Отклонения на отверстия. Допуски и посадки, основные понятия, обозначения. Квалитет, нулевая линия, допуск, предельное отклонение, верхнее отклонение, нижнее отклонение, поле допуска. Линейные размеры, углы, качество поверхности, свойства материала, техни




Основные понятия и термины регламентированы ГОСТом 25346–89.

Размер – числовое значение линейной величины (диаметра, длины и т. д.). Действительным называют размер, установленный измерением с допустимой погрешностью.

Два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер, называются предельными размерами . Больший из них называется наибольшим предельным размером , меньший – наименьшим предельным размером .

Номинальный размер – размер, который служит началом отсчета отклонений и относительно которого определяют предельные размеры. Для деталей, составляющих соединение, номинальный размер является общим.

Не любой размер, полученный в результате расчета, может быть принят за номинальный. Чтобы повысить уровень взаимозаменяемости, уменьшить номенклатуру изделий и типоразмеров заготовок, стандартного или нормализованного режущего и измерительного инструмента, оснастки и калибров, создать условия для специализации и кооперирования предприятий, удешевления продукции, значения размеров, полученные расчетом, следует округлять в соответствии со значениями, указанными в ГОСТе 6636–69. При этом полученное расчетом или иным путем исходное значение размера, если оно отличается от стандартного, следует округлить до ближайшего большего стандартного размера. Стандарт на нормальные линейные размеры построен на базе рядов предпочтительных чисел ГОСТ 8032–84.

Наиболее широко используют ряды предпочтительных чисел, построенные по геометрической прогрессии. Геометрическая прогрессия обеспечивает рациональную градацию числовых значений параметров и размеров, когда нужно установить не одно значение, а равномерный ряд значений в определенном диапазоне. В этом случае число членов ряда получается меньшим по сравнению с арифметической прогрессией.

Принятые обозначения:

D (d )номинальный размер отверстия (вала);

D max ,(d m ах), D min ,(d min), D e (d e), D m (d m )– размеры отверстия (вала), наибольший (максимальный), наименьший (минимальный), действительный, средний.

ES (es ) – верхнее предельное отклонение отверстия (вала);

El (ei ) – нижнее предельное отклонение отверстия (вала);

S, S max , S min , S m – зазоры, наибольший (максимальный), наименьший (минимальный), средний соответственно;

N , N max , N min , N m натяги, наибольший (максимальный), наименьший (минимальный), средний соответственно;

TD, Td, TS, TN, TSN – допуски отверстия, вала, зазора, натяга, зазора – натяга (в переходной посадке) соответственно;

IT 1, IT 2, IT 3…ITn ……IT 18 – допуски по квалитетам обозначаются сочетанием букв IT с порядковым номером квалитета.

Отклонение – алгебраическая разность между размером (действительным, предельным и т. д.) и соответствующим номинальным размером:

Для отверстия ES = D max – D ; EI = D min – D ;

Для вала es = d max – d ; ei = d min – d .

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами. Отклонение является положительным, если действительный размер больше номинального и отрицательным, если он меньше номинального. Если действительный размер равен номинальному, то его отклонение равно нулю.

Предельным отклонением называется алгебраическая разность между предельным и номинальным размерами. Различают верхнее и нижнее отклонения. Верхнее отклонение – алгебраическая разность между наибольшим предельным и номинальным размерами. Нижнее отклонение – алгебраическая разность между наименьшим предельным и номинальным размерами.

Для упрощения и удобства работы на чертежах и в таблицах стандартов на допуски и посадки вместо предельных размеров принято проставлять значения предельных отклонений: верхнего и нижнего. Отклонения всегда указывают со знаком «+» или «–». Верхнее предельное отклонение ставится несколько выше номинального размера, а нижнее – несколько ниже. Отклонения, равные нулю, на чертеже не проставляют. Если верхнее и нижнее предельные отклонения равны по абсолютной величине, но противоположны по знаку, то числовое значение отклонения указывают со знаком «±»; отклонение указывают вслед за номинальным размером. Например:

30 ; 55 ; 3 +0,06 ; 45±0,031.

Основное отклонение – одно из двух отклонений (верхнее или нижнее), используемое для определения поля допуска относительно нулевой линии. Обычно таким отклонением является отклонение, ближайшее к нулевой линии.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные – вниз.

Допуск размера – разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями:

Для отверстия TD = D max – D min = ES EI ;

Для вала Td = d max – d min = es – ei .

Допуск является мерой точности размера. Чем меньше допуск, тем выше требуемая точность детали, тем меньше допускается колебание действительных размеров детали.

При обработке каждая деталь приобретает свой действительный размер и может быть оценена как годная, если он находится в интервале предельных размеров, или забракована, если действительный размер вышел за эти границы.

Условие годности деталей может быть выражено следующим неравенством:

D max (d max) ≥ D e (d e) ≥ D min (d min).

Допуск является мерой точности размера. Чем меньше допуск, тем меньше допустимое колебание действительных размеров, тем выше точность детали и, как следствие, увеличивается трудоемкость обработки и ее себестоимость

Поле допуска – поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется числовым значением допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рисунок 1.1).

Рисунок 1.1 – Схемы расположения полей допусков:

а – отверстия (ES и EI – положительные); б – вала (es и ei – отрицательные)

В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.Вал – термин, применяемый для обозначения наружных (охватываемых) элементов деталей. Отверстие – термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей. Термины отверстие и вал относятся не только к цилиндрическим деталям круглого сечения, но и к элементам деталей другой формы, например ограниченным двумя параллельными плоскостями.

Основной вал – вал, верхнее отклонение которого равно нулю (es = 0).

Основное отверстие – отверстие, нижнее отклонение которого равно нулю (EI = 0).

Зазор – разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей.

Натяг – разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия. Натяг обеспечивает взаимную неподвижность деталей после их сборки.

Наибольший и наименьший зазоры (натяги) – два предельных значения, между которыми должен находиться зазор (натяг).

Средний зазор (натяг) есть среднее арифметическое между наибольшим и наименьшим зазором (натягом).

Посадка – характер соединения деталей, определяемый разностью их размеров до сборки.

Посадка с зазором – посадка, при которой всегда обеспечивается зазор в соединении.

В посадках с зазором поле допуска отверстия расположено над полем допуска вала. К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала.

Посадка с натягом – посадка, при которой всегда обеспечивается натяг в соединении. В посадках с натягом поле допуска отверстия расположено под полем допуска вала

Переходной посадкой называется посадка, при которой возможно получение как зазора, так и натяга в соединении. В такой посадке поля допусков отверстия и вала полностью или частично перекрывают друг друга.

Допуск посадки – сумма допусков отверстия и вала, составляющих соединение.

Характеристики посадок:

Для посадок с зазором:

S min = D min – d max = EI es ;

S max = D max – d min = ES ei ;

S m = 0,5 (S max + S min);

ТS = S max – S min = TD + Td ;

Для посадок с натягом:

N min = d min – D max = ei ES ;

N max = d max – D min = es EI ;

N m = 0,5 (N max + N min);

ТN = N max – N min = TD + Td ;

Для переходных посадок:

S max = D max – d min = ES ei ;

N max = d max – D min = es EI ;

N m (S m) = 0,5 (N max – S max);

результат со знаком минус будет означать, что среднее значение для посадки соответствует S m .

ТS (N ) = ТN (S ) = S max + N max = TD + Td .

В машиностроении и приборостроении широко используются посадки всех трех групп: с зазором, натягом и переходные. Посадку любой группы можно получить, либо изменяя размеры обеих сопрягаемых деталей, либо одной сопряженной детали.

Совокупность посадок, в которых предельные отклонения отверстий одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений валов, называется системой отверстия . Для всех посадок в системе отверстия нижнее отклонение отверстия EI = 0, т. е. нижняя граница поля допуска основного отверстия совпадает с нулевой линией.

Совокупность посадок, в которых предельные отклонения вала одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений отверстий, называется системой вала . Для всех посадок в системе вала верхнее отклонение основного вала es = 0, т. е. верхняя граница поля допуска вала всегда совпадает с нулевой линией.

Обе системы равноправны и имеют примерно одинаковый характер одноименных посадок, т. е. предельные зазоры и натяги. В каждом конкретном случае на выбор той или иной системы оказывают влияние конструкторские, технологические и экономические соображения. Вместе с тем следует обратить внимание на то, что точные валы разных диаметров могут обрабатываться на станках одним инструментом при изменении только наладки станка. Точные же отверстия обрабатывают мерным режущим инструментом (зенкеры, развертки, протяжки и т. п.), причем для каждого размера отверстия требуется свой комплект инструмента. В системе отверстия различных по предельным размерам отверстий во много раз меньше, чем в системе вала, а, следовательно, сокращается номенклатура дорогостоящего инструмента. Поэтому преимущественное распространение получила система отверстия. Однако в отдельных случаях приходится использовать систему вала. Приведем некоторые примеры предпочтительного применения системы вала:

Во избежание концентрации напряжений в месте перехода с одного диаметра на другой по прочностным соображениям нежелательно делать ступенчатый вал, и тогда его выполняют постоянного диаметра;

При ремонте, когда имеется готовый вал и под него делается отверстие;

По технологическим соображениям, когда стоимость изготовления вала, например, на бесцентрово-шлифовальных станках оказывается небольшой, выгодно применять систему вала;

При использовании стандартных узлов и деталей. Например, наружный диаметр подшипников качения изготавливается по системе вала. Если делать наружный диаметр подшипника в системе отверстия, то потребовалось бы значительно расширить их номенклатуру, а обрабатывать подшипник по наружному диаметру нецелесообразно;

Когда на вал одного диаметра необходимо установить несколько отверстий с разным видом посадок.


Похожая информация.


На главную

раздел четвертый

Допуски и посадки.
Измерительный инструмент

Глава IX

Допуски и посадки

1. Понятие о взаимозаменяемости деталей

На современных заводах станки, автомобили, тракторы и другие машины изготовляются не единицами и даже не десятками и сотнями, а тысячами. При таких размерах производства очень важно, чтобы каждая деталь машины при сборке точно подходила к своему месту без какой-либо дополнительной слесарной пригонки. Не менее важно, чтобы любая деталь, поступающая на сборку, допускала замену ее другой одного с ней назначения без всякого ущерба для работы всей готовой машины. Детали, удовлетворяющие таким условиям, называют взаимозаменяемыми.

Взаимозаменяемость деталей - это свойство деталей занимать свои места в узлах и изделиях без всякого предварительного подбора или подгонки по месту и выполнять свои функции в соответствии с предписанными техническими условиями.

2. Сопряжение деталей

Две детали, подвижно или неподвижно соединяемые друг с другом, называют сопрягаемыми . Размер, по которому происходит соединение этих деталей, называют сопрягаемым размером . Размеры, по которым не происходит соединения деталей, называют свободными размерами. Примером сопрягаемых размеров может служить диаметр вала и соответствующий диаметр отверстия в шкиве; примером свободных размеров может служить наружный диаметр шкива.

Для получения взаимозаменяемости сопрягаемые размеры деталей должны быть точно выполнены. Однако такая обработка сложна и не всегда целесообразна. Поэтому техника нашла способ получать взаимозаменяемые детали при работе с приближенной точностью. Этот способ заключается в том, что для различных условий работы детали устанавливают допустимые отклонения ее размеров, при которых все же возможна безукоризненная работа детали в машине. Эти отклонения, рассчитанные для различных условий работы детали, построены в определенной системе, которая называется системой допусков.

3. Понятие о допусках

Характеристика размеров . Расчетный размер детали, проставляемый на чертеже, от которого отсчитываются отклонения, называется номинальным размером . Обычно номинальные размеры выражаются в целых миллиметрах.

Размер детали, фактически полученный при обработке, называется действительным размером .

Размеры, между которыми может колебаться действительный размер детали, называются предельными . Из них больший размер называется наибольшим предельным размером , а меньший - наименьшим предельным размером .

Отклонением называется разность между предельным и номинальным размерами детали. На чертеже отклонения обозначаются обычно числовыми величинами при номинальном размере, причем верхнее отклонение указывается выше, а нижнее - ниже.

Например, в размере номинальным размером является 30, а отклонениями будут +0,15 и -0,1.

Разность между наибольшим предельным и номинальным размерами называется верхним отклонением , а разность между наименьшим предельным и номинальным размерами - нижним отклонением . Например, размер вала равен . В этом случае наибольший предельный размер будет:

30 +0,15 = 30,15 мм;

верхнее отклонение составит

30,15 - 30,0 = 0,15 мм;

наименьший предельный размер будет:

30+0,1 = 30,1 мм;

нижнее отклонение составит

30,1 - 30,0 = 0,1 мм.

Допуск на изготовление . Разность между наибольшим и наименьшим предельными размерами называется допуском . Например, для размера вала допуск будет равен разности предельных размеров, т. е.
30,15 - 29,9 = 0,25 мм.

4. Зазоры и натяги

Если деталь с отверстием насадить на вал с диаметром , т. е. с диаметром при всех условиях меньше диаметра отверстия, то в соединении вала с отверстием обязательно получится зазор, как это показано на рис. 70. В этом случае посадка называется подвижной , так как вал сможет свободно вращаться в отверстии. Если же размер вала будет т. е. всегда больше размера отверстия (рис. 71), то при соединении вал потребуется запрессовать в отверстие и тогда в соединении получится натяг.

На основании изложенного можно сделать следующее заключение:
зазором называют разность между действительными размерами отверстия и вала, когда отверстие больше вала;
натягом называют разность между действительными размерами вала и отверстия, когда вал больше отверстия.

5. Посадки и классы точности

Посадки . Посадки разделяются на подвижные и неподвижные. Ниже приводим наиболее применяемые посадки, причем в скобках даются их сокращенные обозначения.


Классы точности . Из практики известно, что, например, детали сельскохозяйственных и дорожных машин без вреда для их работы могут быть изготовлены менее точно, чем детали токарных станков, автомобилей, измерительных приборов. В связи с этим в машиностроении детали разных машин изготовляются по десяти различным классам точности. Пять из них более точные: 1-й, 2-й, 2а, 3-й, За; два менее точные: 4-й и 5-й; три остальные - грубые: 7-й, 8-й и 9-й.

Чтобы знать, по какому классу точности нужно изготовить деталь, на чертежах рядом с буквой, обозначающей посадку, ставится цифра, указывающая класс точности. Например, С 4 означает: скользящая посадка 4-го класса точности; Х 3 - ходовая посадка 3-го класса точности; П - плотная посадка 2-го класса точности. Для всех посадок 2-го класса цифра 2 не ставится, так как этот класс точности применяется особенно широко.

6. Система отверстия и система вала

Различают две системы расположения допусков - систему отверстия и систему вала.

Система отверстия (рис. 72) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, отверстие имеет постоянные предельные отклонения, разнообразие же посадок получается за счет изменения предельных отклонений вала.


Система вала (рис. 73) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, вал имеет постоянные предельные отклонения, разнообразие же посадок в этой системе осуществляется за счет изменения предельных отклонений отверстия.

На чертежах систему отверстия обозначают буквой А, а систему вала - буквой В. Если отверстие изготовляется по системе отверстия, то у номинального размера ставят букву А с цифрой, соответствующей классу точности. Например, 30А 3 означает, что отверстие должно быть обработано по системе отверстия 3-го класса точности, а 30А - по системе отверстия 2-го класса точности. Если же отверстие обрабатывается по системе вала, то у номинального размера ставят обозначение посадки и соответствующего класса точности. Например, отверстие 30С 4 означает, что отверстие нужно обработать с предельными отклонениями по системе вала, по скользящей посадке 4-го класса точности. В том случае, когда вал изготовляется по системе вала, ставят букву В и соответствующий класс точности. Например, 30В 3 будет означать обработку вала по системе вала 3-го класса точности, а 30В - по системе вала 2-го класса точности.

В машиностроении систему отверстия применяют чаще, чем систему вала, так как это сопряжено с меньшими расходами на инструмент и оснастку. Например, для обработки отверстия данного номинального диаметра при системе отверстия для всех посадок одного класса требуется только одна развертка и для измерения отверстия - одна /предельная пробка, а при системе вала для каждой посадки в пределах одного класса нужна отдельная развертка и отдельная предельная пробка.

7. Таблицы отклонений

Для определения и назначения классов точности, посадок и величины допусков пользуются специальными справочными таблицами. Так как допустимые отклонения являются обычно очень малыми величинами, то, чтобы не писать лишних нулей, в таблицах допусков их обозначают в тысячных долях миллиметра, называемых микронами ; один микрон равен 0,001 мм.

В качестве примера приведена таблица 2-го класса точности для системы отверстия (табл. 7).

В первой графе таблицы даны номинальные диаметры, во второй графе - отклонения отверстия в микронах. В остальных графах приводятся различные посадки с соответствующими им отклонениями. Знак плюс показывает, что отклонение прибавляется к номинальному размеру, а минус - что отклонение вычитается из номинального размера.

В качестве примера определим посадку движения в системе отверстия 2-го класса точности для соединения вала с отверстием номинального диаметра 70 мм.

Номинальный диаметр 70 лежит между размерами 50-80, помещенными в первой графе табл. 7. Во второй графе находим соответствующие отклонения отверстия . Следовательно, наибольший предельный размер отверстия будет 70,030 мм, а наименьший 70 мм, так как нижнее отклонение равно нулю.

В графе «Посадка движения» против размера от 50 до 80 указано отклонение для вала Следовательно, наибольший предельный размер вала 70-0,012 = 69,988 мм, а наименьший предельный размер 70-0,032 = 69,968 мм.

Таблица 7

Предельные отклонения отверстия и вала для системы отверстия по 2-му классу точности
(по ОСТ 1012). Размеры в микронах (1 мк = 0,001 мм)



Контрольные вопросы 1. Что называется взаимозаменяемостью деталей в машиностроении?
2. Для чего назначают допустимые отклонения размеров деталей?
3. Что такое номинальный, предельный и действительный размеры?
4. Может ли предельный размер равняться номинальному?
5. Что называется допуском и как определить допуск?
6. Что называется верхним и нижним отклонениями?
7. Что называется зазором и натягом? Для чего предусматриваются в соединении двух деталей зазор и натяг?
8. Какие бывают посадки и как их обозначают на чертежах?
9. Перечислите классы точности.
10. Сколько посадок имеет 2-й класс точности?
11. Чем отличается система отверстия от системы вала?
12. Будут ли изменяться предельные отклонения отверстия для различных посадок в системе отверстия?
13. Будут ли изменяться предельные отклонения вала для различных посадок в системе отверстия?
14. Почему в машиностроении система отверстия применяется чаще, чем система вала?
15. Как проставляются на чертежах условные обозначения отклонений в размерах отверстия, если детали выполняются в системе отверстия?
16. В каких единицах указаны отклонения в таблицах?
17. Определите, пользуясь табл. 7, отклонения и допуск на изготовление вала с номинальным диаметром 50 мм; 75 мм; 90 мм.

Глава X

Измерительный инструмент

Для измерения и проверки размеров деталей токарю приходится пользоваться различными измерительными инструментами. Для не очень точных измерений пользуются измерительными линейками, кронциркулями и нутромерами, а для более точных - штангенциркулями, микрометрами, калибрами и т. д.

1. Измерительная линейка. Кронциркуль. Нутромер

Измерительная линейка (рис. 74) служит для измерения длины деталей и уступов на них. Наиболее распространены стальные линейки длиной от 150 до 300 мм с миллиметровыми делениями.


Длину измеряют, непосредственно прикладывая линейку к обрабатываемой детали. Начало делений или нулевой штрих совмещают с одним из концов измеряемой детали и затем отсчитывают штрих, на который приходится второй конец детали.

Возможная точность измерений с помощью линейки 0,25-0,5 мм.

Кронциркуль (рис. 75, а) - наиболее простой инструмент для грубых измерений наружных размеров обрабатываемых деталей. Кронциркуль состоит из двух изогнутых ножек, которые сидят на одной оси и могут вокруг нее вращаться. Разведя ножки кронциркуля несколько больше измеряемого размера, легким постукиванием об измеряемую деталь или какой-нибудь твердый предмет сдвигают их так, чтобы они вплотную касались наружных поверхностей измеряемой детали. Способ переноса размера с измеряемой детали на измерительную линейку показан на рис. 76.


На рис. 75, 6 показан пружинный кронциркуль. Его устанавливают на размер при помощи винта и гайки с мелкой резьбой.

Пружинный кронциркуль несколько удобнее простого, так как сохраняет установленный размер.

Нутромер . Для грубых измерений внутренних размеров служит нутромер, изображенный на рис. 77, а, а также пружинный нутромер (рис. 77, б). Устройство нутромера сходное устройством кронциркуля; сходно также и измерение этими инструментами. Вместо нутромера можно пользоваться кронциркулем, заводя его ножки одна за другую, как показано на рис. 77, в.


Точность измерения кронциркулем и нутромером можно довести до 0,25 мм.

2. Штангенциркуль с точностью отсчета 0,1 мм

Точность измерения измерительной линейкой, кронциркулем, нутромером, как уже указывалось, не превышает 0,25 мм. Более точным инструментом является штангенциркуль (рис. 78), которым можно измерять как наружные, так и внутренние размеры обрабатываемых деталей. При работе на токарном станке штангенциркуль используется также для измерения глубины выточки или уступа.


Штангенциркуль состоит из стальной штанги (линейки) 5 с делениями и губок 1, 2, 3 и 8. Губки 1 и 2 составляют одно целое с линейкой, а губки 8 и 3 - одно целое с рамкой 7, скользящей по линейке. С помощью винта 4 можно закрепить рамку на линейке в любом положении.

Для измерения наружных поверхностей служат губки 1 и 8, для измерения внутренних поверхностей-губки 2 и 3, а для измерения глубины выточки --стержень 6, связанный с рамкой 7.

На рамке 7 имеется шкала со штрихами для отсчета дробных долей миллиметра, называемая нониусом . Нониус позволяет производить измерения с точностью 0,1 мм (десятичный нониус), а в более точных штангенциркулях - с точностью 0,05 и 0,02 мм.

Устройство нониуса . Рассмотрим, каким образом производится отсчет по нониусу у штангенциркуля с точностью 0,1 мм. Шкала нониуса (рис. 79) разделена на десять равных частей и занимает длину, равную девяти делениям шкалы линейки, или 9 мм. Следовательно, одно деление нониуса составляет 0,9 мм, т. е. оно короче каждого деления линейки на 0,1 мм.

Если сомкнуть вплотную губки штангенциркуля, то нулевой штрих нониуса будет точно совпадать с нулевым штрихом линейки. Остальные штрихи нониуса, кроме последнего, такого совпадения иметь не будут: первый штрих нониуса не дойдет до первого штриха линейки на 0,1 мм; второй штрих нониуса не дойдет до второго штриха линейки на 0,2 мм; третий штрих нониуса не дойдет до третьего штриха линейки на 0,3 мм и т. д. Десятый штрих нониуса будет точно совпадать с девятым штрихом линейки.

Если сдвинуть рамку таким образом, чтобы первый штрих нониуса (не считая нулевого) совпал с первым штрихом линейки, то между губками штангенциркуля получится зазор, равный 0,1 мм. При совпадении второго штриха нониуса со вторым штрихом линейки зазор между губками уже составит 0,2 мм, при совпадении третьего штриха нониуса с третьим штрихом линейки зазор будет 0,3 мм и т. д. Следовательно, тот штрих нониуса, который точно совпадет с каким-либо штрихом линейки, показывает число десятых долей миллиметра.

При измерении штангенциркулем сначала отсчитывают целое число миллиметров, о чем судят по положению, занимаемому нулевым штрихом нониуса, а затем смотрят, с каким штрихом нониуса совпал штрих измерительной линейки, и определяют десятые доли миллиметра.

На рис. 79, б показано положение нониуса при измерении детали диаметром 6,5 мм. Действительно, нулевой штрих нониуса находится между шестым и седьмым штрихами измерительной линейки, и, следовательно, диаметр детали равен 6 мм плюс показания нониуса. Далее мы видим, что с одним из штрихов линейки совпал пятый штрих нониуса, что соответствует 0,5 мм, поэтому диаметр детали составит 6 + 0,5 = 6,5 мм.

3. Штангенглубиномер

Для измерения глубины выточек и канавок, а также для определения правильного положения уступов по длине валика служит специальный инструмент, называемый штангенглубиномером (рис. 80). Устройство штангенглубиномера сходно с устройством штангенциркуля. Линейка 1 свободно перемещается в рамке 2 и закрепляется в ней в нужном положении при помощи винта 4. Линейка 1 имеет миллиметровую шкалу, по которой при помощи нониуса 3, имеющегося на рамке 2, определяется глубина выточки или канавки, как показано на рис. 80. Отсчет по нониусу ведется так же, как и при измерении штангенциркулем.


4. Прецизионный штангенциркуль

Для работ, выполняемых с большей точностью, чем до сих пор рассмотренные, применяют прецизионный (т. е. точный) штангенциркуль .

На рис. 81 изображен прецизионный штангенциркуль завода им. Воскова, имеющий измерительную линейку длиной 300 мм и нониус.


Длина шкалы нониуса (рис. 82, а) равна 49 делениям измерительной линейки, что составляет 49 мм. Эти 49 мм точно разделены на 50 частей, каждая из которых равна 0,98 мм. Так как одно деление измерительной линейки равно 1 мм, а одно деление нониуса равно 0,98 мм, то можно сказать, что каждое деление нониуса короче каждого деления измерительной линейки на 1,00-0,98 = = 0,02 мм. Эта величина 0,02 мм обозначает ту точность , которую может обеспечить нониус рассматриваемого прецизионного штангенциркуля при измерении деталей.


При измерении прецизионным штангенциркулем к количеству целых миллиметров, которое пройдено нулевым штрихом нониуса, надо прибавлять столько сотых долей миллиметра, сколько покажет штрих нониуса, совпавший со штрихом измерительной линейки. Например (см. рис. 82, б), по линейке штангенциркуля нулевой штрих нониуса прошел 12 мм, а его 12-й штрих совпал с одним из штрихов измерительной линейки. Так как совпадение 12-го штриха нониуса означает 0,02 х 12 = 0,24 мм, то измеряемый размер равен 12,0 + 0,24 = 12,24 мм.

На рис. 83 изображен прецизионный штангенциркуль завода «Калибр» с точностью отсчета 0,05 мм.

Длина нониусной шкалы этого штангенциркуля, равная 39 мм, разделена на 20 равных частей, каждая из которых принимается за пять. Поэтому против пятого штриха нониуса стоит цифра 25, против десятого - 50 и т. д. Длина каждого деления нониуса равна

Из рис. 83 видно, что при сомкнутых вплотную губках штангенциркуля только нулевой и последний штрихи нониуса совпадают со штрихами линейки; остальные же штрихи нониуса такого совпадения иметь не будут.

Если сдвинуть рамку 3 до совпадения первого штриха нониуса со вторым штрихом линейки, то между измерительными поверхностями губок штангенциркуля получится зазор, равный 2-1,95 = = 0,05 мм. При совпадении второго штриха нониуса с четвертым штрихом линейки зазор между измерительными поверхностями губок будет равен 4-2 X 1,95 = 4 - 3,9 = 0,1 мм. При совпадении третьего штриха нониуса со следующим штрихом линейки зазор составит уже 0,15 мм.

Отсчет на данном штангенциркуле ведется подобно изложенному выше.

Прецизионной штангенциркуль (рис. 81 и 83) состоит из линейки 1 с губками 6 и 7. На линейке нанесены деления. По линейке 1 может передвигаться рамка 3 с губками 5 и 8. К рамке привинчен нониус 4. Для грубых измерений передвигают рамку 3 по линейке 1 и после закрепления винтом 9 производят отсчет. Для точных измерений пользуются микрометрической подачей рамки 3, состоящей из винта и гайки 2 и зажима 10. Зажав винт 10, вращением гайки 2 подают микрометрическим винтом рамку 3 до плотного соприкосновения губки 8 или 5 с измеряемой деталью, после чего производят отсчет.

5. Микрометр

Микрометр (рис. 84) применяется для точного измерения диаметра, длины и толщины обрабатываемой детали и дает точность отсчета в 0,01 мм. Измеряемая деталь располагается между неподвижной пяткой 2 и микрометрическим винтом (шпинделем) 3. Вращением барабана 6 шпиндель удаляется или приближается к пятке.


Для того чтобы при вращении барабана не могло произойти слишком сильного нажатия шпинделем на измеряемую деталь, имеется предохранительная головка 7 с трещоткой. Вращая головку 7, мы будем выдвигать шпиндель 3 и поджимать деталь к пятке 2. Когда это поджатие окажется достаточным, при дальнейшем вращении головки ее храповичок будет проскальзывать и будет слышен звук трещотки. После этого прекращают вращение головки, закрепляют при помощи поворота зажимного кольца (стопора) 4 полученное раскрытие микрометра и производят отсчет.

Для производства отсчетов на стебле 5, составляющем одно целое со скобой 1 микрометра, нанесена шкала с миллиметровыми делениями, разделенными пополам. Барабан 6 имеет скошенную фаску, разделенную по окружности на 50 равных частей. Штрихи от 0 до 50 через каждые пять делений отмечены цифрами. При нулевом положении, т. е. при соприкосновении пятки со шпинделем, нулевой штрих на фаске барабана 6 совпадает с нулевым штрихом на стебле 5.

Механизм микрометра устроен таким образом, что при полном обороте барабана шпиндель 3 переместится на 0,5 мм. Следовательно, если повернуть барабан не на полный оборот, т. е. не на 50 делений, а на одно деление, или часть оборота, то шпиндель переместится на Это и есть точность отсчета микрометра. При отсчетах сначала смотрят, сколько целых миллиметров или целых с половиной миллиметров открыл барабан на стебле, затем к этому прибавляют число сотых долей миллиметра, которое совпало с линией на стебле.

На рис. 84 справа показан размер, снятый микрометром при измерении детали; необходимо сделать отсчет. Барабан открыл 16 целых делений (половинка не открыта) на шкале стебля. С линией стебля совпал седьмой штрих фаски; следовательно, будем иметь еще 0,07 мм. Полный отсчет равен 16 + 0,07 = 16,07 мм.

На рис. 85 показано несколько измерений микрометром.

Следует помнить, что микрометр - точный инструмент, требующий бережного отношения; поэтому, когда шпиндель слегка коснулся поверхности измеряемой детали, не следует больше вращать барабан, а для дальнейшего перемещения шпинделя вращать головку 7 (рис. 84), пока не последует звук трещотки.

6. Нутромеры

Нутромеры (штихмасы) служат для точных измерений внутренних размеров деталей. Существуют нутромеры постоянные и раздвижные.

Постоянный, или жесткий , нутромер (рис. 86) представляет собой металлический стержень с измерительными концами, имеющими шаровую поверхность. Расстояние между ними равно диаметру измеряемого отверстия. Чтобы исключить влияние тепла руки, держащей нутромер, на его фактический размер, нутромер снабжают державкой (рукояткой).

Для измерения внутренних размеров с точностью до 0,01 мм применяются микрометрические нутромеры. Устройство их сходно с устройством микрометра для наружных измерений.

Головка микрометрического нутромера (рис. 87) состоит из гильзы 3 и барабана 4, соединенного с микрометрическим винтом; шаг винта 0,5 мм, ход 13 мм. В гильзе помещается стопор 2 и пятка/с измерительной поверхностью. Удерживая гильзу и вращая барабан, можно изменять расстояние между измерительными поверхностями нутромера. Отсчеты производят, как у микрометра.


Пределы измерений головки штихмаса - от 50 до 63 мм. Для измерения больших диаметров (до 1500 мм) на головку навинчивают удлинители 5.

7. Предельные измерительные инструменты

При серийном изготовлении деталей по допускам применение универсальных измерительных инструментов (штангенциркуль, микрометр, микрометрический нутромер) нецелесообразно, так как измерение этими инструментами является сравнительно сложной и длительной операцией. Точность их часто недостаточна, и, кроме того, результат измерения зависит от умения работника.

Для проверки, находятся ли размеры деталей в точно установленных пределах, пользуются специальным инструментом - предельными калибрами . Калибры для проверки валов называются скобами, а для проверки отверстий - пробками .

Измерение предельными скобами . Двухсторонняя предельная скоба (рис. 88) имеет две пары измерительных щек. Расстояние между щеками одной стороны равно наименьшему предельному размеру, а другой - наибольшему предельному размеру детали. Если измеряемый вал проходит в большую сторону скобы, следовательно, его размер не превышает допустимого, а если нет, - значит размер его слишком велик. Если же вал проходит также и в меньшую сторону скобы, то это значит, что его диаметр слишком мал, т. е. меньше допустимого. Такой вал является браком.

Сторона скобы с меньшим размером называется непроходной (клеймится «НЕ»), противоположная сторона с большим размером - проходной (клеймится «ПР»). Вал признается годным, если скоба, опускаемая на него проходной стороной, скользит вниз под влиянием своего веса (рис. 88), а непроходная сторона не находит на вал.

Для измерения валов большого диаметра вместо двухсторонних скоб применяют односторонние (рис. 89), у которых обе пары измерительных поверхностей лежат одна за другой. Передними измерительными поверхностями такой скобы проверяют наибольший допускаемый диаметр детали, а задними - наименьший. Эти скобы имеют меньший вес и значительно ускоряют процесс контроля, так как для измерения достаточно один раз наложить скобу.

На рис. 90 показана регулируемая предельная скоба , у которой при износе можно путем перестановки измерительных штифтов восстановить правильные размеры. Кроме того, такую скобу можно отрегулировать для заданных размеров и таким образом небольшим набором скоб проверить большое количество размеров.

Для перестановки на новый размер нужно ослабить стопорные винты 1 на левой ножке, соответственно передвинуть измерительные штифты 2 и 3 и снова закрепить винты 1.

Широкое распространение имеют плоские предельные скобы (рис. 91), изготовляемые из листовой стали.

Измерение предельными пробками . Цилиндрический предельный калибр-пробка (рис. 92) состоит из проходной пробки 1, непроходной пробки 3 и рукоятки 2. Проходная пробка («ПР») имеет диаметр, равный наименьшему допустимому размеру отверстия, а непроходная пробка («НЕ») - наибольшему. Если пробка «ПР» проходит, а пробка «НЕ» не проходит, то диаметр отверстия больше наименьшего предельного и меньше наибольшего, т. е. лежит в допустимых пределах. Проходная пробка имеет большую длину, чем непроходная.

На рис. 93 показано измерение отверстия предельной пробкой на токарном станке. Проходная сторона должна легко проходить сквозь отверстие. Если же и непроходная сторона входит в отверстие, то деталь бракуют.

Цилиндрические калибры-пробки для больших диаметров неудобны вследствие их большого веса. В этих случаях пользуются двумя плоскими калибрами-пробками (рис. 94), из которых один имеет размер, равный наибольшему, а второй - наименьшему допускаемому. Проходная сторона имеет, большую ширину, чем пепроходная.

На рис. 95 показана регулируемая предельная пробка . Ее можно отрегулировать для нескольких размеров так же, как регулируемую предельную скобу, или восстановить правильный размер изношенных измерительных поверхностей.

8. Рейсмасы и индикаторы

Рейсмас . Для точной проверки правильности установки детали в четырехкулачковом патроне, на угольнике и т. п. применяют рейсмас .

С помощью рейсмаса можно производить также разметку центровых отверстий в торцах детали.

Простейший рейсмас показан на рис. 96, а. Он состоит из массивной плитки с точно обработанной нижней плоскостью и стержня, по которому передвигается ползушка с иглой-чертилкой.

Рейсмас более совершенной конструкции, показан на рис. 96, б. Игла 3 рейсмаса при помощи шарнира 1 и хомута 4 может быть подведена острием к проверяемой поверхности. Точная установка осуществляется винтом 2.

Индикатор. Для контроля точности обработки на металлорежущих станках, проверки обработанной детали на овальность, конусность, для проверки точности самого станка применяют индикатор.

Индикатор (рис. 97) имеет металлический корпус 6 в форме часов, в котором заключен механизм прибора. Через корпус индикатора проходит стержень 3 с выступающим наружу наконечником, всегда находящийся под воздействием пружины. Если нажать на стержень снизу вверх, он переместится в осевом направлении и при этом повернет стрелку 5, которая передвинется по циферблату, имеющему шкалу в 100 делений, каждое из которых соответствует перемещению стержня на 1/100 мм. При перемещении стержня на 1 мм стрелка 5 сделает по циферблату полный оборот. Для отсчета целых оборотов служит стрелка 4.


При измерениях индикатор всегда должен быть жестко закреплен относительно исходной измерительной поверхности. На рис. 97, а изображена универсальная стойка для крепления индикатора. Индикатор 6 при помощи стержней 2 и 1 муфт 7 и 8 закрепляют на вертикальном стержне 9. Стержень 9 укрепляется в пазу 11 призмы 12 гайкой 10 с накаткой.

Для измерения отклонения детали от заданного размера подводят к ней наконечник индикатора до соприкосновения с измеряемой поверхностью и замечают начальное показание стрелок 5 и 4 (см. рис. 97, б) на циферблате. Затем перемещают индикатор относительно измеряемой поверхности или измеряемую поверхность относительно индикатора.

Отклонение стрелки 5 от ее начального положения покажет величину выпуклости (впадины) в сотых долях миллиметра, а отклонение стрелки 4-в целых миллиметрах.

На рис. 98 показан пример использования индикатора для проверки совпадения центров передней и задней бабок токарного станка. Для более точной проверки следует установить между центрами точный шлифованный валик, а в резцедержателе - индикатор. Подведя кнопку индикатора к поверхности валика справа и заметив показание стрелки индикатора, перемещают вручную суппорт с индикатором вдоль валика. Разность отклонений стрелки индикатора в крайних положениях валика покажет, на какую величину следует передвинуть в поперечном направлении корпус задней бабки.

С помощью индикатора можно также проверить торцовую поверхность детали, обработанной на станке. Индикатор закрепляют в резцедержателе взамен резца и перемещают вместе с резцедержателем в поперечном направлении так, чтобы пуговка индикатора касалась проверяемой поверхности. Отклонение стрелки индикатора покажет величину биения торцовой плоскости.

Контрольные вопросы 1. Из каких деталей состоит штангенциркуль с точностью 0,1 мм?
2. Как устроен нониус штангенциркуля с точностью 0,1 мм?
3. Установите на штангенциркуле размеры: 25,6 мм; 30,8 мм; 45,9 мм.
4. Сколько делений имеет нониус прецизионного штангенциркуля с точностью 0,05 мм? То же, с точностью 0,02 мм? Чему равняется длина одного деления нониуса? Как прочитать показания нониуса?
5. Установите по прецизионному штангенциркулю размеры: 35,75 мм; 50,05 мм; 60,55 мм; 75 мм.
6. Из каких деталей состоит микрометр?
7. Чему равняется шаг винта микрометра?
8. Как производят отсчет измерения по микрометру?
9. Установите по микрометру размеры: 15,45 мм; 30,5 мм; 50,55 мм.
10. В каких случаях применяют нутромеры?
11. Для чего применяют предельные калибры?
12. Каково назначение проходной и непроходной сторон предельных калибров?
13. Какие конструкции предельных скоб вам известны?
14. Как проверять правильность размера предельной пробкой? Предельной скобой?
15. Для чего служит индикатор? Как им пользоваться?
16. Как устроен рейсмас и для чего его применяют?

Взаимозаменяемость гладких цилиндрических соединений.

Гладкие цилиндрические соединения разделяют на подвижные и неподвижные.

Подвижные соединения должны создавать между валом и отверстием гарантированный наименьший зазор, обеспечивающий жидкостное трение, заданную несущую способность подшипника и сохранение указанного вида трения при увеличении зазора.

Неподвижные соединения должны обеспечивать точное центрирование деталей и передачу в процессе эксплуатации заданного крутящего момента или осевой силы благодаря гарантированному натягу или дополнительному креплению деталей шпонками, винтами и т.д. в случае применения переходных посадок.

Переходные посадки – это посадки, которые могут иметь как небольшие зазоры, так и небольшие натяги. В переходных посадках неподвижные соединения можно получить только за счёт применения дополнительного крепления.

Получить любой вид соединения (посадки) можно путём использования системы допусков, оформленных в виде стандартов. Эта система допусков позволяет производить массовое изготовление деталей, обеспечивающих хорошую собираемость и взаимозаменяемость.

Исходя из того, что в тракторном, автомобильном и сельскохозяйственном машиностроении используют детали размером до 500 мм стандарт предусматривает соответствующую систему допусков и посадок в пределах этого интервала.

Независимо от вида соединения оно должно быть выполнено в одной из двух систем: системе отверстия или системе вала.

Квалитеты

Квалитет , по другому класс точности, (от французского gualite – качество) – совокупность допусков, изменяющихся в зависимости от номинального размера так, что уровень точности для всех номинальных размеров остается одинаковым.

В системе ISO для размеров до 3150 мм установлено 18 квалитетов: 01;0;1;..16. В системе СЭВ для размеров от 1 до 10000 мм предусмотрено 19 квалитетов (добавлен 17).

Квалитет характеризуется величиной допуска размера и сложностью получения размера независимо от диаметра.

Допуск устанавливается в зависимости от номинального размера и квалитета. Квалитеты обозначают буквами IT и порядковым номером 01, 0,1, 2..17. Например: IT 5; IT 9; IT 16. Применяются квалитеты:

IT 01; IT 0; IT 1- для изготовления концевых мер;

IT 2; IT 3; IT 4- для калибров;

IT 5…IT 13-для образования посадок;

IT 14…IT 17-для неответственных несопрягаемых поверхностей;

Применение квалитетов точности в соединениях (посадках)

Квалитет Применение
5–6 ответственные соединения в станкостроении и моторостроении (высокоточные зубчатые колеса, шпиндельные и приборные подшипники в корпусах и на валах)
6-7 соединения типа поршень - гильза, зубчатые колеса на валах, подшипники качения на вал и в корпус
7, 8, 9 точные соединения в тракторостроении и ответственных узлах сельхозмашин
при пониженных требованиях точности, а также в соединениях, где используется калиброванный материал для валов
подвижные соединения сельхозмашин при больших зазорах и значительных их колебаниях (грубая сборка), а также крышки, фланцы кольца…
12-13 неподвижные сварные соединения сельхозмашин (плуги, сеялки и др.)

Правильно назначить квалитет не менее важно, чем произвести расчет размеров детали. Назначение квалитета связано с точностью и эксплутационным назначением механизма, а также с характером требуемых посадок.

При выборе точности изготовления (квалитета) необходимо также учитывать и экономическую целесообразность. Изготовление деталей по расширенным допускам не требует больших затрат и уменьшает вероятность появления брака, но при этом снижается надежность конструкции (идет большой разброс зазоров и натягов) и, как следствие, долговечность работы машины.

Машины в основном выходят из строя не из-за разрушения, а из-за потери работоспособности, вызываемой снижением точности сборки узлов и агрегатов.

Связь точности и стоимости изготовления деталей

Для квалитетов от 5 до 17 значения допусков определяются исходя из единицы допуска i мкм, которая характеризует закономерность изменения допуска от величины диаметра. Для размеров до 500 мм

где d ср в мм, i в мкм.

Допуск выражается формулой

где а -число единиц допуска, постоянное для данного квалитета, независимое от номинального размера.

Значения числа единиц допуска для квалитетов с 5 по 17 представлены в таблице.

Таблица Значения единиц допуска для квалитетов IT5…IT17

Квалитет характеризуется величиной допуска. При переходе от одного квалитета к другому допуски увеличиваются по геометрической прогрессии со знаменателем 1,6,.

Изменение допусков при изменении квалитета

Через каждые пять квалитетов, начиная с IT 5, допуски увеличиваются примерно в 10 раз.

Основные отклонения

Для образования посадок с различными зазорами и натягами стандартами СЭВ установлены 27 основных отклонений для отверстий и валов. Они обозначаются прописной буквой латинского алфавита для отверстий и строчной - для валов. Рассмотрим на схеме положение полей допусков отверстий и валов относительно нулевой линии.

Основные отклонения отверстий и валов в системе JSO.

Отклонения от А до Н (от a до h) предназначены для образования полей допусков в посадках с зазорами; от Js до N (от js до n)- в переходных посадках; от Р до Zс (от p до z с)-в посадках с натягами. Для отверстий и валов, обозначенных буквами Js и js поле допуска располагается строго симметрично относительно нулевой линии, а предельные отклонения равны по величине, но имеют противоположный знак.

Основное отклонение – это отклонение, ближайшее к нулевой линии. Для всех полей допусков, расположенных выше нулевой линии, основным является нижнее отклонение (EI или ei); для полей допусков, расположенных ниже нулевой линии – верхнее отклонение (ES или es). Одноименные поля допусков отверстий и валов располагаются строго симметрично относительно нулевой линии и их предельные отклонения одинаковые, но противоположны по знаку (за исключением переходных посадок).

Для посадок от A до H известны EI

Для посадок от J до ZC известны ES

Основное отклонение отверстия должно быть симметрично нулевой линии основного отклонения вала, обозначенного той же буквой. Оно не зависит от квалитета, т. е. является постоянной величиной для одноименных полей допусков.

Верхнее (если поле допуска расположено выше нулевой линии) или нижнее (если поле допуска расположено ниже нулевой линии) отклонение определяют по величине основного отклонения и допуску выбранного квалитета.

Понятия – «система отверстия » и «система вала »

Стандартами установлены две равноправные системы посадок: система отверстия (СА) и система вала (СВ).

Как видно из рисунка, основное отверстие в системе отверстия имеет нижнее отклонение EJ равное нулю. Это является отличительной особенностью системы отверстия.

Образование посадок в системе отверстия

В системе отверстия – отверстие является основной деталью и независимо от посадки обрабатывается под номинальный размер (с допуском в тело детали), а различные посадки получаются путём изменения предельных размеров вала.

В системе вала – вал является основной деталью и независимо от посадки обрабатывается под номинальный размер (с допуском в тело детали), а различные посадки получаются путём изменения предельных размеров отверстия.

Образование посадок в системе вала

Как видно из рисунка основной вал в системе вала имеет верхнее отклонение es равное нулю. Это является отличительной особенностью системы вала.

В системе допусков и посадок ISO принято одностороннее предельное расположение поля допуска основной детали относительно номинального размера сопряжения. Поэтому, если допуски заданы в системе отверстия, то нижнее отклонение отверстия всегда будет равно нулю (EI=0), а если допуски заданы в системе вала, то верхнее отклонение вала всегда будет равно нулю (es=0) независимо от посадки.

Иными словами, посадки в системе отверстия СА – это посадки, в которых различные зазоры и натяги получают соединением различных валов с основным отверстием. Эти посадки принято обозначать буквой «Н».

Посадки в системе вала CВ – это посадки, в которых различные зазоры и натяги получают соединением различных отверстий с основным валом. Эти посадки принято обозначать буквой «h».

Выбор системы посадок .

Посадка образуется сочетанием полей допусков отверстия и вала. По экономическим соображениям (сокращения необоснованного многообразия посадок, систематизации режущего и измерительного инструмента для отверстий т.д.) рекомендуется применять две гостированные равноправные системы посадок: система отверстия СА и система вала СВ. Эти системы равноценны, но в промышленности применяются в разной степени. Для работы совершенно безразлично, в какой системе назначена посадка (с зазором, с натягом или переходная посадка); важна её конкретная величина. С технической точки зрения посадки в системе отверстия предпочтительнее. Вал, т.е. наружную поверхность обработать и проконтролировать намного проще, чем внутреннюю поверхность – отверстие. Для изготовления отверстий требуется размерный режущий инструмент: зенкер, протяжка, развертка и т.д. определенного типоразмера, сложный измерительный инструмент, что повышает стоимость детали. Поэтому в основном применяется система отверстия.

Система вала, как правило, применяется в трех случаях:

1) если валы изготовлены из пруткового калиброванного материала без дополнительной обработки посадочных мест;

Допуск (Т ) размера - это разность между наибольшим и наименьшим предельными размерами или абсолютное значение алгебраической разности между верхним и нижним отклонениями.

Допуск всегда положителен. Он определяет допускаемое поле рассеяния действительных размеров годных деталей в партии, т. е. заданную точность изготовления. С уменьшением допуска качество изделий, как правило, улучшается, но стоимость производства увеличивается.

Для наглядного представления размеров, предельных отклонений и допусков, а также характера соединений используют графическое, схематическое изображение полей допусков, располагаемых относительно нулевой линии (рис.2.1).

Рис. 2.1 Поля допусков отверстия и вала при посадке с зазором (отклонения отверстия
положительны, отклонения вала отрицательны)

Нулевая линия - это линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок. При горизонтальном расположении нулевой линии положительные отклонения откладываются вверх от нее, а отрицательные - вниз.

Поле допуска - это поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется величиной допуска, а его положение относительно номинального размера определяется основным отклонением.

Основное отклонение (Eo) - одно из двух отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. Основное отклонение - это ближайшее расстояние от границы поля допуска до нулевой линии.

В готовых изделиях детали в большинстве случаев сопрягаются по своим формообразующим поверхностям, образуя соединения. Две или несколько подвижно или неподвижно соединяемых деталей называют сопрягаемыми. Поверхности, по которым происходит соединение деталей, называются сопрягаемыми поверхностями.Остальные поверхности называют несопрягаемыми (свободными). В соответствии с этим различают размеры сопрягаемых и несопрягаемых (свободных) поверхностей.

В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.

Охватывающую поверхность называют отверстие , охватываемую - вал (рис.2.1). Термины "отверстие" и "вал" относятся не только к цилиндрическим деталям. Они могут быть применены к охватывающим и охватываемым поверхностям любой формы, в том числе не замкнутым, например, к плоским (паз и шпонка).

Размеры отверстий обозначают любыми заглавными буквами, например: A, B, G , Б, Ц и т.д., валов - строчными: a, b, g , б, ц и т.д. Предельные размеры обозначают с индексами max - наибольший предельный размер, min - наименьший предельный размер, например: A max , B min , a max , b min . Предельные отклонения отверстий обозначают: верхнее - ES , нижнее - EI , валов - соответственно es и ei .

При решении других задач, например расчёта размерных цепей, предельные отклонения можно обозначать Es - верхнее отклонение, Ei - нижнее. Таким образом, для отверстия ES = D max - D ; EI = D min - D ; для вала es = d max - d; ei = d min - d ; для любого размера Es = A max - A ; Ei = A min - A или Es = a max - a ; Ei = a min - a.
Допуски размеров охватывающей и охватываемой поверхностей называют соответственно допуском отверстия () и допуском вала (Ta ).

По степени свободы взаимного перемещения деталей различают следующие соединения:

  • а) неподвижные неразъемные соединения , в которых одна соединяемая деталь неподвижна относительно другой в течение всего времени работы механизма: соединения деталей сваркой, клепкой, клеем, соединения с гарантированным натягом (например, бронзового венца червячного колеса со стальной ступицей); первые три вида этих соединений разборке не подвергаются, а четвертый может разбираться лишь при крайней необходимости;
  • б) неподвижные разъемные соединения , отличающиеся от предыдущих тем, что в них возможно перемещение одной детали относительно другой при регулировке и разборке соединения при ремонте (например, крепежные резьбовые, шлицевые, шпоночные, клиновые и штифтовые соединения);
  • в) подвижные соединения , в которых одна соединяемая деталь во время работы механизма перемещается относительно другой в определенных направлениях.

В каждую из групп входит много разновидностей соединений, имеющих свои конструктивные особенности и свою область применения. В зависимости от эксплуатационных требований сборку соединений осуществляют с различными посадками .

Посадкой называется характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов.

Посадка характеризует большую или меньшую свободу относительного перемещения или степень сопротивления взаимному смещению соединяемых деталей. Тип посадки определяется величиной и взаимным расположением полей допусков отверстия и вала. Номинальный размер отверстия и вала, составляющих соединение является общим и называется номинальным размером посадки .

Если размер отверстия больше размера вала, то их разность называется зазором (S ), т.е. S = D - d больше или равно 0; если размер вала до сборки больше размера отверстия, то их разность называется натягом (N ), т.е. N = d - D > 0. В расчетах натяг принимают как отрицательный зазор.

При расчёте посадок определяют предельные и средний зазоры или натяги. Наибольший (S max ), наименьший (S min ) и средний зазор (S m ), равны: S max = D max - d min ; S min = D min - d max ; S m = 0,5·(S max + S min ). Наибольший (N max ), наименьший натяги (N min ) и средний натяг (N m ) равны: N max = d max - D min ; N min = d min - D max ; N m = 0,5·(N max + N min ).
Посадки разделяются на три группы: с зазором, с натягом и переходные посадки.

Посадка с зазором - посадка, при которой обеспечивается зазор в соединении (поле допуска отверстия расположено над полем допуска вала, рис. 2.2, а.. К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала, т. е. S min = 0.

Посадка с натягом - посадка, при которой обеспечивается натяг в соединении (поле допуска отверстия расположено под полем допуска вала, рис. 2.2, в.

Переходная посадка - посадка, при которой возможно получение как зазора, так и натяга (поля допусков отверстия и вала перекрываются частично или полностью, рис. 2.2, б.

Рис.2.2. Схемы полей допусков посадок: а - с зазором; б - переходные; в - с натягом

Допуск посадки - разность между наибольшим и наименьшим допускаемыми зазорами (допуск зазора TS в посадках с зазором) или наибольшим и наименьшим допускаемыми натягами (допуск натяга TN в посадках с натягом): TS = S max - S min ; TN = N max - N min .

В переходных посадках допуск посадки равен сумме наибольшего зазора и наибольшего натяга, взятых по абсолютному значению TS(N) = S max + N max . Для всех типов посадок допуск посадки равен сумме допусков отверстия и вала, т. е. TS(N) = ТD + Td.
В переходных посадках при наибольшем предельном размере вала и наименьшем предельном размере отверстия получается наибольший натяг (N max ), а при наибольшем предельном размере отверстия и наименьшем предельном размере вала - наибольший зазор (S max ). Минимальный зазор в переходной посадке равен нулю (S min = 0). Средний зазор или натяг равен половине разности наибольшего зазора и наибольшего натяга S m (N m ) = 0,5·(S max - N max ). Положительное значение соответствует зазору S m , отрицательное - натягу N m .