световой день компенсирует недостаток тепла.

2. Закон минимума Либиха

Любому живому организму необходимы не вообще тем­пература, влажность, минеральные и органические вещества или какие-нибудь другие факторы, а их определенный режим. Реакция организма зависит от количества (дозы) фактора. Кроме того, живой организм в природных условиях подверга­ется воздействию многих экологических факторов (как абиоти­ческих, так и биотических) одновременно. Растения нуждают­ся в значительных количествах влаги и питательных веществ (азот , фосфор, калий) и одновременно в относительно «ничтож­ных» количествах таких элементов, как бор и молибден.

Любой вид животного или растения обладает четкой изби­рательностью к составу пищи: каждому растению необходимы определенные минеральные элементы. Любой вид животного по-своему требователен к качеству пищи. Для того чтобы нор­мально существовать, развиваться, организм должен иметь весь набор необходимых факторов в оптимальных режимах и достаточных количествах.

Тот факт, что ограничение дозы (или отсутствие) любого из необходимых растению веществ, относящихся как к макро-, так и к микроэлементам, ведет к одинаковому результату - замедлению роста, обнаружен и изучен одним из основополож­ников агрохимии немецким химиком Юстасом фон Либихом. Сформулированное им в 1840 г. правило называют законом минимума Либиха : величина урожая определяется количеством в почве того из элементов питания, потребность растения в ко­тором удовлетворена меньше всего.

При этом Ю. Либих рисовал бочку с отверстиями, показывая, что нижнее отверстие в бочке определяет уровень жидкости в ней. Закон минимума справедлив как для растений, так и для животных, включая человека, которому в определенных ситу­ациях приходится употреблять минеральную воду или витамины для компенсации недостатка каких-либо элементов в организме.

Впоследствии в закон Либиха были внесены уточнения. Важной поправкой и дополнением служит закон неоднознач­ного (селективного) действия фактора на различные функ­ции организма : любой экологический фактор неодинаково влияет на функ­ции организма, оптимум для одних процессов, напри­мер дыхания, не есть оптимум для других, например пи­щеварения, и наоборот.

Э. Рюбелем в 1930 г. был установлен закон (эффект) ком­пенсации (взаимозаменяемости) факторов : отсутствие или недостаток некоторых экологических факторов может быть компенсировано другим близким (аналогичным) фактором.

Например, недостаток света может быть компенсирован для растения обилием диоксида углерода, а при построении раковин моллюсками недостающий кальций может заменять­ся на стронций.

Однако подобные возможности чрезвычайно ограничены. В 1949 г. сформулировал закон незаменимости фундаментальных факторов : полное отсутствие в среде фундаментальных экологиче­ских факторов (света, воды, биогенов и т. д.) не может быть заменено другими факторами.

К этой группе уточнений закона Либиха относится несколько отличное от других правило фазовых реакций «польза - вред» : малые концентрации токсиканта действуют на организм в направлении усиления его функций (их стимулирова­ния), тогда как более высокие концентрации угнетают или даже приводят к его смерти.

Эта токсикологическая закономерность справедлива для многих (так, известны лечебные свойства малых концентра­ций змеиного яда), но не всех ядовитых веществ.

3. Закон лимитирующих факторов Шелфорда

Фактор среды ощущается организмом не только при его недостатке. Проблемы возникают также и при избытке любого из экологических факторов. Из опыта известно, что при недос­татке воды в почве ассимиляция растением элементов минерального питания затруднена, но и избыток воды ведет к аналогичным последствиям: возможна гибель корней, воз­никновение анаэробных процессов, закисание почвы и т. п. Жизненная активность организма также заметно угнетается при малых значениях и при чрезмерном воздействии такого абиотического фактора, как температура.

Фактор среды наиболее эффективно действует на организм только при некотором среднем его значении, оптимальном для данного организма. Чем шире пределы колебаний какого-либо фактора, при котором организм может сохранять жизнеспо­собность, тем выше устойчивость, т. е. толерантность данного организма к соответствующему фактору (от лат. tolerantia - терпение). Таким образом, толерантность - это способность организма выдерживать отклонения экологических факторов от оптимальных для его жизнедеятельности значений.

Впервые предположение о лимитирующем (ограничиваю­щем) влиянии максимального значения фактора наравне с ми­нимальным значением было высказано в 1913 г. американ­ским зоологом В. Шелфордом, установившим фундаменталь­ный биологический закон толерантности: любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивос­ти (толерантности) к любому экологическому фактору.

Другая формулировка закона В. Шелфорда поясняет, почему закон толерантности одновременно называют законом лимитирующих факторов: даже единственный фактор за пределами зоны своего оптимума приводит к стрессовому состоянию организма и в пределе - к его гибели.

Поэтому экологический фактор, уровень которого прибли­жается к любой границе диапазона выносливости организма или заходит за эту границу, называют лимитирующим фактором. Закон толерантности дополняют положения американско­го эколога Ю. Одума:

Организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

Многие факторы среды становятся ограничивающими (лимитирующими) в особо важные (критические) пери­оды жизни организмов, особенно в период размноже­ния.

К этим положениям также примыкает закон Митчерлиха-Бауле, названный А. Тинеманом законом совокупного дей­ствия : совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наимень­шую пластичность - минимальную способность к при­способлению.

4. Реакция организмов на изменения уровня экологических

факторов

Оптимальное воздействие на разные организмы один и тот же фактор может оказывать при различных значениях. Так, одни растения предпочитают очень влажную почву, а дру­гие - относительно сухую. Некоторые животные любят сильную жару, иные лучше переносят умеренную температуру среды и т. д.

Кроме того, живые организмы делят на способных сущест­вовать в широком или узком диапазонах изменения какого-либо фактора среды. К каждому экологическому фактору орга­низмы приспосабливаются относительно независимым путем. Организм может иметь приспособленность к узкому диапазону одного фактора и к широкому диапазону - другого. Для орга­низма имеет значение не только амплитуда, но и скорость ко­лебаний того или иного фактора.

Если влияние условий среды не достигает предельных значе­ний, живые организмы реагируют на него определенными дейст­виями или изменениями своего состояния, что в конечном итоге ведет к выживанию вида. Преодоление неблагоприятных воз­действий животными возможно двумя способами:

Путем их избегания;

Путем приобретения выносливости.

Первый спо­соб используют животные, обладающие достаточной подвижно­стью, благодаря которой они мигрируют, строят убежища и т. п.

Требовательность и толерантность к факторам среды опре­деляет область географического распространения особей рас­сматриваемого вида вне зависимости от степени постоянства их обитания, т. е. ар е а л вида.

В основе ответных реакций растений лежит выработка приспособительных изменений их строения и процессов жиз­недеятельности. При ритмически повторяющихся климатиче­ских ситуациях растения и животные могут приспособиться путем выработки соответствующей временной организации жизненных процессов, в результате чего у них чередуются пе­риоды активного функционирования организма с периодами спячки (ряд животных) или с состоянием покоя (растения).

5. Изменчивость

Изменчивость - одно из главных свойств живого на различных уровнях его организации. Для каждого вида важна изменчивость составляющих его особей. Например, люди отличаются друг от друга ростом, телосложением, цветом глаз и кожи, проявляют различные способности. Аналогичная вну­тривидовая изменчивость присуща всем организмам: слонам, мухам, дубам, воробьям и прочим.

Особи любого вида различаются между собой внешними и внутренними признаками. Признак - любая особенность ор­ганизма как в его внешнем облике (размер, форма, окраска и т. п.), так и во внутреннем строении. Устойчивость к болез­ням, низким или высоким температурам, способность пла­вать, летать и прочее - все это признаки, многие из которых можно изменить или развить путем обучения или тренировки. Однако главное их свойство - генетическая, т. е. наследствен­ная, основа. Каждый организм появляется на свет с набором определенных признаков.

Проведенные исследования показали, что наследственная основа признаков любого вида закодирована в молекулах ДНК, т. е. в генах организма, совокупность которых называет­ся его генотипом. Генотип практически всех организмов, включая человека, представлен не одним, а двумя наборами генов. Рост тела сопровождается делением клеток, в ходе кото­рого каждая новая клетка получает точную копию обоих набо­ров генов. Однако последующему поколению передается лишь по одному набору от каждого из родителей, и поэтому у детей возникают новые комбинации генов, отличные от родитель­ских. Таким образом, все потомки, а, следовательно, и особи вида (за исключением однояйцевых близнецов) отличаются своими генотипами.

Генетическая изменчивость - основа наследственной изменчивости признаков. Еще один источник наследственной изменчивости - мутация ДНК, затрагивающая любой ген или группу генов.

Различия, возникающие в результате обучения, трениров­ки или просто травмы, являются развитием какого-либо врож­денного признака, но не меняют его генетической основы.

Если наследственная изменчивость при половом размно­жении неизбежна, то при бесполом воспроизводстве особей, т. е. при клонировании, наблюдается иная картина. Так, при черенковании растений новый организм появляется в результате простого клеточного деления, сопровождающего­ся точным копированием родительской ДНК. Поэтому все осо­би клона (за исключением мутантов) генетически идентичны. Генофонд - совокупность образцов генов всех особей некото­рой группы организмов одного вида. Генофонд вида непостоянен, он может меняться от поколения к поколению. Если особи, обладающие редкими признаками, не размножаются, то часть генофонда сокращается.

В природе постоянно идет изменение генофонда вида путем естественного отбора, являющегося основой процесса эволюции. Каждое поколение подвергается отбору на выжива­емость и воспроизведение, поэтому практически все признаки организмов в той или иной мере служат выживанию и воспро­изведению вида.

Однако генофонд можно изменить и целенаправленно с по­мощью искусственного отбора. Современные породы домаш­них животных и сорта культурных растений были выведены из диких предков именно так. Также возможно вмешательство в генофонд при скрещивании близкородственных видов (не­близкородственные виды не дают потомства). Этот метод назы­вают гибридизацией, а потомков - гибридами.

Последние достижения науки связаны с разработкой тех­нологии генной инженерии, заключающейся в получении спе­цифических генов (отрезков ДНК) одного вида и введении их другому виду непосредственно без скрещивания. Это позво­ляет гибридизировать любые виды, не только близкородствен­ные, и потому вызывает серьезные споры из-за непредсказу­емости конечных результатов такого радикального вмеша­тельства в генофонды живых существ.

6. Адаптация

Животные и растения вынуждены приспосабливаться к множеству факторов непрерывно изменяющихся условий жизни. Динамичность экологических факторов во времени и пространстве зависит от астрономических , гелиоклиматических, геологических процессов, которые выполняют управ­ляющую роль по отношению к живым организмам.

Признаки, способствующие выживанию организма, посте­пенно усиливаются под действием естественного отбора, пока не будет достигнута максимальная приспособленность к су­ществующим условиям. Приспособление может происходить на уровне клетки, тканей и даже целого организма, затрагивая форму, размеры, соотношение органов и т. п. Организмы в процессе эволюции и естественного отбора вырабатывают наследственно закрепленные особенности, обеспечивающие нормальную жизнедеятельность в изменившихся экологиче­ских условиях, т. е. происходит адаптация.

Адаптация - приспособление организмов (и видов) к сре­де - фундаментальное свойство живой природы. Среда обита­ния любого живого существа, с одной стороны, медленно и не­уклонно изменяется на протяжении жизни многих поколений соответствующего биологического вида, а с другой стороны, она предъявляет организму разнообразные требования, ме­няющиеся в короткие отрезки индивидуальной жизни. Поэто­му различают три уровня процесса адаптации.

Генетический уровень . Данный уровень обеспечивает адаптацию и сохранение жизнеспособности вида в поколениях на основе свойства генетической изменчивости.

Глубокие изменения обмена веществ . Приспособление к се­зонным и годичным природным циклам осуществляется с по­мощью глубоких изменений обмена веществ. У животных центральную роль в этих процессах играют нейрогуморальные механизмы, например, подготовка к сезону размножения или к зимней спячке «включается» нервными стимулами, а осуществляется благодаря изменениям в гормо­нальном статусе организма. У растений сезонные и иные дол­говременные изменения обеспечиваются работой фитогормонов, ростовых факторов.

Быстрые изменения в ответ на кратковременные откло­нения факторов среды. У животных они осуществляются раз­нообразными нервными механизмами, ведущими к перемене поведения и быстрой обратимой трансформации обмена веществ. У растений примером быстрых изменений являются реакции на смену освещенности.

Адаптивное значение имеют практически все закономер­ности, характерные для живого. В ходе естественного отбора виды преображаются и все лучше адаптируются к своим мес­тообитаниям. Например, жирафы постепенно приспособились к поеданию листьев с вершин деревьев. С увеличением приспо­собленности организмов к местообитанию скорость их измене­ния понижается.

В случае отношений «хищник-жертва» естественный отбор влияет, прежде всего, на гены, позволяющие наиболее эффективно избегать врага, а у хищников - на гены, повы­шающие его охотничьи способности. Это справедливо для всех биотических взаимодействий. Организмы, почему-либо утра­тившие способность к адаптации, обречены на вымирание.

Итак, при перемене условий существования (отклонении значения одного или нескольких экологических факторов за пределы обычных колебаний) одни виды адаптируются и преобразуются, а другие виды вымирают. Это зависит от ряда об­стоятельств. Основное условие адаптации - выживание и размножение хотя бы нескольких особей в новых условиях, которое связано с генетическим разнообразием генофонда и степенью изменения среды. При более разнообразном генофон­де даже в случае сильных изменений среды некоторые особи сумеют выжить, тогда как при малом разнообразии генофонда даже незначительные колебания экологических факторов мо­гут привести к вымиранию вида.

Если изменения условий малозаметны или происходят по­степенно, то большинство видов может приспособиться и вы­жить. Чем резче изменение, тем большее разнообразие генофон­да необходимо для выживания. В случае катастрофических из­менений (например, ядерной войны), возможно, не выживет ни один вид. Важнейший экологический принцип гласит: выживание вида обеспечивается его генетическим раз­нообразием и слабыми колебаниями экологических фак­торов.

К генетическому разнообразию и изменению среды можно добавить еще один фактор - географическое распространение. Чем шире распространен вид (чем больше ареал вида), тем он генетически более разнообразен и наоборот. Кроме того, при обширном географическом распространении некоторые участ­ки ареала могут быть удалены или изолированы от районов, где нарушались условия существования. На этих участках вид сохраняется, даже если он исчезнет из других мест.

Если часть особей выжила в новых условиях, то дальней­шая адаптация и восстановление численности зависят от ско­рости воспроизведения, так как изменение признаков проис­ходит только путем отбора в каждом поколении. Например, пара насекомых имеет сотни потомков, проходящих жизнен­ный цикл развития за несколько недель. Следовательно, ско­рость воспроизведения у них в тысячу раз выше, чем у птиц, выкармливающих только 2-6 птенцов в год, а значит, оди­наковый уровень приспособленности к новым условиям ра­зовьется во столько же раз быстрее. Именно поэтому насеко­мые быстро адаптируются и приобретают устойчивость к все­возможным «средствам защиты растений», тогда как другие дикие виды от этих обработок погибают.

Важно отметить, что сами по себе ядохимикаты не вызыва­ют полезных мутаций. Изменения возникают случайно. Адаптивные признаки развиваются благодаря наследственному разнообразию, уже существующему в генофонде вида. Имеют значение и размеры организма. Мухи могут существовать да­же в мусорном ведре, а крупным животным необходимы для выживания обширные территории.

Адаптация имеет следующие особенности:

Приспособленность к одному фактору среды, например повышенной влажности, не дает организму такой же приспо­собленности к другим условиям среды (температуре и т. п.). Эта закономерность называется законом относительной неза­висимости адаптации : высокая адаптированность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни.

Каждый вид организмов в вечно меняющейся среде жизни по-своему адаптирован. Это выражается сформулированным в 1924 г. правилом экологической индивиду­альности : каждый вид специфичен по экологическим возможнос­тям адаптации; двух идентичных видов не существует.

Правило соответствия условий среды обитания генети­ческой предопределенности организма гласит : вид организмов может существовать до тех пор и пос­тольку, поскольку окружающая его среда соответствует генетическим возможностям приспособления к ее коле­баниям и изменениям.

Отбор - это процесс изменения генофонда уже сущест­вующего вида. Ни человек, ни современная природа не могут создать новый генофонд или новый вид из ничего, на пустом месте. Меняется лишь то, что уже есть.

7. Экологическая ниша организма

7.1. Понятия и определения

Любой живой организм приспособлен (адаптирован) к определенным условиям окружающей среды. Изменение ее параметров, их выход за некоторые границы подавляет жизнедеятельность организмов и может вызвать их гибель. Требования того или иного организма к экологическим факторам среды обуславливают ареал (границы распространения) того вида, к которому организм принадлежит, а в пределах ареала - конкретные места обитания.

Местообитание - пространственно ограниченная совокуп­ность условий среды (абиотической и биотической), обеспечиваю­щая весь цикл развития и размножения особей (или группы осо­бей) одного вида. Это, например, живая изгородь, пруд, роща, каменистый берег и т. д. При этом в пределах местообитания могут выделяться места с особыми условиями (например, под корой гниющего ствола дерева в роще), в ряде случаев называемые микроместообитаниями.

Для совокупной характеристики физического пространст­ва, занимаемого организмами вида, их функциональной роли в биотической среде обитания, включая способ питания (тро­фический статус), образ жизни и взаимоотношения с другими видами, американским ученым Дж. Гриннеллом в 1928 г. вве­ден термин «экологическая ниша». Его современное определе­ние таково.

Экологическая ниша - это совокупность:

Всех требований организма к условиям среды обитания (составу и режимам экологических факторов) и место, где эти требования удовлетворяются;

Всего множества биологических характеристик и физических параметров среды, определяющих условия существования того или иного вида, преобразование им энергии, обмен информацией со средой и себе подобными.

Таким образом, экологическая ниша характеризует сте­пень биологической специализации вида. Можно утверждать, что местообитание организма – это его «адрес», тогда как эко­логическая ниша - его «род занятий», или «стиль жизни», или «профессия».

Экологическая специфичность видов подчеркивается аксиомой экологической адаптированности : каждый вид адаптирован к строго определенной, специ­фичной для него совокупности условий существования - экологической нише.

Поскольку виды организмов экологически индивидуаль­ны, то они имеют и специфические экологические ниши.

Таким образом, сколько на Земле видов живых организмов - столько же и экологических ниш.

Организмы, ведущие сходный образ жизни, как правило, не живут в одних и тех же местах из-за межвидовой конкурен­ции. Согласно установленному в 1934 г. советским биологом (1910-1986) принципу конкурентного взаимоиск­лючения : два вида не занимают одну и ту же экологическую нишу.

В природе также действует правило обязательности за­полнения экологических ниш : пустующая экологическая ниша всегда и обязательно будет заполнена.

Народная мудрость сформулировала эти два постулата так: «В одной берлоге не могут ужиться два медведя» и «При­рода не терпит пустоты».

Эти системные наблюдения реализуются в формировании биотических сообществ и биоценозов. Экологические ниши всегда бывают заполнены, хотя на это порой требуется значи­тельное время. Встречающееся выражение «свободная эколо­гическая ниша» означает, что в определенном месте слаба кон­куренция за какой-либо вид корма и есть недостаточно исполь­зуемая сумма других условий для некоего вида, входящего в аналогичные природные системы, но отсутствующего в рас­сматриваемой.

Особенно важно учитывать природные закономерности при попытках вмешаться в существующую (или сложившуюся в определенном месте) ситуацию с целью создания более бла­гоприятных условий для человека. Так, биологами доказано следующее: в городах при повышении загрязненности терри­тории пищевыми отходами возрастает численность ворон. При попытке улучшить ситуацию, например, путем их физическо­го уничтожения население может столкнуться с тем, что эко­логическая ниша в городской среде, освобожденная воронами, будет быстро занята видом, имеющим близкую экологическую нишу, а именно - крысами. Такой результат вряд ли можно будет признать победой.

7.2. Специализированные и общие экологические ниши

Экологические ниши всех живых организмов делят на специализированные и общие. Это деление зависит от основ­ных источников питания соответствующих видов, размеров местообитания, чувствительности к абиотическим факторам среды.

Специализированные ниши . Большинство видов растений и животных приспособлены к существованию лишь в узком диапазоне климатических условий и иных характеристик окружающей среды, питаются ограниченным набором расте­ний или животных. Такие виды имеют специализированную нишу, определяющую их местообитание в природной среде.

Так, гигантская панда имеет узко специализированную нишу, ибо на 99% питается листьями и побегами бамбука. Массовое уничтожение некоторых видов бамбука в районах Китая, где обитала панда, привело это животное к вымира­нию.

Разнообразие видов и форм растительного и животного ми­ра, существующее во влажных тропических лесах, связано с наличием там ряда специализированных экологических ниш в каждом из четко выраженных ярусов лесной растительнос­ти. Поэтому интенсивная вырубка этих лесов стала причиной вымирания миллионов специализированных видов растений и животных.

Общие ниши . Видам с общими нишами характерна легкая приспосабливаемость к изменениям экологических факторов среды обитания. Они могут успешно существовать в разнообразных местах, питаться различной пищей и выдерживают резкие колебания природных условий. Общие экологические ниши имеются у мух, тараканов, мышей, крыс, людей и т. д.

Для видов, имеющих общие экологические ниши, существует значительно меньшая угроза вымирания, чем для имею­щих специализированные ниши.

8. Экологические формы

Окружающая природная среда формирует фенотип ор­ганизмов - совокупность морфологических , физиологических и поведенческих признаков. Виды, обитающие в сходных ус­ловиях (при сходной совокупности экологических факторов) обладают похожей приспособленностью к этим условиям, да­же если они относятся к разным категориям в классификации животного и растительного мира. Экология учитывает это, классифицируя организмы на различные экологические (жиз­ненные) формы. При этом жизненной формой вида называют сложившийся комплекс его биологических, физиологических и морфологических свойств, обусловливающих определенную реакцию на воздействие окружающей среды. Классификаций организмов по жизненным формам существует много. Так, на­пример, выделяют геобионтов - обитателей почвы, дендробионтов - связанных с древесными растениями, хортобионтов - обитателей травяного покрова и многое другое.

Гидробионтов - обитателей водной среды при­нято делить на такие экологические формы, как бентос, перифитон, планктон, нектон, нейстон.

Бентос (от греч. benthos - глубина) - донные организмы, ведущие прикрепленный или свободный образ жизни, в том числе обитающие в слое донного осадка. Преимущественно это моллюски, некоторые низшие растения, ползающие личинки насекомых.

Перифитон - животные и растения, прикрепленные к стеблям высших растений и поднимающиеся над дном.

Планктон (от греч. plagktos - парящий) - плавающие ор­ганизмы, способные совершать вертикальные и горизонталь­ные перемещения в основном в соответствии с движением масс водной среды. Принято выделять фитопланктон, отно­сящийся к продуцентам, и зоопланктон, относящийся к консументам и питающийся фитопланктоном.

Нектон (от греч. nektos - плавающий) - свободно и само­стоятельно плавающие организмы - преимущественно рыбы, амфибии, крупные водные насекомые, ракообразные.

Нейстон - совокупность морских и пресноводных орга­низмов, обитающих у поверхности воды; например, личинки комаров, водомерки, из растений - ряска и пр.

Экологическая форма - отражение приспособленности са­мых разнообразных организмов к отдельным экологическим факторам, являющимся в процессе эволюции лимитирующи­ми. Так, деление растений на гигрофиты (влаголюби­вые), мезофиты (средней требовательности к влаге) и ксерофиты (сухолюбивые) отражает их реакцию на конк­ретный экологический фактор - влагу. Вместе с тем растения ксерофиты представляют с животным и ксеробионтами единую экологическую форму, так как и те и другие обитают в пустынях и имеют специфическую адаптацию, препятствующую потерям влаги (например, получение воды из жиров).

Контрольные вопросы и задания

1. Какие законы общего действия экологических факторов вам известны?

2. Как формулируется закон минимума? Какие существуют к нему уточнения?

3. Сформулируйте закон толерантности. Кто установил эту закономерность?

4. Приведите примеры использования законов минимума и толерантности в практической деятельности.

5. Какие механизмы позволят живым организмам компенсировать действие экологических факторов?

6. В чем различие между местообитанием и экологической нишей?

7. Что такое жизненная форма организмов? Какое значение имеют жизненные формы в адаптации организмов?

Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном и меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Приспособления организмов к среде носят название адаптации. Способность к адаптациям - одно из основных свойств жизни вообще, так как обеспечивает самую возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и измэ-няются в ходе эволюции видов.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Экологические факторы делятся на абиотические и биотические, антропогенные.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы - это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов - растениями, животными, микроорганизмами, зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составная часть среды каждого живого существа.

Взаимные связи организмов - основа существования биоценозов и популяций; рассмотрение их относится к области синэко-логии.

Антропогенные факторы - это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. В ходе истории человечества развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете следует выделять в особую силу, не укладывающуюся в рамки этой классификации. В настоящее время практически вся судьба живого покрова Земли и всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываю 1ся в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. п.

Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток или сезоном года или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например изменения погодных условий в разные годы, явления катастрофического характера - бури, ливни, обвалы и т. п.; 3) направленными на протяжении известных, иногда длительных, отрезков времени, например при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. п.

Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие анатомические и морфологические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума. Каждый фактор имеет лишь определенные пределы положительного влияния на организмы. Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.

Представители разных ал-дов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например песцы з тундре могут переносить колебания температуры воздуха в диапазоне око то 80°С (от +30 до -55°С), тогда как тепловодные рачки Сepilia mirabilis выдерживают изменения температуры воды в интервале не более 6°С (от 23 до 29C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной-для другого и выходить за пределы выносливости для третьего.

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды - выносящие значительные колебания температуры, эврибатные - широкий диапазон давления, эвригалинные - разную степень засоления среды.

Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено»-стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке,- эврибионтными.

2. Неоднозначность действия фактора на разные функции. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от 40 до 45 °С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Изменчивость, вариабельность и разнообразие ответных реакций на действие факторов среды у отдельных особей вида. Степень выносливости, критические точки, оптимальная и песси-мальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки - одного из вредителей муки и зерновых продуктов-»критическая минимальная температура для гусениц -7°С, для взрослых форм - 22 °С, а для яиц -27 °С. Мороз в 10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. К каждому из факторов среды виды приспосабливаются относительно независимым путем. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям, а затем широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть по-

лучен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Факторы среды, наиболее удаляющиеся от оптимума, особенно затрудняют возможность существования вида в данных условиях. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Такие сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в каждый конкретный отрезок времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых - осы Blastophaga psenes. Родина этого дерева - Средиземноморье. Завезенный в Калифорнию, инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых.почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятель-ностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.