Обычный и предварительно напряженный железобетон. Положительные и отрицательные свойства железобетона. Важные преимущества и недостатки предварительно напряженного железобетона Что такое предварительно напряженный железобетон




Преднапряжение бетона для повышения его прочности - это современный способ повышения прочности бетонных конструкций. В этой статье мы перечислим преимущества и недостатки предварительно напряженного железобетона.

Бетон используется в различных видах строительства. Имя "предварительно" не означает, что данный вид бетона был поставлен под напряжение, прежде чем строится этаж над ним. Однако, вместо выпучивания под давлением, ему удается стать сильнее, и он приобретает способность выдерживать гораздо большие напряжения, чем обычный бетон.

Но как это сделать. Каковы преимущества и недостатки предварительно напряженного железобетона? Давайте узнаем ответы на эти вопросы, которые помогут лучше это понять.

Что такое предварительно напряженный железобетон?

Бетон в своем обычном состоянии имеет чрезвычайно высокий уровень прочности на сжатие. Это дает возможность использовать его для создания структур, которые должны нести сжимающие нагрузки. Например, он используется для создания колонн и опор для поддержки различных сооружений в больших зданиях.

Однако, по сравнению с его прочностью на сжатие, бетон почти не имеет целостной прочности. Поэтому, если обычный бетон используется для строительства перекрытий, он будет прогибаться под давлением при сжатии на нее, и в конце концов трескается и осыпается. Для устранения этого недостатка, применяется метод преднапряжение. В своей самой основной форме, преднапряжение осуществляется следующим образом.

Ряд стальных тросов приводят в напряжение путем применения оттягивающей силы на их концах, и располагают в бетонный блок. Затем, жидкий бетон заливается в формы и твердеет, что вызывает склеивание между ним и стальными тросами внутри. После этого, кабели пытаются восстановить свою первоначальную форму, они тянут с ними и бетон, создавая компрессию. Это вызывает стресс во внутренних частицах бетона, укрепляя его и делая его отличным материалом для использования в конструкциях. Поскольку напряжения бетона производится до его использования, это называется предварительно напряженный бетон.

Преднапряженный бетон имеет большой объем прочности, как на сжатие, так и на растяжение. Он используется для построения длинных мостов, строительных плит и др.

Преимущества и недостатки предварительно напряженного железобетона

Преимущества

1) высокая прочность на растяжение и трещиностойкость

Обычная бетонная плита, если положить под напряжение, проседает вниз под давлением веса. В таком положении, верхняя часть плиты сжимается, а ее дно находится под напряжением. Поскольку бетон может выдерживать большие объемы сжатия верхняя части плиты способна выдерживать такую нагрузку. Однако, бетон слаб в отношении силы на растяжение. В нижней части плита начинает трескаться, пока вся плита не рухнет вниз.

Преднапряженный бетон имеет высокий запас прочности на растяжение, и поэтому способен нести большие нагрузки без образования трещин или провалов.

2) Ниже глубины

Благодаря своей высокой прочности, предварительно напряженных железобетонных можно использовать, чтобы построить структуры, имеющие значительно меньшую глубину, по сравнению с железобетонными конструкциями. Это имеет два основных преимущества. Если его используют для строительных плит, он не занимает много места, и становятся доступными дополнительное полезное пространство, особенно в многоэтажных зданиях. Второе преимущество более низких глубин структур является то, что они имеют меньший вес, и несущих колонн в зданиях тоже можно сделать меньше, что позволяет сэкономить на строительных затратах и усилиях.

3) Продолжительности

Преднапряженный бетон может быть использован для построения структур, имеющих более длительный срок по сравнению с железобетонными. При строительстве зданий, это означает, что меньшее количество столбцов будут необходимы для поддержки плит, а также расстояние между ними может быть значительно больше. Для мостов, использование преднапряженного бетона может позволить инженерам, построить длинный мост, который не провалится под нагрузкой.

4) быстрое и надежное строительство

Преднапряженные бетонные блоки изготавливаются в промышленности в нескольких стандартных формах и размерах. Они известны как сборные блоки. Поскольку они профессионально изготовлены, они имеют очень хорошее качество сборки, и в то же время они предоставляют всю силу преимущества сборного железобетона. Они могут напрямую доставляется на строительную площадку и использоваться для быстрого завершения строительных работ. Сооружения, построенные с помощью этих блоков, как известно, имеют лучшее качество, и более длительную эксплуатацию.

Недостатки

1) Большая сложность здания

Преднапряжение бетона на строительной площадке - это трудоемкий и сложный процесс. Нужно иметь глубокие знания о каждом шаге, который участвует вместе с полным знанием использованием различного оборудования. Сборные железобетонные конструкции производятся один раз, их трудно изменить, и, следовательно, сложность первоначального планирования тоже увеличивается. Кроме того, поскольку вероятность ошибки очень низка, большое внимание должно быть принято при построении.

2) Увеличение стоимости строительства

Преднапряженный бетон требует знаний и специального оборудования, которые могут быть дорогими. Даже стоимость железобетонных блоков существенно выше, чем усиленные блоки. В строительстве жилых зданий, в дополнительной прочности на растяжение, преднапряженный бетон может оказаться ненужным, так как простой железобетон значительно дешевле и достаточно прочный, чтобы выполнить все требования к нагрузке.

3) необходимость контроля качества и инспекции

Процедура, используемая для предварительного напряжения должна быть проверена и одобрена специалистами по контролю качества. Каждый поднапряженная конкретная структура должна проверяться, чтобы убедиться, что она была подвергнута соответствующему напряжению. Слишком много внимания тоже плохо, и это может привести к повреждению бетона , что делает его слабее.

Предварительно напряженные железобетонные конструкции обеспечивают превосходную прочность на растяжение по сравнению с нормальными и даже железобетонными, но они сложны в конструкции и более дорогостоящие. Для приложений с низким напряжением, таких как перекрытия зданий, использовать преднапряженный бетон - это непрактично. Следовательно, решение об использовании предварительно напряженного железобетона должно быть принято только если этого требует спецификация проекта.

Предварительно-напряженные конструкции – это конструкции или их элементы, в которых предварительно, т.е. в процессе изготовления, искусственно созданы в соответствии с расчетом начальные напряжения растяжения в арматуре и обжатия в бетоне.

Обжатие бетона на величину σ bp осуществляется предварительно натянутой арматурой, которая после отпуска натяжных устройств стремится возвратится в первоначальное состояние. Проскальзывание арматуры в бетоне исключается их взаимным сцеплением или специальной анкеровкой торцов арматуры в бетоне.

Начальные сжимающие напряжения создают в тех зонах бетона, которые впоследствии испытывают растяжение.

Железобетонные элементы без предварительного напряжения работают при наличии трещин: ,

где
- эксплуатационная нагрузка,

- нагрузка, при которой образуются трещины;

- разрушающая нагрузка.

Железобетонные предварительно-напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием:
.

Таким образом, предварительное напряжение не повышает прочность конструкции, а увеличивает ее жесткость и трещиностойкость!

Преимущества предварительно-напряженных конструкций:

    повышенная жесткость и трещиностойкость конструкции;

    возможность использования высокопрочной арматуры (A-IV и выше);

    предварительное напряжение приводит к уменьшению сечения элемента

    возможность выполнения эффективных стыков сборных элементов;

    предварительное напряжение позволяет изготавливать комбинированные конструкции (например, обжимаемую зону выполнять из тяжелого бетона, а остальную – из легкого);

    повышенная выносливость при многократно повторяемых, динамических нагрузках;

    преднапряженные конструкции более безопасны, т.к. перед разрушением имеют большой прогиб и тем самым сигнализируют, что прочность конструкции почти исчерпана;

    повышенная сейсмостойкость;

    повышенная долговечность.

Недостатки предварительно-напряженных конструкций:

    повышенная трудоемкость и необходимость специального оборудования и классифицированных работников;

    большая масса;

    большая тепло- и звукопроводность;

    усиление преднапряженных конструкций всегда сложнее, чем без преднапряжения;

    меньшая огнестойкость;

    при коррозии высокопрочная арматура быстрее теряет пластические свойства, возникает опасность хрупкого разрушения.

10.1.1. Способы и методы натяжения арматуры

Способы натяжения арматуры:

    На упоры (до бетонирования). Арматуру заводят в форму до бетонирования элемента, один конец закрепляют в упоре, другой – натягивают домкратом до заданного напряжения σ sp . Затем в форму заливают бетон. После достижения бетоном передаточной прочности R bp арматуру отпускают с упоров, при этом она обжимает окружающий бетон. Чтобы избежать разрушения бетона в торцах элементов, отпуск натяжения арматуры производят постепенно, снижая сначала на 50%, а затем до 0.

    На бетон . Сначала изготавливают бетонный элемент, в котором предусматривают каналы или пазы. После приобретения бетоном передаточной прочности Rbp, в каналы пропускают рабочую арматуру и натягивают ее на бетон. После натяжения концы арматуры закрепляют анкерами. Для обеспечения сцепления арматуры с бетоном каналы и пазы заполняют под давлением цементным раствором.

Методы натяжения арматуры:

    Электротермический – необходимое относительное удлинение арматуры еsp получают электрическим нагревом арматуры до соответствующей температуры.

    Механический – необходимое относительное удлинение арматуры получают вытяжкой арматуры натяжными механизмами (гидравлические и винтовые домкраты, лебедки, тарировочные ключи, намоточные машины и т.д.).

    Электротермомеханический – совокупность механического и электротермического методов.

    Физико-химический – заключается в самонапряжении конструкции вследствие использования энергии расширяющегося цемента.

Предварительно напряженными называют такие железобетонные конструкции, в которых до приложения нагрузок в процессе изготовления искусственно создаются здачительные сжимающие напряжения в бетоне nyтем натяжения высокопрочной арматуры. Начальный сжимающие напряжения создаются в тех зонах бетона, которые впоследствии под воздействием нагрузок испытывают растяжение. При этом повышается трещиностойкость конструкции и создаются условия для применения высокопрочной арматуры, что приводит к экономии металла и снижению стоимости конструкции.
Удельная стоимость арматуры, равная отношению ее цены (руб/т) к расчетному сопротивлению Rs, снижается с увеличением прочности арматуры. Поэтому высокопрочная арматура значительно выгоднее горячекатаной. Однако применять высокопрочную арматуру в конструкциях без предварительного напряжения нельзя, так как при высоких растягивающих напряжениях в арматуре и соответствующих деформациях удлинения в растянутых зонах бетона появляются трещины значительного раскрытия, лишающие конструкцию необходимых эксплуатационных качеств.
Сущность предварительно напряженного железобетона в экономическом эффекте, достигаемом благодаря применению высокопрочной арматуры. Кроме того, высокая трещиностойкость предварительно напряженного железобетона повышает его жесткость, сопротивление динамическим нагрузкам, коррозионную стойкость, долговечность.
В предварительно напряженной балке под нагрузкой бетон испытывает растягивающие напряжения только после погашения начальных сжимающих напряжений. При этом сила, вызывающая образование трещин или ограниченное по ширине их раскрытие, превышает нагрузку, действующую при эксплуатации. С увеличением нагрузки на балку до предельного разрушающего значения напряжения в арматуре и бетоне достигают предельных значений.
Таким образом, железобетонные предварительно напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием, в то время как конструкции без предварительного напряжения эксплуатируются при наличии трещин и при больших значениях прогибов. В этом различие конструкций предварительно напряженных и без предварительного напряжения с вытекающими отсюда особенностями их расчета, конструирования и изготовления.
В производстве предварительно напряженных элементов возможны два способа создания предварительного напряжения: натяжение на упоры и натяжение на бетон. При натяжении на упоры до бетонирования элемента арматуру заводят в форму, один конец ее закрепляют в упоре, другой натягивают домкратом или другим приспособлением до заданного контролируемого напряжения. После приобретения бетоном необходимой кубиковой прочности перед обжатием арматуру отпускают с упоров. Арматура при восстановлении упругих деформаций в условиях сцепления с бетоном обжимает окружающий бетон. При так называемом непрерывном армировании форму укладывают на поддон, снабженный штырями, арматурную проволоку специальной навивочной машиной навивают на трубки, надетые на штыри поддона, с заданной величиной напряжения, и конец ее закрепляют плашечным зажимом. После того как бетон наберет необходимую прочность, изделие с трубками снимают со штырей поддона, при этом арматура обжимает бетон.
Стержневую арматуру можно натягивать на упоры электротермическим способом. Стержни с высаженными головками разогревают электрическим током до 300-350 °С, заводят в форму и закрепляют на концах в упорах форм. Арматура при восстановлении начальной длины в процессе остывания натягивается на упоры.
При натяжении на бетон сначала изготовляют бетонный или слабоармированный элемент, затем при достижении бетоном прочности создают в нем предварительное сжимающее напряжение. Напрягаемую арматуру заводят в каналы или в пазы, оставляемые при бетонировании элемента, и натягивают на бетон. При этом способе напряжения в арматуре контролируются после окончания обжатия бетона. Каналы, превышающие диаметр арматуры на 5-15 мм, создают в бетоне укладкой извлекаемых пустотообразователей (стальных спиралей, резиновых шлангов и т. п.) или оставляемых гофрированных стальных трубок и др. Сцепление арматуры с бетоном создается после обжатия инъецированием - нагнетанием в каналы цементного теста или раствора под давлением. Инъецирование производится через заложенные при изготовлении элемента тройники - отводы. Если напрягаемая арматура располагается с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием (под давлением) защитный слой бетона.
Натяжение на упоры как более индустриальное является основным способом в заводском производстве.

Основными достоинствами железобетона являются: высокая проч-ность, огнестойкость, долговечность, простота формообразования. Бетонная балка (рис. ниже), испытывающая при изгибе растяжение ниже нейтральной оси и сжатие выше нее, имеет низкую несущую способность вследствие слабого сопротивления бетона растяжению. При этом прочность бетона в сжатой зоне используется не полностью. В связи с этим неармированный бетон не рекомендуется применять в конструкциях, предназначенных для работы на изгиб или растяжение, так как размеры таких элементов были бы непомерно большими.

Бетонные конструкции применяют преимущественно при их работе на сжатие (стены, фундаменты, подпорные сооружения, ус-той и др.) и только иногда при работе на изгиб при малых растяги-вающих напряжениях, не превышающих предела прочности бето-на при растяжении.

Железобетонные конструкции, усиленные в растянутой зоне арматурой, обладают значительно более высокой несущей способ-ностью. Так, несущая способность железобетонной балки (рис. ниже) с уложенной внизу арматурой в 10-20 раз больше, чем несущая способность бетонной балки таких же размеров. При этом прочность бетона в сжатой зоне балки используется полностью.

Схемы работы элементов под нагрузкой

В качестве арматуры применяют стальные стержни, проволо-ки, прокатные профили, а также стекловолокно, синтетические ма-териалы, деревянные бруски, бамбуковые стволы.

Конструкции армируют не только при их работе на растяжение и изгиб, но и на сжатие (рис. выше). Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в сжатые эле-менты значительно повышает их несущую способность. Совмест-ная работа таких различных по свойствам материалов, как бетон и сталь, обеспечивается следующими факторами:

  1. сцеплением арматуры с бетоном, возникающим при твердении бетонной смеси; благодаря сцеплению оба материала деформи-руются совместно;
  2. близкими по значению коэффициентами линейных температур-ных деформаций (для бетона 7·10 -6 -10·10 -6 1/град, для стали 12·10 -6 1/град), что исключает появление начальных напряже-ний в материалах и проскальзывание арматуры в бетоне при изменениях температуры до 100 °С;
  3. надежной защитой стали, заключенной в плотный бетон, от кор-розии, непосредственного действия огня и механических по-вреждений.

Особенностью железобетонных конструкций является возмож-ность образования трещин в растянутой зоне при действии внешних нагрузок. Раскрытие этих трещин во многих конструкциях в стадии эксплуатации невелико (0,1-0,4 мм) и не вызывает коррозии арма-туры или нарушения нормальной работы конструкции. Однако име-ются конструкции и сооружения, в которых по эксплуатационным условиям образование трещин недопустимо (например, напорные трубопроводы, лотки, резервуары и т. п.) или ширина раскрытия должна быть уменьшена. В этом случае те зоны элемента, в кото-рых под действием эксплуатационных нагрузок появляются растя-гивающие усилия, заранее (до приложения внешних нагрузок) под-вергают интенсивному обжатию путем предварительного натяже-ния арматуры. Такие конструкции называют предварительно напряженными. Предварительное обжатие конструкций выполня-ют в основном двумя способами: натяжением арматуры на упоры (до бетонирования) и на бетон (после бетонирования).

В первом случае перед бетонированием конструкции арматуру натягивают и закрепляют на упорах или торцах формы (рис. ниже). Затем бетонируют элемент. После приобретения бетоном необхо-димой прочности для восприятия сил предварительного обжатия (передаточная прочность) арматуру освобождают от упоров и она, стремясь укоротиться, сжимает бетон. Передача усилия на бетон происходит благодаря сцеплению между арматурой и бетоном, а также посредством специальных анкерных устройств, находящих-ся в бетоне конструкции, если сцепления недостаточно.

Во втором случае сначала изготовляют бетонный или слабоармированный элемент с каналами или пазами (рис. ниже). При дос-тижении бетоном требуемой передаточной прочности в каналы (пазы) заводят арматуру, натягивают ее с упором натяжного при-способления на торец элемента и заанкериваюг. Таким образом, бетон оказывается обжатым. Для создания сцепления арматуры с бетоном в каналы инъектируют цементный или цементно-песчаный раствор. Если напрягаемая арматура располагается на наружной поверхности элемента (кольцевая арматура трубопроводов, резер-вуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. После натя-жения арматуры на поверхность элемента наносят торкретирова-нием защитный слой бетона. Натяжение арматуры может произво-диться механическим, электротермическим, комбинированным и физико-химическим способами.

Способы создания предварительного напряжения

а — натяжение на упоры; б — натяжение на бетон; I — натяжение арматуры и бетонирование элемента; II, IV — готовый элемент; III — элемент во время натяжения арматуры; 1 — упор; 2 — домкрат; 3 — анкер

При механическом способе арматуру натяг ивают гидравличес-кими или винтовыми домкратами, намоточными машинами и дру-гими механизмами. При электротермическом способе арматуру нагревают электрическим током до 300-350 °С, заводят в форму и закрепляют на упорах. В процессе остывания арматура укорачива-ется и получает предварительные растягивающие напряжения. Ком-бинированный способ натяжения сочетает электротермический и механический способы натяжения арматуры, осуществляемые од-новременно. При физико-химическом способе натяжение арматуры достигается в результате расширения бетона, приготовленного на специальном напрягающем цементе (НЦ), в процессе его гидро-термической обработки.

Арматура, заложенная в бетоне, препятствует увеличению его объема и растягивается, а в бетоне возникают сжимающие напря-жения. Натяжение арматуры на упоры производится механическим, электротермическим или комбинированным способами, а на бе-тон — только механическим способом.

Основное достоинство предварительно напряженных конструк-ций — высокая трещиностойкость. При загружении предварительно напряженного элемента внешней нагрузкой в бетоне растянутой зоны погашаются предварительно созданные сжимающие напряжения и только после этого возникают растягивающие напряжения. Чем выше прочность бетона и стали, тем большее предварительное обжатие можно создать в элементе.

Применение высокопрочных материалов позволяет сократить рас-ход арматуры на 30-70% по сравнению с ненапрягаемым железобето-ном. Расход бетона и масса конструкции при этом также снижаются. Кроме того, высокая трещиностойкость предварительно напряженных конструкций повышает их жесткость, водонепроницаемость, морозо-стойкость, сопротивление динамическим нагрузкам, долговечность.

К недостаткам предварительно напряженного железобетона следует отнести то, что процесс составляет значительную трудоем-кость изготовления конструкций. Помимо этого создается необхо-димость в использовании специального оборудования и рабочих высокой квалификации.

Напряженно-деформированные состояния предварительно на-пряженных элементов после образования трещин в бетоне растяну-той зоны сходны с элементами без предварительного напряжения.

ГОСТ 32803-2014

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ НАПРЯГАЮЩИЕ

Технические условия

Self-stressing concrete. General specifications


МКС 91.100.30

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН подразделением Открытого акционерного общества "Научно-исследовательский центр "Строительство" Ордена Трудового Красного Знамени Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (ОАО "НИЦ "Строительство" НИИЖБ им.А.А.Гвоздева)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 мая 2014 г. N 45-2014)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Киргизия

Кыргызстандарт

Молдова-Стандарт

Росстандарт

Таджикистан

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 ноября 2014 г. N 1830-ст межгосударственный стандарт ГОСТ 32803-2014 введен в действие в качестве национального стандарта Российской Федерации с 01 июля 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на напрягающие бетоны, предназначенные для создания предварительного напряжения (самонапряжения) в конструкциях зданий и сооружений за счет расширения в процессе твердения для повышения трещиностойкости, водонепроницаемости и долговечности конструкций и устанавливает технические требования к напрягающим бетонам.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные документы:

ГОСТ 9.306-85 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Обозначения

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 5578-94 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 6958-78 Шайбы увеличенные. Классы точности А и С. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7798-70 Болты с шестигранной головкой класса точности В. Конструкция и размеры

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8736-93 Песок для строительных работ. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 11371-78 Шайбы. Технические условия

ГОСТ 12730.1-84* Бетоны. Методы определения плотности
________________
* На территории Российской Федерации действует ГОСТ 12730.1-78 , здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17711-93 Сплавы медно-цинковые (латуни) литейные. Марки

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические требования

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26633-2012 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30515-97 Цементы. Общие технические условия

ГОСТ 31108-2003 Цементы общестроительные. Технические условия

ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия.

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 напрягающий бетон: Бетон, содержащий напрягающий цемент или расширяющую добавку, обеспечивающие расширение бетона в процессе его твердения.

3.2 самонапряжение бетона: Величина предварительного напряжения бетона, создаваемого в результате расширения бетона в условиях упругого ограничения деформаций.

3.3 марка напрягающего бетона по самонапряжению: Среднее значение предварительного напряжения сжатия (самонапряжения) напрягающего бетона, МПа, в возрасте 28 сут, создаваемого в результате его расширения в условиях упругого ограничения деформаций, с жесткостью, соответствующей жесткости стальной арматуры при коэффициенте осевого продольного армирования 0,01 и модуле упругости 2·10 МПа.

3.4 расширяющие добавки РД: Минеральная добавка, применяемая для приготовления напрягающих бетонов.

3.5 напрягающий цемент: Минеральное вяжущее вещество, обеспечивающее при твердении бетонов в условиях упругого ограничения деформаций регулируемое самонапряжение.

3.6 линейное расширение: Увеличение линейных размеров стандартного образца.

4 Классификация

4.1 В соответствии с ГОСТ 25192 устанавливают следующие виды напрягающего бетона:

- тяжелые напрягающие бетоны;

- легкие напрягающие бетоны.

В зависимости от значения контролируемого самонапряжения (см. 5.1.3) напрягающие бетоны подразделяют на следующие виды:

- БН - бетон с нормируемой маркой по самонапряжению, изготовленный на основе напрягающего бетона;

- БК - бетон с компенсированной усадкой, изготовленный на основе портландцемента и расширяющей добавки.

4.2 Условное обозначение бетонных смесей, предназначенных для напрягающих бетонов, принимают по ГОСТ 7473 со следующими дополнениями.

Для бетона с нормируемой маркой по самонапряжению марку по самонапряжению указывают после марки по водонепроницаемости.

Пример условного обозначения бетонной смеси для бетона с нормируемой маркой по самонапряжению Sp1,2, класса прочности на сжатие В40, марки по удобоукладываемости П4, марки по морозостойкости F 300, марки по водонепроницаемости W18:

БСТ БН В40 П4 F 300 W18 Sp1,2 ГОСТ 32803-2014

Допускается для бетона с компенсированной усадкой марку по самонапряжению не указывать.

Пример условного обозначения бетонной смеси для бетона с компенсированной усадкой, класса прочности на сжатие В25, марки по удобоукладываемости П3, марки по морозостойкости F 300, марки по водонепроницаемости W16:

БСТ БК В25 П3 F
300 W16 ГОСТ 32803-2014

5 Технические требования

Напрягающие бетоны изготовляют в соответствии с требованиями настоящего стандарта, проектной и технологической документации, технических условий и разработанными технологическими регламентами, утвержденными в установленном порядке.

5.1 Характеристики

5.1.1 Прочность бетона в проектном возрасте характеризуется классами прочности на сжатие, осевое растяжение и растяжение при изгибе.

Для тяжелых напрягающих бетонов установлены следующие классы:

- по прочности на сжатие: В20; В25; В30; В35; В40; В45; В50; В55; В60; В70; В80; В90;

- по прочности на осевое растяжение: B0,8; 2B1,2; B1,6; B2; B2,4; B2,8; B3,2; B3,6; B4,0;

- по прочности на растяжение при изгибе: B2; B2,4; B2,8; B3,2; B3,6; B4; B4,4; B4,8; B5,2; B6,4; B6,8.

Для легких напрягающих бетонов установлены следующие классы:

- по прочности на сжатие: В10; В12,5; В15; В20; В25; В30; В35; В40;

- по прочности на осевое растяжение: B0,8; B1,6; B2; B2,4; B2,8; B3,2.

Допускается при соответствующем обосновании устанавливать более высокие классы напрягающих бетонов по прочности.

5.1.2 В зависимости от средней плотности устанавливают следующие марки напрягающего бетона:

- легкого: D1200; D1300; D1400; D1500; D1600; D1700; D1800; D1900; D2000;

- тяжелого: D2000, D2100, D2200, D2300, D2400, D2500.

5.1.3 В зависимости от значения самонапряжения устанавливают следующие марки напрягающего бетона: Sp0,6; Sp0,8; Sp1,0; Sp1,2; Sp1,5; Sp2,0; Sp3,0; Sp4,0.

Напрягающие бетоны марок по самонапряжению от Sp0,6 до Sp1,0 относятся к бетонам с компенсированной усадкой, от Sp1,2 до Sp4,0 - к напрягающим бетонам с нормируемым самонапряжением.

5.1.4 В зависимости от условий применения тяжелые напрягающие бетоны должны иметь следующие марки по морозостойкости: F200, F300, F400, F600, F800; легкие: F100, F200, F300, F400, F500.

5.1.5 В зависимости от водонепроницаемости тяжелые напрягающие бетоны должны иметь следующие марки: W12, W14, W16, W18, W20; легкие: W8, W10, W12, W14.

5.2 Требования к материалам

5.2.1 Материалы, применяемые для напрягающих бетонов, должны соответствовать требованиям действующих стандартов и технических условий на эти материалы и обеспечивать получение бетона с заданными характеристиками.

5.2.2 В качестве вяжущего применяют:

- напрягающие цементы по действующим нормативным или техническим документам;

- портландцементы, соответствующие ГОСТ 10178 , ГОСТ 30515 и ГОСТ 31108 , с содержанием СА в клинкере не более 8% в сочетании с добавками по ГОСТ 24211 , регулирующими процесс расширения при условии их оценки по критерию обеспечения требуемой марки по самонапряжению.

5.2.3 В качестве крупного заполнителя для тяжелого напрягающего бетона применяют щебень по ГОСТ 26633 , ГОСТ 8267 , ГОСТ 5578 .

5.2.4 В качестве мелкого заполнителя для тяжелого напрягающего бетона применяют пески по ГОСТ 26633 и ГОСТ 8736 .

5.2.5 В качестве крупных и мелких заполнителей для легкого напрягающего бетона применяют заполнители по ГОСТ 25820 и ГОСТ 32496 .

5.2.6 Добавки для напрягающих бетонов должны соответствовать ГОСТ 24211 и действующим нормативным или техническим документам на конкретные виды расширяющих добавок. Добавки вводят в состав бетонных смесей в количестве от 5% до 30% массы цемента в зависимости от назначения бетона.

5.2.7 Вода для затворения бетонной смеси и приготовления растворов химических добавок должна соответствовать требованиям ГОСТ 23732 .

5.2.8 Удельная эффективная активность естественных радионуклидов сырьевых материалов, применяемых для напрягающих бетонов, не должна превышать предельных значений в зависимости от области применения бетонов по ГОСТ 30108 .

5.3 Требования к бетонным смесям

5.3.1 Бетонные смеси для напрягающих бетонов приготовляют в соответствии с требованиями ГОСТ 7473 .

5.3.2 Состав бетонной смеси подбирают в соответствии с ГОСТ 27006 с учетом требований настоящего стандарта и технологической документации, утвержденной в установленном порядке.

6 Правила приемки

6.1 Приемку напрягающего бетона проводят по всем нормируемым в проектной документации показателям качества в соответствии с ГОСТ 7473 и ГОСТ 13015 .

Оценку бетона по морозостойкости, водонепроницаемости, средней плотности проводят при подборе каждого состава бетонной смеси по ГОСТ 27006 , далее не реже одного раза в 6 мес, а также при изменении состава бетонной смеси или используемых материалов.

6.2 Каждая партия бетонной смеси, предназначенной для напрягающего бетона, должна сопровождаться паспортом по ГОСТ 7473 .

7 Методы контроля

7.1 Прочность напрягающего бетона на сжатие, растяжение при изгибе и осевое растяжение определяют в соответствии с требованиями ГОСТ 10180 , ГОСТ 28570 , ГОСТ 17624 , ГОСТ 22690 , ГОСТ 18105 .

7.2 Среднюю плотность напрягающего бетона определяют по ГОСТ 12730.1 , ГОСТ 10181 .

7.3 Морозостойкость напрягающего бетона определяют по ГОСТ 10060 .

7.4 Водонепроницаемость напрягающего бетона определяют по ГОСТ 12730.5 .

7.5 Определение самонапряжения напрягающего бетона

7.5.1 Сущность метода

Сущность метода заключается в измерении упругой деформации, возникающей в процессе расширения образцов-призм из бетона, отформованных и твердеющих в динамометрических кондукторах, жесткость торцевых пластин которых эквивалентна жесткости продольного армирования, равного 1%.

7.5.2 Средства испытаний

При проведении испытаний должны быть использованы следующие средства измерений:

- индикатор часового типа по ГОСТ 577 ценой деления 0,01 мм и диапазоном измерения 10 мм;

- штангенциркуль по ГОСТ 166 ценой деления 0,05 мм.

Для испытаний применяют следующее оборудование:

- динамометрический кондуктор для образца-призмы размерами 100x100x400 мм или 50x50x200 мм (см. рисунки 1, 2);

- измерительное устройство "краб" с индикатором часового типа ценой деления 0,01 мм для замера выгиба одной пластины кондуктора или штатив с аналогичным индикатором (см. рисунки 3, 4) для замера выгиба обеих пластин;

- эталон для поверки измерительного устройства или стальной эталон - стержень для штатива длиной (200±1) мм, диаметром 16 мм с трехгранными кернами 7 глубиной 0,75 мм по торцам (см. рисунок 3). Материал для изготовления эталонов - сталь 3 (Ст3) по ГОСТ 5781 ;

- металлическая форма для изготовления образцов-призм размерами 100x100x400 мм (см. рисунок 5);

- металлическая форма для изготовления образцов-призм размерами 50x50x200 мм (см. рисунок 6);

- емкость с водой для хранения кондукторов с образцами.

7.5.3 Подготовка к испытанию

Отбор проб бетонной смеси при контроле качества бетона проводят один раз в смену. Проба бетонной смеси при применении кондукторов для образцов-призм размерами 100x100x400 мм должна быть не менее 15 л, для образцов-призм размерами 50x50x200 мм - не менее 2 л.

До сборки кондуктора (см. рисунки 1, 2) с формой проводят затяжку гаек 4 на тягах 3 до упора с выборкой зазора. Не допускается зазор между тягами с пластиной 2 . Нулевой замер кондуктора снимают с помощью измерительного устройства "краб" или штатива, предварительно поверенных с помощью эталона на постоянство отсчета. При поверке штатива эталон необходимо выставлять всегда в одном и том же положении - меткой вверх. Отсчеты снимают с точностью до половины деления индикатора часового типа. Температура кондуктора, измерительного устройства и эталона во время замера должна быть одинаковой.

Перед формованием образца-призмы форма должна быть смазана тонким слоем смазочного материала и собрана с помощью скоб на тягах кондуктора с минимальным зазором для исключения деформаций.

Контроль самонапряжения бетона проводят на бетонном заводе или на строительном объекте у места укладки бетона в конструкцию.

Формование образцов-призм проводят в соответствии с требованиями ГОСТ 10180 . Отформованные в кондукторе образцы-призмы укрывают пленкой или другими водонепроницаемыми материалами для защиты от потерь влаги.

Твердение образцов-призм до достижения прочности бетона 7-15 МПа (примерно сутки) должно происходить в помещении с температурой воздуха (20±2) °С, дальнейшее твердение после снятия формы (до 28 сут) - в воде или в обильно влажных опилках, песке и т.п.

7.5.4 Проведение испытаний

Самонапряжение напрягающего бетона определяют при подборе состава бетонной смеси и контроле качества бетона в целях обеспечения расчетного самонапряжения бетона.

Самонапряжение бетона определяют по трем контрольным образцам-призмам размерами 50x50x200 мм (при использовании щебня фракции не более 10 мм) или 100x100x400 мм, отформованных и твердеющих в специальных динамометрических кондукторах, создающих в процессе расширения бетона упругое ограничение деформаций, эквивалентное продольному армированию образцов-призм, равному 1%.

Измерение кондукторов проводят ежедневно для бетона в возрасте 1-7 сут и далее в возрасте 10, 14 и 28 сут каждый раз с поверкой измерительного устройства с помощью эталона. Результаты измерений заносят в журнал испытаний образцов-призм в кондукторах при определении самонапряжения бетона.

Значение самонапряжения образца-призмы , МПа, определяют по формуле

где - полная деформация образца-призмы;

- длина образца;

- приведенный коэффициент армирования образца, принимаемый равным 0,01;

- модуль упругости стали, принимаемый равным 2·10 МПа.

Самонапряжение бетона вычисляют как среднее арифметическое значение двух наибольших результатов измерения трех образцов-призм в кондукторах, отформованных из одной пробы бетона в возрасте от 1 до 7, 10, 14, 28 сут. Вычисления проводят до двух знаков после запятой.

8 Гарантии производителя (поставщика)

8.1 Производитель (поставщик) бетонной смеси, предназначенной для напрягающего бетона гарантирует:

- на момент поставки потребителю - соответствие всех нормируемых технологических показателей качества бетонных смесей заданным в договоре на поставку;

- в проектном возрасте - достижение всех нормируемых показателей качества бетона, заданных в договоре на поставку, при условии, что потребитель бетонной смеси при изготовлении бетонных и железобетонных конструкций обеспечивает выполнение требований действующих нормативных и технических документов по бетонированию конструкций и соответствие режимов твердения бетона по ГОСТ 10180 .

8.2 Гарантии производителя (поставщика) бетонной смеси должны быть подтверждены:

- протоколами определения качества бетонных смесей при подборе их состава и проведении операционного и приемо-сдаточного контроля;

- протоколами определения нормируемых показателей качества напрягающего бетона в проектном возрасте.

1 - верхняя пластина; 2 - нижняя пластина; 3 - тяга; 4 - гайка; 5 6 - репер с продольным керном; 7 - репер с плоским окончанием; 8 - бетонный образец-призма

Примечание - Материал пластин и гайки - Ст.45 по ГОСТ 5781 , тяги - Ст.3; реперов - латунь Л62 по ГОСТ 17711 . Детали кондуктора хромировать Х36 по ГОСТ 9.306 , хром матовый.

Рисунок 1 - Динамометрический кондуктор для образцов-призм размерами 100x100x400 мм

1 - верхняя пластина; 2 - нижняя пластина; 3 - тяга; 4 - гайка; 5 - репер с трехгранным керном глубиной 0,75 мм; 6 - бетонный образец-призма

Примечание - Материал пластин и гайки - Ст.45; тяги - Ст.3; репера - латунь Л62. Детали кондуктора хромировать Х36 по ГОСТ 9.306 , хром матовый.

Рисунок 2 - Динамометрический кондуктор для образцов-призм размерами 50x50x200 мм

(А) Схема измерения, установка измерительного устройства "краб" на кондуктор

(Б) Эталон с измерительным устройством "краб"

1 - кондуктор размерами 100x100x400 мм; 2 - измерительное устройство "краб"; 3 - эталон; 4 - бетонный образец-призма; 5 - индикатор часового типа; 6 - шпилька с припаянным шариком диаметром 5 мм; 7 - трехгранный керн глубиной 0,75 мм; 8 - продольный керн; 9 - стопорный винт.

Рисунок 3 - Измерительное устройство "краб" с индикатором часового типа для определения самонапряжения образцов-призм размерами 100x100x400 мм

1 - основание штатива; 2 - шпилька с шариком; 3 - кондуктор с бетонной призмой; 4 - винт крепления индикаторов; 5 - индикатор; 6 - стойка; 7 - винт крепления консоли; 8 - консоль; 9 - гайка

Рисунок 4 - Штатив с индикатором часового типа для определения самонапряжения образцов-призм

1 - дно формы; 2 - борт формы со скобами; 3 - шайба 12.03.01 ГОСТ 6958 ; 4 - болт M12-6gX30.56.05 ГОСТ 7798

Рисунок 5 - Металлическая форма для изготовления образцов-призм размерами 100x100x400 мм

1 - дно формы; 2 - борт формы со скобами; 3 - шайба 8.03.05 ГОСТ 11371 ; 4 - болт M8-6gX40.56.05 ГОСТ 7798

Рисунок 6 - Металлическая форма для изготовления образцов-призм размерами 50x50x200 мм


УДК 691.328 МКС 91.100.30

Ключевые слова: напрягающие бетоны, бетоны с компенсированной усадкой, напрягающий цемент, расширяющие добавки, самонапряжение, свободное расширение, водонепроницаемость, трещиностойкость, долговечность
__________________________________________________________________________



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2015