Уравнения высших степеней Методы решения уравнений n. Уравнения высших степеней по математике




Основные цели:

  1. Закрепить понятие целого рационального уравнения -й степени.
  2. Сформулировать основные методы решения уравнений высших степеней (n > 3).
  3. Обучить основным методам решения уравнений высших степеней.
  4. Научить по виду уравнения определять наиболее эффективный способ его решения.

Формы, методы и педагогические приемы, которые используются учителем на уроке:

  • Лекционно-семинарская система обучения (лекции – объяснение нового материала, семинары – решение задач).
  • Информационно-коммуникационные технологии (фронтальный опрос, устная работа с классом).
  • Дифференцированное обучение, групповые и индивидуальные формы.
  • Использование исследовательского метода в обучении, направленного на развитие математического аппарата и мыслительных способностей каждого конкретного ученика.
  • Печатный материал – индивидуальный краткий конспект урока (основные понятия, формулы, утверждения, материал лекций сжато в виде схем или таблиц).

План урока:

  1. Организационный момент.
    Цель этапа: включить учащихся в учебную деятельность, определить содержательные рамки урока.
  2. Актуализация знаний учащихся.
    Цель этапа: актуализировать знания учащихся по изученным ранее смежным темам
  3. Изучение новой темы (лекция). Цель этапа: сформулировать основные методы решения уравнений высших степеней (n > 3)
  4. Подведение итогов.
    Цель этапа: еще раз выделить ключевые моменты в материале, изученном на уроке.
  5. Домашнее задание.
    Цель этапа: сформулировать домашнее задание для учащихся.

Конспект урока

1. Организационный момент.

Формулировка темы урока: “Уравнения высших степеней. Методы их решения”.

2. Актуализация знаний учащихся.

Теоретический опрос – беседа. Повторение некоторых ранее изученных сведений из теории. Учащиеся формулируют основные определения и дают формулировки необходимых теорем. Приводят примеры, демонстрируя уровень полученных ранее знаний.

  • Понятие уравнения с одной переменной.
  • Понятие корня уравнения, решения уравнения.
  • Понятие линейного уравнения с одной переменной, понятие квадратного уравнения с одной переменной.
  • Понятие равносильности уравнений, уравнения-следствия (понятие посторонних корней), переход не по следствию (случай потери корней).
  • Понятие целого рационального выражения с одной переменной.
  • Понятие целого рационального уравнения n -й степени. Стандартный вид целого рационального уравнения. Приведенное целое рациональное уравнение.
  • Переход к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • Понятие многочлена n -й степени от x . Теорема Безу. Следствия из теоремы Безу. Теоремы о корнях (Z -корни и Q -корни) целого рационального уравнения с целыми коэффициентами (соответственно приведенного и неприведенного).
  • Схема Горнера.

3. Изучение новой темы.

Будем рассматривать целое рациональное уравнение n -й степени стандартного вида с одной неизвестной переменной x: P n (x) = 0 , где P n (x) = a n x n + a n-1 x n-1 + a 1 x + a 0 – многочлен n -й степени от x , a n ≠ 0 . Если a n = 1 то такое уравнение называют приведенным целым рациональным уравнением n -й степени. Рассмотрим такие уравнения при различных значениях n и перечислим основные методы их решения.

n = 1 – линейное уравнение.

n = 2 – квадратное уравнение. Формула дискриминанта. Формула для вычисления корней. Теорема Виета. Выделение полного квадрата.

n = 3 – кубическое уравнение.

Метод группировки.

Пример: x 3 – 4x 2 – x + 4 = 0 (x – 4)(x 2 – 1) = 0 x 1 = 4 , x 2 = 1, x 3 = -1.

Возвратное кубическое уравнение вида ax 3 + bx 2 + bx + a = 0. Решаем, объединяя члены с одинаковыми коэффициентами.

Пример: x 3 – 5x 2 – 5x + 1 = 0 (x + 1)(x 2 – 6x + 1) = 0 x 1 = -1, x 2 = 3 + 2, x 3 = 3 – 2.

Подбор Z-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный, и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Z -корнях приведенного целого рационального уравнения с целыми коэффициентами.

Пример: x 3 – 9x 2 + 23x – 15 = 0. Уравнение приведенное. Выпишем делители свободного члена {+ 1; + 3; + 5; + 15}. Применим схему Горнера:

x 3 x 2 x 1 x 0 вывод
1 -9 23 -15
1 1 1 х 1 – 9 = -8 1 х (-8) + 23 = 15 1 х 15 – 15 = 0 1 – корень
x 2 x 1 x 0

Получаем (x – 1)(x 2 – 8x + 15) = 0 x 1 = 1, x 2 = 3, x 3 = 5.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Q -корнях неприведенного целого рационального уравнения с целыми коэффициентами.

Пример: 9x 3 + 27x 2 – x – 3 = 0. Уравнение неприведенное. Выпишем делители свободного члена {+ 1; + 3}. Выпишем делители коэффициента при старшей степени неизвестного. {+ 1; + 3; + 9} Следовательно, корни будем искать среди значений {+ 1; + ; + ; + 3}. Применим схему Горнера:

x 3 x 2 x 1 x 0 вывод
9 27 -1 -3
1 9 1 x 9 + 27 = 36 1 x 36 – 1 = 35 1 x 35 – 3 = 32 ≠ 0 1 – не корень
-1 9 -1 x 9 + 27 = 18 -1 x 18 – 1 = -19 -1 x (-19) – 3 = 16 ≠ 0 -1 – не корень
9 x 9 + 27 = 30 x 30 – 1 = 9 x 9 – 3 = 0 корень
x 2 x 1 x 0

Получаем (x – )(9x 2 + 30x + 9) = 0 x 1 = , x 2 = - , x 3 = -3.

Для удобства подсчета при подборе Q-корней бывает удобно сделать замену переменной, перейти к приведенному уравнению и подбирать Z-корни .

  • Если свободный член равен 1
.

  • Если можно воспользоваться заменой вида y = kx
.

Формула Кардано. Существует универсальный метод решения кубических уравнений – это формула Кардано. Эту формулу связывают с именами итальянских математиков Джероламо Кардано (1501–1576), Николо Тарталья (1500–1557), Сципиона дель Ферро (1465–1526). Эта формула лежит за рамками нашего курса.

n = 4 – уравнение четвертой степени.

Метод группировки.

Пример: x 4 + 2x 3 + 5x 2 + 4x – 12 = 0 (x 4 + 2x 3) + (5x 2 + 10x ) – (6x + 12) = 0 (x + 2)(x 3 + 5x – 6) = 0 (x + 2)(x – 1)(x 2 + x + 6) = 0 x 1 = -2, x 2 = 1.

Метод замены переменной.

  • Биквадратное уравнение вида ax 4 + bx 2 + с = 0 .

Пример: x 4 + 5x 2 – 36 = 0. Замена y = x 2 . Отсюда y 1 = 4, y 2 = -9. Поэтому x 1,2 = + 2 .

  • Возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + bx + a = 0.

Решаем, объединяя члены с одинаковыми коэффициентами, путем замены вида

  • ax 4 + bx 3 + cx 2 – bx + a = 0.

  • Обобщенное возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + kbx + k 2 a = 0 .

  • Замена общего вида. Некоторые стандартные замены.

Пример 3. Замена общего вида (вытекает из вида конкретного уравнения).

n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней n = 3.

Формула общего вида. Существует универсальный метод решения уравнений четвертой степени. Эту формулу связывают с именем Людовико Феррари (1522–1565). Эта формула лежит за рамками нашего курса.

n > 5 – уравнения пятой и более высоких степеней.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Симметрические уравнения. Любое возвратное уравнение нечетной степени имеет корень x = -1 и после разложения его на множители получаем, что один сомножитель имеет вид (x + 1), а второй сомножитель – возвратное уравнение четной степени (его степень на единицу меньше, чем степень исходного уравнения). Любое возвратное уравнение четной степени вместе с корнем вида x = φ содержит и корень вида . Используя эти утверждения, решаем задачу, понижая степень исследуемого уравнения.

Метод замены переменной. Использование однородности.

Не существует формулы общего вида для решения целых уравнений пятой степени (это показали итальянский математик Паоло Руффини (1765–1822) и норвежский математик Нильс Хенрик Абель (1802–1829)) и более высоких степеней (это показал французский математик Эварист Галуа (1811–1832)).

  • Напомним еще раз, что на практике возможно использование комбинации перечисленных выше методов. Удобно переходить к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители .
  • За рамками нашего сегодняшнего обсуждения остались широко используемые на практике графические методы решения уравнений и методы приближенного решения уравнений высших степеней.
  • Бывают ситуации, когда у уравнения нет R-корней.
  • Тогда решение сводится к тому, чтобы показать, что уравнение корней не имеет. Для доказательства анализируем поведение рассматриваемых функций на промежутках монотонности. Пример: уравнение x 8 – x 3 + 1 = 0 не имеет корней.
  • Использование свойства монотонности функций
  • . Бывают ситуации, когда использование различных свойств функций позволяет упростить поставленную задачу.
    Пример 1: уравнение x 5 + 3x – 4 = 0 имеет один корень x = 1. По свойству монотонности анализируемых функций других корней нет.
    Пример 2: уравнение x 4 + (x – 1) 4 = 97 имеет корни x 1 = -2 и x 2 = 3. Проанализировав поведение соответствующих функций на промежутках монотонности, заключаем, что других корней нет.

4. Подведение итогов.

Резюме: Теперь мы овладели основными методами решения различных уравнений высших степеней (для n > 3). Наша задача научиться эффективно использовать перечисленные выше алгоритмы. В зависимости от вида уравнения мы должны будем научиться определять, какой способ решения в данном случае является наиболее эффективным, а также правильно применять выбранный метод.

5. Домашнее задание.

: п.7, стр. 164–174, №№ 33–36, 39–44, 46,47.

: №№ 9.1–9.4, 9.6–9.8, 9.12, 9.14–9.16, 9.24–9.27.

Возможные темы докладов или рефератов по данной тематике:

  • Формула Кардано
  • Графический метод решения уравнений. Примеры решения.
  • Методы приближенного решения уравнений.

Анализ усвоения материала и интереса учащихся к теме:

Опыт показывает, что интерес учащихся в первую очередь вызывает возможность подбора Z -корней и Q -корней уравнений при помощи достаточно простого алгоритма с использованием схемы Горнера. Также учащиеся интересуются различными стандартными типами замены переменных, которые позволяют существенно упрощать вид задачи. Особый интерес обычно вызывают графические методы решения. В этом случае дополнительно можно разобрать задачи на графический метод решения уравнений; обсудить общий вид графика для многочлена 3, 4, 5 степени; проанализировать, как связано число корней уравнений 3, 4, 5 степени с видом соответствующего графика. Ниже приведен список книг, в которых можно найти дополнительную информацию по данной тематике.

Список литературы:

  1. Виленкин Н.Я. и др. “Алгебра. Учебник для учащихся 9 классов с углубленным изучением математики” – М., Просвещение, 2007 – 367 с.
  2. Виленкин Н.Я., Шибасов Л.П., Шибасова З.Ф. “За страницами учебника математики. Арифметика. Алгебра. 10-11 класс” – М., Просвещение, 2008 – 192 с.
  3. Выгодский М.Я. “Справочник по математике” – М., АСТ, 2010 – 1055 с.
  4. Галицкий М.Л. “Сборник задач по алгебре. Учебное пособие для 8-9 классов с углубленным изучением математики” – М., Просвещение, 2008 – 301 с.
  5. Звавич Л.И. и др. “Алгебра и начала анализа. 8–11 кл. Пособие для школ и классов с углубленным изучением математики” – М., Дрофа, 1999 – 352 с.
  6. Звавич Л.И., Аверьянов Д.И., Пигарев Б.П., Трушанина Т.Н. “Задания по математике для подготовки к письменному экзамену в 9 классе” – М., Просвещение, 2007 – 112 с.
  7. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.1 – М., Физматкнига, 2006 – 176 с.
  8. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.2 – М., Физматкнига, 2006 – 176 с.
  9. Иванов А.П. “Тесты и контрольные работы по математике. Учебное пособие”. – М., Физматкнига, 2008 – 304 с.
  10. Лейбсон К.Л. “Сборник практических заданий по математике. Часть 2–9 класс” – М., МЦНМО, 2009 – 184 с.
  11. Макарычев Ю.Н., Миндюк Н.Г. “Алгебра. Дополнительные главы к школьному учебнику 9 класса. Учебное пособие для учащихся школ и классов с углубленным изучением математики.” – М., Просвещение, 2006 – 224 с.
  12. Мордкович А.Г. “Алгебра. Углубленное изучение. 8 класс. Учебник” – М., Мнемозина, 2006 – 296 с.
  13. Савин А.П. Энциклопедический словарь юного математика” – М., Педагогика, 1985 – 352 с.
  14. Сурвилло Г.С., Симонов А.С. “Дидактические материалы по алгебре для 9 класса с углубленным изучением математики” – М., Просвещение, 2006 – 95 с.
  15. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 1–4” – М., Первое сентября, 2006 – 88 с.
  16. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 5–8” – М., Первое сентября, 2009 – 84 с.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Уравнения высших степеней (корни многочлена от одной переменной).

П лан лекции. № 1 . Уравнения высших степеней в школьном курсе математики. № 2 . Стандартный вид многочлена. № 3 .Целые корни многочлена. Схема Горнера. № 4. Дробные корни многочлена. № 5. Уравнения вида: (х + а)(х + в)(х + с) … = А № 6. Возвратные уравнения. № 7. Однородные уравнения. № 8. Метод неопределенных коэффициентов. № 9. Функционально – графический метод. № 10. Формулы Виета для уравнений высших степеней. № 11. Нестандартные методы решения уравнений высших степеней.

Уравнения высших степеней в школьном курсе математики. 7 класс. Стандартный вид многочлена. Действия с многочленами. Разложение многочлена на множители. В обычном классе 42 часа, в спец классе 56 часов. 8 спецкласс. Целые корни многочлена, деление многочленов, возвратные уравнения, разность и сумма п – ых степеней двучлена, метод неопределенных коэффициентов. Ю.Н. Макарычев « Дополнительные главы к школьному курсу алгебры 8 класса», М.Л.Галицкий Сборник задач по алгебре 8 – 9 класс». 9 спецкласс. Рациональные корни многочлена. Обобщенные возвратные уравнения. Формулы Виета для уравнений высших степеней. Н.Я. Виленкин « Алгебра 9 класс с углубленным изучением. 11 спецкласс. Тождественность многочленов. Многочлен от нескольких переменных. Функционально – графический метод решения уравнений высших степеней.

Стандартный вид многочлена. Многочлен Р(х) = а ⁿ х ⁿ + а п-1 х п-1 + … + а₂х ² + а₁х + а₀. Называется многочленом стандартного вида. а п х ⁿ - старший член многочлена а п - коэффициент при старшем члене многочлена. При а п = 1 Р(х) называется приведенным многочленом. а ₀ - свободный член многочлена Р(х). п – степень многочлена.

Целые корни многочлена. Схема Горнера. Теорема № 1. Если целое число а является корнем многочлена Р(х), то а – делитель свободного члена Р(х). Пример № 1 . Решите уравнение. Х⁴ + 2х³ = 11х² – 4х – 4 Приведем уравнение к стандартному виду. Х⁴ + 2х³ - 11х² + 4х + 4 = 0. Имеем многочлен Р(х) = х ⁴ + 2х³ - 11х² + 4х + 4 Делители свободного члена: ± 1, ± 2, ±4. х = 1 корень уравнения т.к. Р(1) = 0, х = 2 корень уравнения т.к. Р(2) = 0 Теорема Безу. Остаток от деления многочлена Р(х) на двучлен (х – а) равен Р(а). Следствие. Если а – корень многочлена Р(х), то Р(х) делится на (х – а). В нашем уравнении Р(х) делится на (х – 1) и на (х – 2), а значит и на (х – 1) (х – 2). При делении Р(х) на (х ² - 3х + 2) в частном получается трехчлен х ² + 5х + 2 = 0, который имеет корни х =(-5 ± √17)/2

Дробные корни многочлена. Теорема №2. Если р / g корень многочлена Р(х), то р – делитель свободного члена, g – делитель коэффициента старшего члена Р(х). Пример № 2. Решите уравнение. 6х³ - 11х² - 2х + 8 = 0. Делители свободного члена: ±1, ±2, ±4, ±8. Ни одно из этих чисел не удовлетворяет уравнению. Целых корней нет. Натуральные делители коэффициента старшего члена Р(х): 1, 2, 3, 6. Возможные дробные корни уравнения: ±2/3, ±4/3, ±8/3. Проверкой убеждаемся, что Р(4/3) = 0. Х = 4/3 корень уравнения. По схеме Горнера разделим Р(х) на (х – 4/3).

Примеры для самостоятельного решения. Решите уравнения: 9х³ - 18х = х – 2, х ³ - х ² = х – 1, х ³ - 3х² -3х + 1 = 0, Х ⁴ - 2х³ + 2х – 1 = 0, Х⁴ - 3х² + 2 = 0, х ⁵ + 5х³ - 6х² = 0, х ³ + 4х² + 5х + 2 = 0, Х⁴ + 4х³ - х ² - 16х – 12 = 0 4х³ + х ² - х + 5 = 0 3х⁴ + 5х³ - 9х² - 9х + 10 = 0. Ответы: 1) ±1/3; 2 2) ±1, 3) -1; 2 ±√3 , 4) ±1, 5) ± 1; ±√2 , 6) 0; 1 7) -2; -1, 8) -3; -1; ±2, 9) – 5/4 10) -2; - 5/3; 1.

Уравнения вида (х + а)(х + в)(х + с)(х + d)… = А. Пример №3 . Решите уравнение (х + 1)(х + 2)(х + 3)(х + 4) =24. а = 1, в = 2, с = 3, d = 4 а + d = в + с. Перемножаем первую скобку с четвертой и вторую с третьей. (х + 1)(х + 4)(х + 20(х + 3) = 24. (х ² + 5х + 4)(х ² + 5х + 6) = 24. Пусть х ² + 5х + 4 = у, тогда у(у + 2) = 24, у² + 2у – 24 = 0 у₁ = - 6, у₂ = 4. х ² + 5х + 4 = -6 или х ² + 5х + 4 = 4. х ² + 5х + 10 = 0, Д

Примеры для самостоятельного решения. (х + 1)(х + 3)(х + 5)(х + 7) = -15, х (х + 4)(х + 5)(х + 9) + 96 = 0, х (х + 3)(х + 5)(х + 8) + 56 = 0, (х – 4)(х – 3)(х – 2)(х – 1) = 24, (х – 3)(х -4)(х – 5)(х – 6) = 1680, (х ² - 5х)(х + 3)(х – 8) + 108 = 0, (х + 4)² (х + 10)(х – 2) + 243 = 0 (х ² + 3х + 2)(х ² + 9х + 20) = 4, Указание: х + 3х + 2 = (х + 1)(х + 2), х ² + 9х + 20 = (х + 4)(х + 5) Ответы: 1) -4 ±√6; - 6; - 2. 6) - 1; 6; (5± √97)/2 7) -7; -1; -4 ±√3.

Возвратные уравнения. Определение №1. Уравнение вида: ах⁴ + вх ³ + сх ² + вх + а = 0 называется возвратным уравнением четвертой степени. Определение №2. Уравнение вида: ах⁴ + вх ³ + сх ² + квх + к² а = 0 называется обобщенным возвратным уравнением четвертой степени. к² а: а = к² ; кв: в = к. Пример №6. Решите уравнение х ⁴ - 7х³ + 14х² - 7х + 1 = 0. Делим обе части уравнения на х ² . х ² - 7х + 14 – 7/ х + 1/ х ² = 0, (х ² + 1/ х ²) – 7(х + 1/ х) + 14 = 0. Пусть х + 1/ х = у. Возводим обе части равенства в квадрат. х ² + 2 + 1/ х ² = у² , х ² + 1/ х ² = у² - 2. Получаем квадратное уравнение у² - 7у + 12 = 0, у₁ = 3, у₂ = 4. х + 1/ х =3 или х + 1/ х = 4. Получаем два уравнения: х ² - 3х + 1 = 0, х ² - 4х + 1 = 0. Пример №7. 3х⁴ - 2х³ - 31х² + 10х + 75 = 0. 75:3 = 25, 10:(– 2) = -5, (-5)² = 25. Условие обобщенного возвратного уравнения выполняется к= -5. Решается аналогично примеру №6. Делим обе части уравнения на х ². 3х⁴ - 2х – 31 + 10/ х + 75/ х ² = 0, 3(х ⁴ + 25/ х ²) – 2(х – 5/ х) – 31 = 0. Пусть х – 5/ х = у, возводим обе части равенства в квадрат х ² - 10 + 25/ х ² = у² , х ² + 25/ х ² = у² + 10. Имеем квадратное уравнение 3у² - 2у – 1 = 0, у₁ = 1, у₂ = - 1/3. х – 5/ х = 1 или х – 5/ х = -1/3. Получаем два уравнения: х ² - х – 5 = 0 и 3х² + х – 15 = 0

Примеры для самостоятельного решения. 1. 78х⁴ - 133х³ + 78х² - 133х + 78 = 0, 2. х ⁴ - 5х³ + 10х² - 10х + 4 = 0, 3. х ⁴ - х ³ - 10х² + 2х + 4 = 0, 4. 6х⁴ + 5х³ - 38х² -10х + 24 = 0, 5. х ⁴ + 2х³ - 11х² + 4х + 4 = 0, 6. х ⁴ - 5х³ + 10х² -10х + 4 = 0. Ответы: 1) 2/3; 3/2, 2) 1;2 3) -1 ±√3; (3±√17)/2, 4) -1±√3; (7±√337)/12 5) 1; 2; (-5± √17)/2, 6) 1; 2.

Однородные уравнения. Определение. Уравнение вида а₀ u³ + а₁ u² v + а₂ uv² + а₃ v³ = 0 называется однородным уравнением третьей степени относительно u v . Определение. Уравнение вида а₀ u⁴ + а₁ u³v + а₂ u²v² + а₃ uv³ + а₄ v⁴ = 0 называется однородным уравнением четвертой степени относительно u v . Пример №8. Решите уравнение (х ² - х + 1)³ + 2х⁴(х ² - х + 1) – 3х⁶ = 0 Однородное уравнение третьей степени относительно u = х ²- х + 1, v = х ². Делим обе части уравнения на х ⁶. Предварительно проверили, что х = 0 не является корнем уравнения. (х ² - х + 1/ х ²)³ + 2(х ² - х + 1/ х ²) – 3 = 0. (х ² - х + 1)/ х ²) = у, у³ + 2у – 3 = 0, у = 1 корень уравнения. Делим многочлен Р(х) = у³ + 2у – 3 на у – 1 по схеме Горнера. В частном получаем трехчлен, который не имеет корней. Ответ: 1.

Примеры для самостоятельного решения. 1. 2(х ² + 6х + 1)² + 5(Х² + 6Х + 1)(Х² + 1) + 2(Х² + 1)² = 0, 2. (Х + 5)⁴ - 13Х²(Х + 5)² + 36Х⁴ = 0, 3. 2(Х² + Х + 1)² - 7(Х – 1)² = 13(Х³ - 1), 4. 2(Х -1)⁴ - 5(Х² - 3Х + 2)² + 2(х – 2)⁴ = 0, 5. (х ² + х + 4)² + 3х(х ² + х + 4) + 2х² = 0, Ответы: 1) -1; -2±√3, 2) -5/3; -5/4; 5/2; 5 3) -1; -1/2; 2;4 4) ±√2; 3±√2, 5) Корней нет.

Метод неопределенных коэффициентов. Теорема №3. Два многочлена Р(х) и G(х) тождественны тогда и только тогда, когда они имеют одинаковую степень и коэффициенты при одноименных степенях переменной в обоих многочленах равны. Пример №9. Разложить на множители многочлен у⁴ - 4у³ + 5у² - 4у + 1. у⁴ - 4у³ + 5у² - 4у + 1 = (у² + ву + с)(у² + в₁у + с₁) =у ⁴ +у³(в₁ + в) + у²(с₁ + с + в₁в) + у(вс ₁ + св ₁) + сс ₁. Согласно теореме №3 имеем систему уравнений: в₁ + в = -4, с₁ + с + в₁в = 5, вс ₁ + св ₁ = -4, сс ₁ = 1. Необходимо решить систему в целых числах. Последнее уравнение в целых числах может иметь решения: с = 1, с₁ =1; с = -1, с₁ = -1. Пусть с = с ₁ = 1, тогда из первого уравнения имеем в₁ = -4 –в. Подставляем во второе уравнение системы в² + 4в + 3 = 0, в = -1, в₁ = -3 или в = -3, в₁ = -1. Данные значения подходят третьему уравнению системы. При с = с ₁ = -1 Д

Пример №10. Разложить на множители многочлен у³ - 5у + 2. у³ -5у + 2 = (у + а)(у² + ву + с) = у³ + (а + в)у² + (ав +с)у + ас. Имеем систему уравнений: а + в = 0, ав + с = -5, ас = 2. Возможные целые решения третьего уравнения: (2; 1), (1; 2), (-2; -1), (-1; -2). Пусть а = -2, с = -1. Из первого уравнения системы в = 2, что удовлетворяет второму уравнению. Подставляя данные значения в искомое равенство получим ответ: (у – 2)(у² + 2у – 1). Второй способ. У³ - 5у + 2 = у³ -5у + 10 – 8 = (у³ - 8) – 5(у – 2) = (у – 2)(у² + 2у -1).

Примеры для самостоятельного решения. Разложите на множители многочлены: 1. у⁴ + 4у³ + 6у² +4у -8, 2. у⁴ - 4у³ + 7у² - 6у + 2, 3. х ⁴ + 324, 4. у⁴ -8у³ + 24у² -32у + 15, 5. Решите уравнение, используя метод разложения на множители: а) х ⁴ -3х² + 2 = 0, б) х ⁵ +5х³ -6х² = 0. Ответы: 1) (у² +2у -2)(у² +2у +4), 2) (у – 1)²(у² -2у + 2), 3) (х ² -6х + 18)(х ² + 6х + 18), 4) (у – 1)(у – 3)(у² -4у + 5), 5а) ± 1; ±√2 , 5б) 0; 1.

Функционально – графический метод решения уравнений высших степеней. Пример №11. Решите уравнение х ⁵ + 5х -42 = 0. Функция у = х ⁵ возрастающая, функция у = 42 – 5х убывающая (к

Примеры для самостоятельного решения. 1. Используя свойство монотонности функции, докажите, что уравнение имеет единственный корень, и найдите этот корень: а) х ³ = 10 – х, б) х ⁵ + 3х³ - 11√2 – х. Ответы: а) 2, б) √2. 2. Решите уравнение, используя функционально – графический метод: а) х = ³ √х, б) l х l = ⁵ √х, в) 2 = 6 – х, г) (1/3) = х +4, д) (х – 1)² = log₂ х, е) log = (х + ½)² , ж) 1 - √х = ln х, з) √х – 2 = 9/х. Ответы: а) 0; ±1, б) 0; 1, в) 2, г) -1, д) 1; 2, е) ½, ж) 1, з) 9.

Формулы Виета для уравнений высших степеней. Теорема №5 (Теореме Виета). Если уравнение а х ⁿ + а х ⁿ + … + а₁х + а₀ имеет n различных действительных корней х ₁, х ₂, … , х, то они удовлетворяют равенствам: Для квадратного уравнения ах² + вх + с = о: х ₁ + х ₂ = -в/а, х₁х ₂ = с/а; Для кубического уравнения а₃х ³ + а₂х ² + а₁х + а₀ = о: х ₁ + х ₂ + х ₃ = -а₂/а₃; х₁х ₂ + х₁х ₃ + х₂х ₃ = а₁/а₃; х₁х₂х ₃ = -а₀/а₃; …, для уравнения n –ой степени: х ₁ + х ₂ + … х = - а / а, х₁х ₂ + х₁х ₃ + … + х х = а / а, … , х₁х ₂·… · х = (- 1) ⁿ а₀/а. Выполняется и обратная теорема.

Пример №13. Напишите кубическое уравнение, корни которого обратны корням уравнения х ³ - 6х² + 12х – 18 = 0, а коэффициент при х ³ равен 2. 1. По теореме Виета для кубического уравнения имеем: х ₁ + х ₂ + х ₃ = 6, х₁х ₂ + х₁х ₃ + х₂х ₃ = 12, х₁х₂х ₃ = 18. 2. Составляем обратные величины данным корням и для них применяем обратную теорему Виета. 1/ х ₁ + 1/ х ₂ + 1/ х ₃ = (х₂х ₃ + х₁х ₃ + х₁х ₂)/ х₁х₂х ₃ = 12/18 = 2/3. 1/ х₁х ₂ + 1/ х₁х ₃ + 1/ х₂х ₃ = (х ₃ + х ₂ + х ₁)/ х₁х₂х ₃ = 6/18 = 1/3, 1/ х₁х₂х ₃ = 1/18. Получаем уравнение х ³ +2/3х² + 1/3х – 1/18 = 0 · 2 Ответ: 2х³ + 4/3х² + 2/3х -1/9 = 0.

Примеры для самостоятельного решения. 1. Напишите кубическое уравнение, корни которого обратны квадратам корней уравнения х ³ - 6х² + 11х – 6 = 0, а коэффициент при х ³ равен 8. Ответ: 8х³ - 98/9х² + 28/9х -2/9 = 0. Нестандартные методы решений уравнений высших степеней. Пример №12. Решите уравнение х ⁴ -8х + 63 = 0. Разложим левую часть уравнения на множители. Выделим точные квадраты. Х⁴ - 8х + 63 = (х ⁴ + 16х² + 64) – (16х² + 8х + 1) = (х ² + 8)² - (4х + 1)² = (х ² + 4х + 9)(х ² - 4х + 7) = 0. Оба дискриминанта отрицательные. Ответ: нет корней.

Пример №14. Решите уравнение 21х³ + х ² - 5х – 1 = 0. Если свободный член уравнения равен ± 1, то уравнение преобразуется в приведенное уравнение с помощью замены х = 1/у. 21/у³ + 1/у² - 5/у – 1 = 0 · у³, у³ + 5у² -у – 21 = 0. у = -3 корень уравнения. (у + 3)(у² + 2у -7) = 0, у = -1 ± 2√2. х ₁ = -1/3, х ₂ = 1/ -1 + 2√2 = (2√2 + 1)/7, Х₃ = 1/-1 -2√2 =(1-2√2)/7. Пример №15. Решите уравнение 4х³-10х² + 14х – 5 = 0. Умножим обе части уравнения на 2. 8х³ -20х² + 28х – 10 = 0, (2х)³ - 5(2х)² + 14·(2х) -10 = 0. Введем новую переменную у = 2х, получим приведенное уравнение у³ - 5у² + 14у -10 = 0, у = 1 корень уравнения. (у – 1)(у² - 4у + 10) = 0, Д

Пример №16. Доказать, что уравнение х ⁴ + х ³ + х – 2 = 0 имеет один положительный корень. Пусть f (х) = х ⁴ + х ³ + х – 2, f’ (х) = 4х³ + 3х² + 1 > о при х > о. Функция f (х) возрастающая при х > о, а значение f (о) = -2. Очевидно, что уравнение имеет один положительный корень ч.т.д. Пример №17. Решите уравнение 8х(2х² - 1)(8х⁴ - 8х² + 1) = 1. И.Ф.Шарыгин « Факультативный курс по математике для 11 класса».М. Просвещение 1991 стр90. 1. l х l 1 2х² - 1 > 1 и 8х⁴ -8х² + 1 > 1 2. Сделаем замену х = cosy , у € (0; п). При остальных значениях у, значения х повторяются, а уравнение имеет не более 7 корней. 2х² - 1 = 2 cos²y – 1 = cos2y , 8х⁴ - 8х² + 1 = 2(2х² - 1)² - 1 = 2 cos²2y – 1 = cos4y . 3. Уравнение принимает вид 8 cosycos2ycos4y = 1. Умножаем обе части уравнения на siny . 8 sinycosycos2ycos4y = siny . Применяя 3 раза формулу двойного угла получим уравнение sin8y = siny , sin8y – siny = 0

Окончание решения примера №17. Применяем формулу разности синусов. 2 sin7y/2 · cos9y/2 = 0 . Учитывая, что у € (0;п), у = 2пк/3, к = 1, 2, 3 или у = п /9 + 2пк/9, к =0, 1, 2, 3. Возвращаясь к переменной х получаем ответ: Cos2 п /7, cos4 п /7, cos6 п /7, cos п /9, ½, cos5 п /9, cos7 п /9 . Примеры для самостоятельного решения. Найти все значения а, при которых уравнение (х ² + х)(х ² + 5х + 6) = а имеет ровно три корня. Ответ: 9/16. Указание: построить график левой части уравнения. F max = f(0) = 9/16 . Прямая у = 9/16 пересекает график функции в трех точках. Решите уравнение (х ² + 2х)² - (х + 1)² = 55. Ответ: -4; 2. Решите уравнение (х + 3)⁴ + (х + 5)⁴ = 16. Ответ: -5; -3. Решите уравнение 2(х ² + х + 1)² -7(х – 1)² = 13(х ³ - 1).Ответ: -1; -1/2, 2;4 Найдите число действительных корней уравнения х ³ - 12х + 10 = 0 на [-3; 3/2]. Указание: найти производную и исследовать на монот.

Примеры для самостоятельного решения (продолжение). 6. Найдите число действительных корней уравнения х ⁴ - 2х³ + 3/2 = 0. Ответ: 2 7. Пусть х ₁, х ₂, х ₃ - корни многочлена Р(х) = х ³ - 6х² -15х + 1. Найдите Х₁² + х ₂² + х ₃². Ответ: 66. Указание: примените теорему Виета. 8. Докажите, что при а > о и произвольном вещественном в уравнение х ³ + ах + в = о имеет только один вещественный корень. Указание: проведите доказательство от противного. Примените теорему Виета. 9. Решите уравнение 2(х ² + 2)² = 9(х ³ + 1). Ответ: ½; 1; (3 ± √13)/2. Указание: приведите уравнение к однородному, используя равенства Х² + 2 = х + 1 + х ² - х + 1, х ³ + 1 = (х + 1)(х ² - х + 1). 10. Решите систему уравнений х + у = х ², 3у – х = у². Ответ: (0;0),(2;2), (√2; 2 - √2), (- √2 ; 2 + √2). 11. Решите систему: 4у² -3ху = 2х –у, 5х² - 3у² = 4х – 2у. Ответ: (о;о), (1;1),(297/265; - 27/53).

Контрольная работа. 1 вариант. 1. Решите уравнение (х ² + х) – 8(х ² + х) + 12 = 0. 2. Решите уравнение (х + 1)(х + 3)(х + 5)(х + 7) = - 15. 3. Решите уравнение 12х²(х – 3) + 64(х – 3)² = х ⁴. 4. Решите уравнение х ⁴ - 4х³ + 5х² - 4х + 1 = 0 5. Решите систему аравнений: х ² + 2у² - х + 2у = 6, 1,5х² + 3у² - х + 5у = 12.

2 вариант 1. (х ² - 4х)² + 7(х ² - 4х) + 12 = 0. 2. х (х + 1)(х + 5)(х + 6) = 24. 3. х ⁴ + 18(х + 4)² = 11х²(х + 4). 4. х ⁴ - 5х³ + 6х² - 5х + 1 = 0. 5. х ² - 2ху + у² + 2х²у – 9 = 0, х – у – х²у + 3 = 0. 3 вариант. 1. (х ² + 3х)² - 14(х ² + 3х) + 40 = 0 2. (х – 5)(х-3)(х + 3)(х + 1) = - 35. 3. х4 + 8х²(х + 2) = 9(х+ 2)². 4. х ⁴ - 7х³ + 14х² - 7х + 1 = 0. 5. х + у + х ² + у ² = 18, ху + х ² + у² = 19.

4 вариант. (х ² - 2х)² - 11(х ² - 2х) + 24 = о. (х -7)(х-4)(х-2)(х + 1) = -36. Х⁴ + 3(х -6)² = 4х²(6 – х). Х⁴ - 6х³ + 7х² - 6х + 1 = 0. Х² + 3ху + у² = - 1, 2х² - 3ху – 3у² = - 4. Дополнительное задание: Остаток от деления многочлена Р(х) на (х – 1) равен 4, остаток от делении на (х + 1) равен2, а при делении на (х – 2) равен 8. Найти остаток от деления Р(х) на (х ³ - 2х² - х + 2).

Ответы и указания: вариант № 1 № 2. № 3. № 4. № 5. 1. - 3; ±2; 1 1;2;3. -5; -4; 1; 2. Однородное уравнение: u = x -3, v =x² -2 ; -1; 3; 4. (2;1); (2/3;4/3). Указание: 1·(-3) + 2· 2 2. -6; -2; -4±√6. -3±2√3; - 4; - 2. 1±√11; 4; - 2. Однородное уравнение: u = x + 4, v = x² 1 ; 5;3±√13. (2;1); (0;3); (- 3; 0). Указание: 2· 2 + 1. 3. -6; 2; 4; 12 -3; -2; 4; 12 -6; -3; -1; 2. Однородное u = x+ 2, v = x² -6 ; ±3; 2 (2;3), (3;2), (-2 + √7; -2 - √7); (-2 - √7; -2 + √7). Указание: 2 -1. 4. (3±√5)/2 2±√3 2±√3; (3±√5)/2 (5 ± √21)/2 (1;-2), (-1;2). Указание: 1·4 + 2 .

Решение дополнительного задания. По теореме Безу: Р(1) = 4, Р(-1) = 2, Р(2) = 8. Р(х) = G(x) (х ³ - 2х² - х + 2) + ах² + вх + с. Подставляем 1; - 1; 2. Р(1) = G(1) ·0 + а + в + с = 4, а + в+ с = 4. Р(-1) = а – в + с = 2, Р(2) = 4а² + 2в + с = 8. Решая полученную систему из трех уравнений получим: а = в = 1, с = 2. Ответ: х ² + х + 2.

Критерий № 1 - 2 балла. 1 балл – одна вычислительная ошибка. № 2,3,4 – по 3 балла. 1 балл – привели к квадратному уравнению. 2 балла – одна вычислительная ошибка. № 5. – 4 балла. 1 балл – выразили одну переменную через другую. 2 балла – получили одно из решений. 3 балла – одна вычислительная ошибка. Дополнительное задание: 4 балла. 1 балл – применили теорему Безу для всех четырех случаев. 2 балла – составили систему уравнений. 3 балла – одна вычислительная ошибка.


Методы решения уравнений: n n n Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Разложение на множители. Введение новой переменной. Функционально – графический метод. Подбор корней. Применение формул Виета.

Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). Метод можно применять только в том случае, когда y = h(x) – монотонная функция, которая каждое свое значение принимает по одному разу. Если функция немонотонная, то возможна потеря корней.

Решить уравнение (3 x + 2)²³ = (5 x – 9)²³ y = x ²³ возрастающая функция, поэтому от уравнения (3 x + 2)²³ = (5 x – 9)²³ можно перейти к уравнению 3 x + 2 = 5 x – 9, откуда находим x = 5, 5. Ответ: 5, 5.

Разложение на множители. Уравнение f(x)g(x)h(x) = 0 можно заменить совокупностью уравнений f(x) = 0; g(x) = 0; h(x) = 0. Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние.

Решить уравнение x³ – 7 x + 6 = 0 Представив слагаемое 7 x в виде x + 6 x, получим последовательно: x³ – x – 6 x + 6 = 0 x(x² – 1) – 6(x – 1) = 0 x(x – 1)(x + 1) – 6(x – 1) = 0 (x – 1)(x² + x – 6) = 0 Теперь задача сводится к решению совокупности уравнений x – 1 = 0; x² + x – 6 = 0. Ответ: 1, 2, – 3.

Введение новой переменной. Если уравнение y(x) = 0 удалось преобразовать к виду p(g(x)) = 0, то нужно ввести новую переменную u = g(x), решить уравнение p(u) = 0, а затем решить совокупность уравнений g(x) = u 1; g(x) = u 2; … ; g(x) = un , где u 1, u 2, … , un – корни уравнения p(u) = 0.

Решить уравнение Особенностью этого уравнения является равенство коэффициентов его левой части, равноудаленных от ее концов. Такие уравнения называют возвратными. Поскольку 0 не является корнем данного уравнения, делением на x² получаем

Введем новую переменную Тогда Получаем квадратное уравнение Так корень y 1 = – 1 можно не рассматривать. Получим Ответ: 2, 0, 5.

Решите уравнение 6(x² – 4)² + 5(x² – 4)(x² – 7 x +12) + (x² – 7 x + 12)² = 0 Данное уравнение может быть решено как однородное. Поделим обе части уравнения на (x² – 7 x +12)² (ясно, что значения x такие, что x² – 7 x +12=0 решениями не являются). Теперь обозначим Имеем Отсюда Ответ:

Функционально – графический метод. Если одна из функций у = f(x), y = g(x) возрастает, а другая – убывает, то уравнение f(x) = g(x) либо не имеет корней, либо имеет один корень.

Решить уравнение Достаточно очевидно, что x = 2 – корень уравнения. Докажем, что это единственный корень. Преобразуем уравнение к виду Замечаем, что функция возрастает, а функция убывает. Значит, уравнение имеет только один корень. Ответ: 2.

Подбор корней n n n Теорема 1: Если целое число m является корнем многочлена с целыми коэффициентами, то свободный член многочлена делится на m. Теорема 2: Приведенный многочлен с целыми коэффициентами не имеет дробных корней. Теорема 3: – уравнение с целыми Пусть коэффициентами. Если число и дробь где p и q – целые числа несократима, является корнем уравнения, то p есть делитель свободного члена an , а q – делитель коэффициента при старшем члене a 0.

Теорема Безу. Остаток при делении любого многочлена на двучлен (x – a) равен значению делимого многочлена при x = a. Следствия теоремы Безу n n n n Разность одинаковых степеней двух чисел делится без остатка на разность этих же чисел; Разность одинаковых четных степеней двух чисел делится без остатка как на разность этих чисел, так и на их сумму; Разность одинаковых нечетных степеней двух чисел не делится на сумму этих чисел; Сумма одинаковых степеней двух не чисел делится на разность этих чисел; Сумма одинаковых нечетных степеней двух чисел делится без остатка на сумму этих чисел; Сумма одинаковых четных степеней двух чисел не делится как на разность этих чисел, так и на их сумму; Многочлен делится нацело на двучлен (x – a) тогда и только тогда, когда число a является корнем данного многочлена; Число различных корней многочлена, отличного от нуля, не более чем его степень.

Решить уравнение x³ – 5 x² – x + 21 = 0 Многочлен x³ – 5 x² – x + 21 имеет целые коэффициенты. По теореме 1 его целые корни, если они есть, находятся среди делителей свободного члена: ± 1, ± 3, ± 7, ± 21. Проверкой убеждаемся в том, что число 3 является корнем. По следствию из теоремы Безу многочлен делится на (x – 3). Таким образом, x³– 5 x² – x + 21 = (x – 3)(x²– 2 x – 7). Ответ:

Решить уравнение 2 x³ – 5 x² – x + 1 = 0 По теореме 1 целыми корнями уравнения могут быть только числа ± 1. Проверка показывает, что данные числа не являются корнями. Так как уравнение не является приведенным, то оно может иметь дробные рациональные корни. Найдем их. Для этого умножим обе части уравнения на 4: 8 x³ – 20 x² – 4 x + 4 = 0 Сделав подстановку 2 x = t, получим t³ – 5 t² – 2 t + 4 = 0. По тереме 2 все рациональные корни данного приведенного уравнения должны быть целыми. Их можно найти среди делителей свободного члена: ± 1, ± 2, ± 4. В данном случае подходит t = – 1. Следовательно По следствию из теоремы Безу многочлен 2 x³ – 5 x² – x + 1 делится на (x + 0, 5): 2 x³ – 5 x² – x + 1 = (x + 0, 5)(2 x² – 6 x + 2) Решив квадратное уравнение 2 x² – 6 x + 2 = 0, находим остальные корни: Ответ:

Решить уравнение 6 x³ + x² – 11 x – 6 = 0 По теореме 3 рациональные корни этого уравнения следует искать среди чисел Подставляя их поочередно в уравнение, найдем, что удовлетворяют уравнению. Ими и исчерпываются все корни уравнения. Ответ:

Найти сумму квадратов корней уравнения x³ + 3 x² – 7 x +1 = 0 По теореме Виета Заметим, что откуда

Укажите, каким методом можно решить каждое из данных уравнений. Решите уравнения № 1, 4, 15, 17.

Ответы и указания: 1. Введение новой переменной. 2. Функционально – графический метод. 3. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 4. Разложение на множители. 5. Подбор корней. 6 Функционально – графический метод. 7. Применение формул Виета. 8. Подбор корней. 9. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 10. Введение новой переменной. 11. Разложение на множители. 12. Введение новой переменной. 13. Подбор корней. 14. Применение формул Виета. 15. Функционально – графический метод. 16. Разложение на множители. 17. Введение новой переменной. 18. Разложение на множители.

1. Указание. Запишите уравнение в виде 4(x²+17 x+60)(x+16 x+60)=3 x², Разделите обе его части на x². Введите переменную Ответ: x 1 = – 8; x 2 = – 7, 5. 4. Указание. Прибавьте к левой части уравнения 6 y и – 6 y и запишите его в виде (y³ – 2 y²) + (– 3 y² + 6 y) + (– 8 y + 16) = (y – 2)(y² – 3 y – 8). Ответ:

14. Указание. По теореме Виета Так как – целые числа, то корнями уравнения могут быть только числа – 1, – 2, – 3. Ответ: 15. Ответ: – 1. 17. Указание. Разделите обе части уравнения на x² и запишите его в виде Введите переменную Ответ: 1; 1, 5; 2; 3.

Библиография. n n n Колмогоров А. Н. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 2003). Башмаков М. И. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 1993). Мордкович А. Г. «Алгебра и начала анализа, 10 – 11» (М. : Мнемозина, 2003). Алимов Ш. А. , Колягин Ю. М. и др. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 2000). Галицкий М. Л. , Гольдман А. М. , Звавич Л. И. «Сборник задач по алгебре, 8 – 9» (М. : Просвещение, 1997). Карп А. П. «Сборник задач по алгебре и началам анализа, 10 – 11» (М. : Просвещение, 1999). Шарыгин И. Ф. «Факультативный курс по математике, решение задач, 10» (М. : Просвещение. 1989). Скопец З. А. «Дополнительные главы по курсу математики, 10» (М. : Просвещение, 1974). Литинский Г. И. «Уроки математики» (М. : Аслан, 1994). Муравин Г. К. «Уравнения, неравенства и их системы» (Математика, приложение к газете «Первое сентября» , № 2, 3, 2003). Колягин Ю. М. «Многочлены и уравнения высших степеней» (Математика, приложение к газете «Первое сентября» , № 3, 2005).

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Yandex.RTB R-A-339285-1

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n - 1 и осуществив замену переменной вида y = a n x:

a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n - 1 · a n n - 1 · x n - 1 + … + a 1 · (a n) n - 1 · x + a 0 · (a n) n - 1 = 0 y = a n x ⇒ y n + b n - 1 y n - 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n - 1 + … + a 1 x + a 0 = 0 .

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x - x 1 · P n - 1 (x) = 0 . Здесь x 1 является корнем уравнения, а P n - 1 (x) представляет собой частное от деления x n + a n x n - 1 + … + a 1 x + a 0 на x - x 1 .

Подставляем остальные выписанные делители в P n - 1 (x) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде (x - x 1) (x - x 2) · P n - 2 (x) = 0 .Здесь P n - 2 (x) будет частным от деления P n - 1 (x) на x - x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x - x 1 x - x 2 · … · x - x m · P n - m (x) = 0 . Здесь P n - m (x) является многочленом n - m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n - m (x) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Пример 1

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 - x - 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , - 1 , 3 и - 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 - 1 - 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 - x - 3 на (х - 1) в столбик:

Значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 (- 1) 3 + 2 · (- 1) 2 + 4 · - 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный - 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на (х + 1) в столбик:

Получаем, что

x 4 + x 3 + 2 x 2 - x - 3 = (x - 1) (x 3 + 2 x 2 + 4 x + 3) = = (x - 1) (x + 1) (x 2 + x + 3)

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с - 1:

1 2 + (- 1) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 (- 3) 2 + (- 3) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 - 4 · 1 · 3 = - 11 < 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = - 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного - 1 , мы получаем следующее:

Ответ: х = - 1 , х = 1 , x = - 1 2 ± i 11 2 .

Пример 2

Условие: решите уравнение x 4 - x 3 - 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , - 1 , 2 , - 2 , 3 , - 3 , 4 , - 4 , 6 , - 6 , 12 , - 12 .

Проверяем их по порядку:

1 4 - 1 3 - 5 · 1 2 + 12 = 7 ≠ 0 (- 1) 4 - (- 1) 3 - 5 · (- 1) 2 + 12 = 9 ≠ 0 2 4 · 2 3 - 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 - x 3 - 5 x 2 + 12 на х - 2 , воспользовавшись схемой Горнера:

В итоге мы получим x - 2 (x 3 + x 2 - 3 x - 6) = 0 .

2 3 + 2 2 - 3 · 2 - 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 - 3 x - 6 = 0 на x - 2:

В итоге получим (x - 2) 2 · (x 2 + 3 x + 3) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 - 4 · 1 · 3 = - 3 < 0

Получаем комплексно сопряженную пару корней: x = - 3 2 ± i 3 2 .

Ответ : x = - 3 2 ± i 3 2 .

Пример 3

Условие: найдите для уравнения x 4 + 1 2 x 3 - 5 2 x - 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 - 5 2 x - 3 = 0 2 x 4 + x 3 - 5 x - 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 - 5 x - 6 = 0 2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0

Заменяем переменные y = 2 x:

2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0 y 4 + y 3 - 20 y - 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = - 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = - 2 2 = - 1 и x = y 2 = 3 2 .

Ответ: x 1 = - 1 , x 2 = 3 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Трифанова Марина Анатольевна
учитель математики, МОУ "Гимназия № 48 (многопрофильная)", г. Талнах

Триединая цель урока :

Образовательная:
систематизация и обобщение знаний по решению уравнений высших степеней.
Развивающая:
содействовать развитию логического мышления, умения самостоятельно работать, навыков взаимоконтроля и самоконтроля, умений говорить и слушать.
Воспитывающая:
выработка привычки к постоянной занятости, воспитание отзывчивости, трудолюбия, аккуратности.

Тип урока :

урок комплексного применения знаний, умений и навыков.

Форма урока :

проветривание, физминутка, разнообразные формы работы.

Оборудование:

опорные конспекты, карточки с заданиями, матрица мониторинга урока.

ХОД УРОКА

I. Организационный момент

  1. Сообщение цели урока учащимся.
  2. Проверка домашнего задания (Приложение 1). Работа с опорным конспектом (Приложение 2).

На доске написаны уравнения и ответы для каждого из них. Учащиеся проверяют ответы и дают краткий анализ решения каждого уравнения или отвечают на вопросы учителя (фронтальный опрос). Самоконтроль – учащиеся выставляют себе оценки и сдают тетради на проверку учителю для коррекции оценок или их утверждения. Школа оценок записана на доске:

“5+” - 6 уравнений;
“5” - 5 уравнений;
“4” - 4 уравнения;
“3” - 3 уравнения.

Вопросы учителя по домашнему заданию:

1 уравнение

  1. Какая замена переменных сделана в уравнении?
  2. Какое уравнение получено после замены переменных?

2 уравнение

  1. На какой многочлен делили обе части уравнения?
  2. Какая замена переменных была получена?

3 уравнение

  1. Какие многочлены необходимо перемножить для упрощения решения данного уравнения?

4 уравнение

  1. Назвать функцию f(х).
  2. Как были найдены остальные корни?

5 уравнение

  1. Сколько было получено промежутков для решения уравнения?

6 уравнение

  1. Какими способами можно было решить данное уравнение?
  2. Какой способ решения более рациональный?

II. Работа по группам – основная часть урока.

Класс делится на 4 группы. Каждой группе дается карточка с теоретическим и практическим (Приложение 3) вопросами: “Разобрать предложенный способ решения уравнения и объяснить его на данном примере”.

  1. Работа в группе 15 минут.
  2. На доске записаны примеры (доска разделена на 4 части).
  3. Отчет группы проходит 2 – 3 минуты.
  4. Учитель корректирует отчеты групп и помогает при затруднении.

Работа в группах продолжается по карточкам № 5 – 8. На каждое уравнение дается 5 минут на обсуждение в группе. Затем у доски идет отчет по данному уравнению – краткий анализ решения. Уравнение может быть решено не до конца – дорабатывается дома, но последовательность его решения в классе обговаривается вся.

III. Самостоятельная работа. Приложение 4 .

  1. Каждый учащийся получает индивидуальное задание.
  2. Работа по времени занимает 20 минут.
  3. За 5 минут до конца урока учитель дает открытые ответы для каждого уравнения.
  4. Учащиеся меняются по кругу тетрадями и проверяют ответы у товарища. Выставляют оценки.
  5. Тетради сдаются учителю на проверку и корректировку оценок.

IV. Итог урока.

Домашнее задание.

Оформить решение незаконченных уравнений. Подготовиться к контрольному срезу.

Выставление оценок.