Приборы автоматики холодильных машин. Принципы автоматизации холодильных установок Реле контроля смазки




Введение……………………………………………………………………………..

1 Описание технологического процесса …………………………………………......

1.1 Автоматизация холодильных компрессорных станций………………………….

1.2 Анализ возмущающих воздействий объекта автоматизации…………………...

1.3 Схема холодильного цикла………………………………………………………..

2 Разработка функциональной схемы холодильной установки…………………….

2.1 Методика разработки схемы………………………………………………………

2.2 Функциональная схема автоматизации холодильного модуля……………….. .

2.3 Работа узлов функциональной схемы автоматизации холодильного модуля….

2.3.1 Узел автоматической защиты компрессоров…………………………………..

2.3.2 Узел автоматического включения резервного водяного насоса………………

2.3.3 Узел оттаивания воздухоохладителей…………………………………………..

3 Выбор технических средств холодильной установки………………......................

3.1 Выбор и обоснование выбора приборов и средств автоматизации……………..

Заключение……………………………………………………………………………

Список литературы……………………………………………………………………

ВВЕДЕНИЕ

Автоматизированные системы управления и регулирования являются неотъемлемой частью технологического оснащения современного производства, способствуют повышению и качества продукции и улучшают экономические показатели производства за счет выбора и поддержания оптимальных технологических режимов.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации компрессорные холодильные установки занимает одно из ведущих мест среди других отраслей промышленности. Холодильные установки характеризуются непрерывностью протекающих в них процессов. При этом выработка холода в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на холодильных установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в охладительной технике.

Автоматизация параметров дает значительные преимущества:

Обеспечивает уменьшение численности рабочего персонала, т. е. повышение производительности его труда,

Приводит к изменению характера труда обслуживающего персонала,

Увеличивает точность поддержания параметров вырабатываемого холода,

Повышает безопасность труда и надежность работы оборудования,

устройства управления

Цель автоматизации холодильных машин и установок - это повышения экономической эффективности их работы и обеспечение безопасности людей (в первую очередь обслуживающего персонала).

Экономическая эффективность работы холодильной машины обеспечивается уменьшением эксплуатационных расходов и сокращением затрат на ремонт оборудования.

Автоматизация уменьшает количество обслуживающего персонала и обеспечивает работу машины в оптимальном режиме.

Безопасность работы холодильного оборудования обеспечивается применением автоматических устройств, защищающих оборудование от опасных режимов работы.

По степени автоматизации холодильные машины и установки делятся на 3 группы:

1 Холодильное оборудование с ручным управлением.

2 Частично автоматизированное холодильное оборудование.

3 Полностью автоматизированное холодильное оборудование.

Оборудование с ручным управлением и частично автоматизированные машины работают с постоянным присутствием обслуживающего персонала.

Полностью автоматизированное оборудование не требует постоянного присутствия обслуживающего персонала, но не исключает необходимости периодических контрольных осмотров и проверок по установленному регламенту.

Автоматизированная холодильная установка должна содержать одну или несколько систем автоматизации, каждая из которых выполняет определенные функции. Кроме того, существуют устройства объединяющие (синхронизирующие) работу этих систем.

Система автоматизации - это совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой автоматизации без участия обслуживающего персонала.

Объектом курсового проекта является холодильная установка в комплексе, отдельные ее элементы.

Целью данного курсового проекта является описание технологического процесса холодильного оборудования, разработка функциональной схемы данной установки и выбор технических средств автоматизации.

1 ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

1.1 Автоматизация холодильных компрессорных станций

Искусственный холод находит широкое применение в пищевой промышленности, в частности при консервировании скоропортящихся продуктов. При охлаждении обеспечивается высокое качество хранимых и выпускаемых продуктов.

Искусственное охлаждение может осуществляться периодически и непрерывно. Периодическое охлаждение происходит при плавлении льда либо при сублимации твердого диоксида углерода (сухого льда). Этот способ охлаждения обладает большим недостатком, так как в процессе плавления и сублимации хладагент теряет свои охлаждающие свойства; при длительном хранении продуктов трудно обеспечить определенную температуру и влажность воздуха в холодильной камере.

В пищевой промышленности широко распространено непрерывное охлаждение с применением холодильных установок, где хладагент - сжиженный газ (аммиак, фреон и др.) - совершает круговой процесс, при котором он после осуществления холодильного эффекта восстанавливает свое первоначальное состояние.

Применяемые хладагенты кипят при определенном давлении, зависящем от температуры. Следовательно, изменяя давление в сосуде, можно изменять температуру хладагента, а следовательно, и температуру в холодильной камере. Компрессор / всасывает пары аммиака из испарителя II, сжимает их и через маслоотделитель III нагнетает в конденсатор IV. В конденсаторе пары аммиака конденсируются за счет охлаждающей воды, и жидкий аммиак из конденсатора, охлажденный в линейном ресивере V, через регулирующий вентиль VI поступает в испаритель II, где, испаряясь, охлаждает промежуточный хладоно-ситель (рассол, ледяную воду), нагнетаемый к потребителям холода насосом VII.

Регулирующий вентиль VI служит для дросселирования жидкого аммиака, температура которого при этом снижается. Система автоматизации предусматривает автоматическое управление работой компрессора и противоаварийные защиты. Командой на автоматический пуск компрессора служит повышение температуры рассола (ледяной воды) на выходе из испарителя. Для управления температурой используется регулятор температуры типа, датчик которого устанавливается на трубопроводе выхода рассола (ледяной воды)

из испарителя.

При работе компрессора в автоматическом режиме функционируют следующие противоаварийные защиты: от понижения разности давлений масла в системе смазки и картере - применяется датчик-реле разности давлений; от понижения давления всасывания и повышения давления нагнетания - применяется датчик-реле давления; от повышения температуры нагнетания - применяется датчик-реле температуры; от отсутствия протока воды через охлаждающие рубашки - применяется реле протока; от аварийного повышения уровня жидкого аммиака в испарителе - применяется полупроводниковое реле уровня.

При пуске компрессора в автоматическом режиме открывается вентиль с электромагнитным приводом на подаче воды в охлаждающие рубашки и закрывается вентиль на байпасе.

Автоматическое регулирование уровня жидкого аммиака в испарителе осуществляется полупроводниковыми реле уровня, управляющим вентилем с электромагнитным приводом, установленным на подаче жидкого аммиака в испаритель.

Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере осуществляется полупроводниковыми реле уровня.

Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления.

Дистанционный контроль температуры воздуха, аммиака, рассола, воды в контрольных точках холодильной установки осуществляется термопреобразователями.

Аппаратура контроля, управления и сигнализации остального технологического оборудования размещена в панелях щита управления.

1.2 Анализ возмущающих воздействий объекта автоматизации

В данной схеме предусмотрены контроль, регулирование, управления и сигнализация параметров технологического процесса.

Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере, в котором контролируется уровень от которого зависит наполнение ресивера.

Также контролю подлежит температура воздуха в холодильной установке от которой зависит охлаждение и количество вырабатываемого холода.

Контроль давления холодного рассола в нагнетательном трубопроводе, который зависит от нагнетания насосом, насос воздействуя на холодный рассол изменяет его подачу.

Также контролируется температура холодной воды поступающей из бассейна в конденсатор которая необходима для конденсирования (охлаждения) паров аммиака.

На выходе из конденсатора контролируется температура жидкого аммиака, который поступает в линейный ресивер.

Регулирующий вентиль VI установленный на трубопроводе служит для дросселирования жидкого аммиака, за счет чего температура при этом снижается.

Повышение температура рассола (ледяной воды) на выходе из испарителя управляет работой компрессора и служит командой на автоматический пуск компрессора.

Обслуживающий персонал неавтоматизированной холодильной установки пускает и останавливает холодильную машину, регу­лирует подачу жидкого агента в испаритель, регулирует температурный режим в холодильных камерах и холодопроизводительность компрессоров, наблюдает за работой аппаратов, механиз­мов и т. п.

При автоматическом регулировании холодильных машин эти ручные операции отпадают. Эксплуатация автоматизированной установки намного дешевле, чем эксплуатация установки с ручной регулировкой (сокращение затрат на содержание обслуживающего персонала). Автоматизированная установка экономичнее по за­тратам энергии, точнее поддерживает заданные температурные режимы. Приборы автоматики быстро реагируют на всякие от­клонения от нормальных условий работы, а при возникновении опасности выключают установку.

Применяют различные автоматические приборы - управления, регулирования, защиты, сигнализации и контроля.

Приборы автоматического управления включают или выклю­чают в определенной последовательности машины и механизмы; включают резервное оборудование при перегрузках системы; включают вспомогательные аппараты при оттаивании инея с по­верхности охлаждающих батарей, выпуске масла, воздуха и т. п.

Приборы автоматического регулирования поддерживают в оп­ределенных пределах основные параметры (температуру, давле­ние, уровень жидкости), от которых зависит нормальная работа холодильной установки, или регулируют их в соответствии с за­данной программой.

Приборы автоматической защиты при возникновении опасных условий (чрезмерном повышении давления нагнетания, перепол­нении отделителей жидким аммиаком, повреждении системы смазки) выключают холодильную установку или ее части.

Приборы автоматической сигнализации подают световые или звуко-вые сигналы, когда контролируемая величина достигает заданных или предельно допустимых значений.

Н. Д. Кочетков


322 Автоматизация холодильных установок

Приборы автоматического контроля (приборы-самописцы) регистри-руют параметры машины (температуру в разных точках, давление, количество циркулирующего агента и т. п.).

Комплексная автоматизация предусматривает оборудование холоди-льной установки автоматическими устройствами управле­ния, регули-рования и защиты. Средства контроля и сигнализации необходимы лишь для наблюдения за правильным действием этих устройств.

В настоящее время установки небольшой и значительная часть установок средней производительности автоматизированы пол­ностью; крупные установки в большинстве случаев автоматизи­рованы частично (полуавтоматические установки).

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ХОЛОДИЛЬНЫХ

УСТАНОВОК

Применяемые приборы автоматического регулирования отличаются разнообразием выполняемых функций и принципов действия.

Каждый автоматический регулятор состоит из чувствительного эле-мента, воспринимающего изменение регулируемого параметра; регули-рующего органа; промежуточной связи, соединяющей чув­ствительный элемент и регулирующий орган. Рассмотрим способы регулирования основных параметров и наиболее характерные приборы.

Регулирование температуры холодильных камер. В холодиль­ных камерах необходимо поддерживать постоянные температуры, даже если меняется тепловая нагрузка на охлаждающие батареи.

Постоянная температура поддерживается регулированием холодо-производительности батарей. Простой и распространенной является двухпозиционная система регулирования. При этой системе в каждой камере устанавливается индивидуальное реле температуры, например, типа ТДДА - двухпозиционное дистан­ционное термореле (рис. 193), или других типов. На трубопроводе жидкого холодильного агента или рассола перед входом в батареи устанавливается соленоидный вентиль (рис. 194). При повышении температуры воздуха до верхнего заданного предела регулятор температуры автоматически замыкает электричес-кую цепь соле­ноидного вентиля. Вентиль полностью открывается, и охлаждаю­щая жидкость поступает в батареи; камеры охлаждаются. При по­нижении температуры воздуха до нижнего заданного предела регулятор температуры, наоборот, размыкает цепь вентиля, пре­кращая подачу холодной жидкости в батареи.

Термобаллон 1 (чувствительный патрон) регулятора температуры ТДДА (см. рис. 193), частично заполненный жидким фреоном-12,­

Автоматическое регулирование холодильных установок 323

размещают в холодильной камере, температуру которой требуется регулировать. Давление фреона в термобаллоне зависит от его температуры, которая равна температуре воздуха камеры. С повышением этой температуры давление в термобаллоне увели­чивается. Повышенное давление через капиллярную трубку 2 передается в камеру 3, в которой расположен сильфон 4, пред­ставляю-

щий собой гофрированную трубку. Сильфон сжимается и перемещает в осевом направлении иглу 5, которая поворачи­вает угловой рычаг 6 (см. также схему справа) вокруг оси 7 против часовой стрелки, преодолевая сопротивление пружины 22. Рычаг 6 песет на себе пластинчатую пру-жину с прикрепленной к ней тягой 8, которая при движении рычага против часовой стрелки перемещается влево. С тягой 8 скреплен палец 10, перемещаю­щийся в прорези контактной пластинки 12. В некоторый момент палец соприкасается с рычагом 9 и поворачивает этот рычаг, а также контактную пластинку 12 (которая связана с рычагом пружиной 11) вокруг оси 13 (в данном случае против часовой стрелки). В это

324 Автоматизация холодильных установок

время нижний конец контактной пластинки при­ближается к постоянному подковообразному магниту 18 и быстро притягивается им. Основной 17 и искрогасительный 26 контакты при этом замыкаются. Цепь управления соленоидного вентиля, установленного на жидкостной линии, замыкается, вентиль от­крывается, й жидкость посту­пает в батареи.


С понижением температуры воздуха давление в термобаллоне и в камере 3, где находится сильфон, уменьшается и угловой рычаг 6 под действием пружины 22 поворачивается по часовой стрелке. Палец 10 перемещается от рычага 9 до конца прорези в контактной пластинке 12 (свободный ход), нажимает на пластинку и, преодолевая притяжение магнита, резко поворачивает ее по часовой стрелке. В этот момент электрические контакты размы­каются, соленоидный вентиль закры-вается и подача жидкости в батареи прекращается.

Автоматическое регулирование холодильных установок 325

Температура камеры, при которой размыкаются электрические кон-такты, устанавливается в зависимости от натяжения пру­жины 22. Для настройки прибора на определенную температуру размыкания переме-щают каретку 21 с указателем 20 на соответ­ствующее деление темпера-турной шкалы 19, что достигается при вращении винта 23 ручкой 24.

Прибор регулируется на определенную разность температур замыка-ния и размыкания электрических контактов. Эта разность зависит от величины свободного хода пальца 10 в прорези кон­тактной пластинки. Свободный же ход меняется при перемеще­нии верхнего конца рычага 9 вдоль прорези, что достигается при повороте кулачка 14 вокруг оси 13. Чем больше радиус кулачка в месте касания рычага 9, тем больше свободный ход и тем больше разность температур замыкания и размыкания контактов.

Регулятор температуры ТДДА обеспечивает выключение соленоид-ного вентиля в пределах шкалы температур от -25 до 0° С. Возможная погрешность ±1° С. Минимальный дифференциал при­бора составляет 2° С, максимальный - не менее 8° С. Масса при­бора 3,5 кг, длина капилляра 3 м.

Для крупных холодильников разработана многоточечная цен­трализованная система автоматического регулирования темпера­туры в камерах - машина «Амур». Такие машины изготовляют па 40, 60 и 80 точек регулирования. Они могут быть использо­ваны не только для регулирования температуры воздуха, но и тем­пературы кипения холодильного агента, температуры рассола и т. п. Машина имеет устройства для измерения температуры в точках регулирования.

Соленоидные (электромагнитные) вентили (см. рис. 194) рабо­тают следующим образом. При подаче напряжения на катушку электромаг-нита возникает электрическое поле, которое втягивает сердечник; связанный с ним разгрузочный клапан приподнимается, открывая седло малого диаметра. После этого жидкость с нагне­тательной стороны, т. е. из полости над клапаном (в вентиле СВА) или над мембраной (в вентиле СВМ) через сквозные отверстия п малое седло поступает в полость под клапаном. Клапан разгру­жается от давления, которое прижимало его к седлу, и откры­вается для протока жидкости под напором из нагнетательного трубопровода. После выключения соленоидной катушки, наобо­рот, сердечник с разгрузочным клапаном опускаются вниз, пере­крывая седло малого диаметра. Давление сверху на основной клапан увеличивается, и он под действием собственного веса и пружины опускается на свое седло, перекрывая поток жидко­сти.

Соленоидные вентили относятся к числу наиболее распростра­ненных приборов автоматизации аммиачных и фреоновых холо­дильных уста-

326 Автоматизация холодильных установок

новок. Для жидкого и газообразного фреона и аммиака, рассола и воды соленоидные вентили выпускают с диа­метром условного прохода от 6 до 70 мм. Раньше использовались преимущественно поршневые соленоидные вентили типа СВА; в последнее время применяют мембранные вентили типа СВМ усовершенствованной конструкции. Температура рабочей среды может колебаться от -40 до +50° С. Соленоидный вентиль (с фильтром перед ним) устанавливают на горизонтальном участке трубопровода в вертикальном положении.

Регулирование температуры воздуха возможно также путем измене-ния температуры или расхода холодильного агента (при рассольном охлаждении холодоносителя) в батареях с использо­ванием пропорцио-нальных регуляторов температуры ПРТ. Такие регуляторы применяют редко.

Для автоматического регулирования температуры воздуха при испо-льзовании малых фреоновых установок с одним охлаждае­мым объек-том применяют включение и выключение компрессора. Для включения и выключения используют приборы, реагирующие на температуру или давление кипения в испарителе, или непо­средственно на температуру воздуха камеры.

Регулирование холодопроизводительности компрессоров. Тепло-вая нагрузка холодильных камер может меняться в широких пределах в зависимости от количества и температуры поступаю­щих продуктов, температуры окружающей среды и других фак­торов. Холодопроизво-дительность устанавливаемых компрессоров выбирают с расчетом поддержания требуемых температур при наиболее трудных условиях.

В небольших фреоновых установках непосредственного испа­рения производительность компрессоров регулируют одновременно с регулированием температуры охлаждаемого объекта методом пуска и остановок при соответствующих значениях одного из ре­гулируемых параметров.

В машинах с рассольным охлаждением наиболее удобным парамет-ром для регулирования производительности компрессора является тем-пература рассола при выходе из испарителя. В случае уменьшения теп-ловой нагрузки температура рассола в испарителе быстро понижается до нижнего заданного предела и регулятор температуры (например, типа ТДДА), размыкая цепь катушки магнитного пускателя, останав-ливает электродвигатель компрес­сора. При повышении температуры до верхнего заданного предела регулятор температуры включает вновь компрессор в работу. Чем больше тепловая нагрузка на испаритель (охлаждающие батареи), тем продолжительнее работает компрессор. Изменением коэффи­циента рабочего времени достигается необходимая Автоматическое регулирование холодильных установок 327

средняя про­изводительность компрессора.

В средних и крупных установках система содержит большое количество батарей, предназначенных для охлаждения многих по­мещений. При достижении заданных температур в отдельных помещениях часть охлаждающих батарей должна быть выключена н холодопроизводительность компрессоров соответственно умень­шена.

Наиболее приемлемым в таком случае является многопози­ционное (ступенчатое) регулирование путем изменения рабочего объема, описы-ваемого поршнями компрессоров. В установках с несколькими компрес-сорами многопозиционное регулирование осуществляют включением и выключением отдельных компрессо­ров, управляемых регуляторами температуры со смещенными пределами настройки. Наличие двух одинаковых компрессоров позволяет получить три ступени холодо-производительности: 100- 50-0%. Два компрессора АВ-100 и АУ-200 дают четыре ступени холодопроизводительности: 100-67-33-0%. Ступенчатое регули­рование многоцилиндровых непрямоточных комп-рессоров воз­можно выключением из работы отдельных цилиндров путем отжатия всасывающих клапанов специальным механизмом, управляе­мым реле низкого давления.

Значительно реже применяют плавное регулирование производитель-ности компрессора-дросселированием всасываемого пара, изменением величины мертвого объема компрессора и т. п. Эти спо­собы энергетичес-ки невыгодны. Сравнительно перспективным является метод регулирова-ния холодопроизводительности измене­нием числа оборотов компрессора (применение многоскоростных электродвигателей).

Регулирование подачи хладагента в испаритель. Независимо от величины тепловой нагрузки приборы автоматического регули­рования должны обеспечивать правильное заполнение испарителя холодильным агентом. Избытка жидкости в испарителе допускать нельзя, так как это приводит к снижению экономичности работы и к возникновению гидравлического удара («влажный ход»).

В случае недостатка жидкости некоторая часть поверхности не исполь-зуется, что также ухудшает режим работы вследствие понижения темпе-ратуры испарения.

Приборами, регулирующими подачу жидкости в испаритель, являются терморегулирующие вентили ТРВ и поплавковые регу­лирующие вентили ПРВ. В этих же приборах осуществляется процесс дросселирования жидкости.

Основной тип изготовляемых терморегулирующих вентилей –мембран-ные, в металлическом корпусе. Схема включения ТРВ приведена на рис. 195. Действие прибора зависит от перегрева пира, выходящего из испари-

328 Автоматизация холодильных установок

теля. Отсутствие перегрева указывает на излишек жидкости в испарителе и на возможность попадания ее во всасывающую линию и в компрессор. В этом случае ТРВ автоматически прекращает подачу жидкости в испаритель. Боль­шой перегрев паров хладагента при всасывании является, наобо­рот, признаком недостатка его в испарителе. При этом условии ТРВ усиливает подачу жидкости.

В аммиачном вентиле ТРВА термобаллон (чувствительный элемент прибора) заполнен фреоном-22, близким по рабочим давлениям к амми-аку. Термобаллон плотно прикрепляют к всасывающему трубопроводу; он имеет температуру паров аммиака, выходящих из испарителя.

Автоматическое регулирование холодильных установок 329

При изменении температуры давление в термобаллоне меняется. Клапан вентиля механически связан с мембраной, на которую сверху действует давление пара из термобаллона, передаваемое по капилляр-ной трубке, а снизу - давление из испарителя по урав­нительной трубке (через штуцер 7). От разности указанных дав­лений, пропорцио-нальной перегреву пара на выходе из испари­теля, зависит перемещение мембраны, а вместе с тем и открывание клапана, регулирующего пода-чу жидкости в испаритель. Аммиак поступает в ТРВА через штуцер 10. Дросселирование совершается и клапанном отверстии и частично в дроссельной трубке 8, ко­торая обеспечивает более спокойное и равно-мерное протекание агента через вентиль.

Во время работы машины ТРВА поддерживает постоянный перегрев пара; соответствующей настройкой величину перегрева можно менять в пределах от 2 до 10° С. Настройка осуществляется при помощи винта 4 и связанных с ним регулировочных зубчатых колес. При вращении винта меняется натяжение пружины 3, противодействующей открыванию клапана.

ТРВА позволяет надежно регулировать подачу аммиака в ис­парители разных типов при температурах кипения от 0 до -30° С. Питание ко-жухотрубных испарителей для охлаждения рассола настраивают при небольших перегревах (от 2 до 4° С). Выпу­скаются разные модели ТРВА, рассчитанные на холодопроизводительность от 6 до 230 квт (~5-200 Мкал/ч).

ТРВ на 12-190 квт 10-160 Мкал/ч) для фреоновых уста­новок по конструкции близки к вентилям типа ТРВА. В малых фреоновых маши-нах применяют мембранные ТРВ без уравни­тельных линий.

Регулирование подачи аммиака в испарители и сосуды со сво­бодным уровнем жидкости возможно при помощи поплавковых регулирующих вентилей низкого давления ПРВ (рис. 196).

ПРВ устанавливают на том уровне, который желательно поддержи-вать в испарителе (или другом сосуде). Корпус прибора соединяют с испарителем уравнительными линиями (жидкостной и паровой). Изменение уровня жидкости в испарителе приводит к изменению уровня в корпусе ПРВ. Одновременно меняется положение поплавка внутри корпуса, что вызывает перемещение клапана и изменение площади сечения для протока жидкости из конденсатора в испаритель.

В поплавковых вентилях непроходного типа холодильный агент пос-ле дросселирования в клапанном отверстии поступает непосредственно в испаритель, минуя поплавковую камеру. В вен­тилях проходного типа хладагент после дросселирования посту­пает в поплавковую камеру, а из нее отводится в испари­тель.

330 Автоматизация холодильных установок

Автоматическое регулирование холодильных установок 331

ния уровня жидкости в испарителях и сосудах. В отличие от вен­тилей низкого давления ПР-1 можно устанавливать на разных уровнях по отношению к испарителю и конденсатору.

К корпусу вентиля приварен штуцер, соединяющий вентиль с нижней частью конденсатора. Внутри корпуса расположен поплавок, связанный при помощи рычага с игольчатым клапаном. Аммиак через отверстие в седле клапана, канал и дроссельную трубку проходит к выходному

штуцеру и через него в трубопровод к испарителю. Внутри корпуса вентиля имеется капиллярная трубка. Верхний конец ее открыт, а нижний при помощи каналов соединен с дроссельной трубкой. Давле-ние в вентиле устанавливается немного ниже, чем в конденсаторе; жидкость из него поступает в корпус вентиля. Под действием жидкости поплавок всплывает. Чем больше жидкости поступает в корпус поп-лавка, тем больше открывается клапан для прохода ее в испаритель. При пользовании вентилем типа ПР-1 конденсатор свободен от жидкос-ти. Поэтому количество аммиака в системе должно быть таким, чтобы при полном перетекании аммиака в испаритель уровень жидкости в нем находился не выше, чем между первым и вторым сверху рядами труб испарителя. При таком заполнении

332 Автоматизация холодильных установок

исключается опасность попадания жидкого аммиака во всасы­вающую линию и создаются благоприятные условия для интен­сивного теплообмена в испарителе.

Для позиционного регулирования уровня жидкости в аппара­тах холодильной установки часто используют регуляторы уровня косвенного действия, состоящие из дистан-ционного указателя уровня (например,

ДУ-4, РУ-4, ПРУ-2) и управляемого им со­леноидного вентиля. Эти прибо­ры вклю-чают в схему (рис. 198) так, что в случае чрезмерного повышения уровня жидкости в аппарате дистанционный ука­затель раз-мыкает электриче­скую цепь управления солено­идного вентиля и он закры­вается, прекратив подачу холо­дильного агента в испаритель.

Если же уровень жидкости в испарителе понизится по сравне­нию с оп-тимальным, то дистанционный указатель снова замкнет электрическую цепь соленоидного вентиля; подача жидкости будет возобновлена.

Регулирование подачи охлаждающей воды на конденсатор.

Вода на конденсатор подается через водорегулирующий вентиль

(рис. 199), поддерживающий приблизительно постоянное давле­ние и температуру конденсации при разных нагрузках. Давление конденса-ции воспринимает мембрана вентиля или сильфон, изме­няющие положение шпинделя и сечение для прохода воды. В уста­новках с градирнями водорегулирующие вентили не применяют.
Автоматическая защита и сигнализация 333

Назначение

Установки пропанового охлаждения природного газа предназначены для одновременного обеспечения требуемых параметров точки росы по воде и углеводородам посредством конденсации водной и углеводородной фракции (УВ) при низких температурах (до минус 30 0 С). Источником холода является внешний пропановый холодильный цикл.

Основное преимущество таких установок – низкие потери давления сырьевого потока (дросселирование потока природного газа не требуется) и возможность извлечения продукционной фракции С3+.

Для предотвращения гидратообразования используется впрыск ингибитора: этиленгликоля (для температур не ниже минус 35 0 С) и метанола (для температур вплоть до минус 60 0 С).

Основные преимущества

Надежность

  • Непрерывный процесс, основанный на конденсации воды и УВ фракций в присутствии ингибитора гидратообразования.
  • Отсутствие циклических колебаний.
  • Кожухотрубный теплообменник газ-газ с низким температурным напором.
  • Сервис-фактор мотора холодильного компрессора 110%.
  • Автоматическая система поддержания давления в ресивере при эксплуатации в холодном климате.
  • Электрообогрев сборника ингибитора в трехфазном сепараторе.

Эффективность

  • Холодный сепаратор с эффективными коалесцирующими насадками и значительным временем пребывания.
  • Теплообменник газ-пропан (чиллер) с погруженным трубным пучком.

Возможные опции

  • Экономайзер холодильного цикла (стандарт для систем свыше 150 кВт и температурой испарения ниже минус 10 0 С).
  • Входной сепаратор.
  • Теплообменник газ-жидкость (позволяет снизить потребляемую мощность компрессора).

Технологическая схема

Влагонасыщенный поток природного газа подается во входной сепаратор (1), в котором из потока удаляются свободная вода и УВ фракции. Газовая фракция направляется в теплообменник газ-газ (2) для предварительного охлаждения потоком сухого отбензиненного газа из холодного сепаратора. Для предотвращения гидратообразования в теплообменнике предусмотрены форсуночные устройства для впрыска ингибитора (метанол или этиленгликоль).

Рис. 3 Принципиальная схема пропановой холодильной установки

После предварительного охлаждения в теплообменнике газ-газ поток подается в теплообменник газ-пропан (чиллер) (4), в котором происходит понижение температуры потока до заданного значения посредством теплообмена с потоком кипящего пропана. Сырьевой поток находится в трубном пучке, который в свою очередь погружен в объем хладагента.

Образовавшаяся в результате охлаждения парожидкостная смесь поступает на разделение в низкотемпературный трехфазный сепаратор (5), где разделяется на потоки отбензиненного газа, конденсата и насыщенного водой ингибитора гидратообразования.

Сухой отбензиненный газ (СОГ) подается противотоком в теплообменник газ-газ (2) и далее отводится за пределы установки.

Жидкостные фракции отводятся независимыми автоматическими конроллерами уровня в соответствующие линии.

Статьи по теме

Газопереработка - это просто

Одной из наших основных задач является борьба с мифом о том, что газопереработка это сложно, долго и дорого. Удивительно, но на проекты, которые в США реализуются за 10 месяцев, на территории СНГ уходит до трех лет. Установки, занимающие в США 5000 м2, на территории СНГ с трудом умещаются на 20 000 м2. Проекты, окупающиеся в США за 3-5 лет, даже при существенно более низкой стоимости реализации продукта, на территории России и Казахстана не окупаются никогда.

ОТ ОПАСНЫХ РЕЖИМОВ

В процессе работы холодильных машин и установок из-за отказов отдельных узлов или агрегатов, а также из-за нарушений в системах энерго- и водоснабжения могут возникать опасные режимы: повышение давления и температуры, уровня жидкости в отдельных аппаратах или узлах машин, прекращение смазки трущихся пар, отсутствие охлаждающей воды и т.д. Если не будут приняты своевременные меры, могут быть повреждены или разрушены компрессоры, теплообменные аппараты или другие элементы установки. При этом возникает серьезная опасность для здоровья и жизни обслуживающего персонала.

Защита холодильных машин и установок включает в себя целый комплекс технических и организационных мероприятий, обеспечивающих их безопасную эксплуатацию. В этой главе будут рассмотрены лишь те из них, которые выполняются на основе автоматических приборов и устройств.

СПОСОБЫ ЗАЩИТЫ

К способам защиты относят остановку машины или всей установки, включение аварийных устройств, выпуск рабочего вещества в атмосферу или перепуск в другие аппараты.

Остановка машины или всей установки. Этот способ осуществляется с помощью системы автоматической защиты (САЗ), которая состоит из первичных устройств - датчиков-реле защиты (или просто реле защиты) и электрической схемы, преобразующей сигналы от реле защиты в сигнал остановки. Этот сигнал передается в схему автоматического управления.

Реле защиты воспринимают контролируемые технологические величины и при достижении ими предельно допустимых значений вырабатывают аварийный сигнал. Эти приборы обладают чаще всего релейными двухпозиционными характеристиками. Число входящих в САЗ датчиков-реле определяется минимально необходимым количеством контролируемых величин.

Электрическая схема выполняется в одном из трех вариантов, в соответствии с чем САЗ бывают однократного действия, с повторным включением и комбинированными.

САЗ однократного действия осуществляет остановку машины или установки при срабатывании любого реле защиты и делает невозможным автоматический пуск до вмешательства обслуживающего персонала. Этот тип САЗ распространен преимущественно на крупных и средних машинах. Если установка работает без непрерывного обслуживания и оборудование не имеет автоматически включаемого резерва, то САЗ дополняется специальной сигнализацией для экстренного вызова персонала.

САЗ с повторным включением останавливает машину при срабатывании реле защиты и не препятствует ее автоматическому включению при возвращении реле в нормальное состояние. Ее применяют главным образом в малых установках торгового типа, где стремятся к упрощению схемы автоматики.

В комбинированных САЗ часть реле защиты, контролирующих наиболее опасные параметры, включают в электрическую схему однократного действия, а часть с менее опасными параметрами - в схему с повторным включением. Это позволяет, не прибегая к помощи персонала, вновь автоматически пускать машину, если это не сопряжено с опасностью аварии.

На практике встречается также разновидность защиты, называемая блокировкой. Ее отличие состоит в том, что сигнал получают не от реле защиты, а от элемента схемы контроля или управления другим агрегатом или узлом установки (например, насосом, вентилятором и т.д.). Блокировка исключает пуск или работу машины при невыполнении заданного порядка пуска контролируемых агрегатов. Обычно блокировку выполняют по схеме с повторным включением.

Включение аварийных устройств. Этот способ осуществляется также САЗ.

К аварийным устройствам относят:

Предупредительную сигнализацию об опасных режимах, которую применяют на особо крупных установках с непрерывным обслуживанием, чтобы по возможности избежать остановки машины;

Аварийную сигнализацию, информирующую персонал о срабатывании защиты, а также расшифровывающую конкретную причину аварийного срабатывания;

Аварийную вентиляцию, включаемую при повышении местной или общей концентрации в воздухе взрыво- и пожароопасных, а также токсичных рабочих веществ (например, аммиака).

Выпуск рабочего вещества в атмосферу или перепуск в другие аппараты. Этот способ осуществляется специальными предохранительными устройствами (предохранительными клапанами, предохранительными пластинами, плавкими пробками и др.), не входящими в САЗ. Их назначение - предотвратить разрушение или взрыв сосудов и аппаратов при повышении давления в результате неисправности установки, а также в случае пожара. Выбор предохранительных устройств и правила их использования определяются нормативными документами в соответствии с правилами безопасности и эксплуатации сосудов, работающих под давлением.

ПОСТРОЕНИЕ СИСТЕМ ЗАЩИТЫ

Системы защиты различаются в зависимости от типа холодильной установки, ее размеров, принятого способа эксплуатации и др. При построении всех САЗ необходимо учитывать общие принципы, обеспечивающие в наибольшей степени безопасность работы. В качестве примера рассматривается принципиальная схема САЗ компрессионной холодильной установки, состоящей из компрессора Км с электродвигателем Д, теплообменных аппаратов ТА и вспомогательных устройств ВУ - насосов, вентиляторов и др. (рис. 7.1). Схема представлена в общем виде без указаний конкретных величин и параметров, подвергаемых контролю.

Рис. 7.1. Принципиальная схема САЗ

Следует условиться, что САЗ предназначена для остановки компрессора при достижении одним из параметров предельно допустимого значения.

САЗ имеет десять каналов защиты. Каналы 1-8 работают от соответствующих реле защиты, воспринимающих технологические параметры. Каналы 9 и 10 обеспечивают блокировку компрессора и вспомогательных устройств.

В систему входит ключ, с помощью которого при необходимости (при пробах и обкатках) можно выключить часть защитных реле и цепей блокировки (2, 3, 5, 6, 8, 9, 10). Не подлежат выключению те защиты, которые должны функционировать в любом режиме работы установки.

Электрическая схема САЗ состоит из двух частей. Первая часть, в которую включены каналы 2, 5, 9 и 10, работает по способу с повторным включением, а вторая с остальными каналами обеспечивает защиту, работающую по принципу однократного действия, и контролирует наиболее ответственные параметры. При достижении ими предельно допустимых значений САЗ останавливает компрессор. Последующий пуск его возможен лишь после вмешательства персонала, который пользуется специальной кнопкой ввода в работу защит.

Сигналы от электрической схемы САЗ подаются в схему автоматического управления АУ. Эти сигналы останавливают двигатель компрессора независимо от сигналов оперативного управления ОУ.

Кроме основной функции САЗ - аварийной остановки компрессора, она выполняет и вспомогательные операции: включение необходимых аварийных устройств, а также световой и звуковой сигнализации. Расшифровывающая сигнализация защит с повторным включением действует только до тех пор, пока контролируемый параметр не вошел в нормальные пределы. Сигнализация защит однократного действия остается включенной после срабатывания до нажатия кнопки ввода в работу независимо от фактического состояния контролируемого параметра. Такая схема как бы «запоминает» происшедшее срабатывание защиты и информирует персонал в течение неограниченного времени.

Представленная схема может рассматриваться лишь как пример построения САЗ. Конкретные системы могут от нее отличаться количеством каналов и способами их включения.

Основным требованием к САЗ является высокая надежность, которая достигается применением высоконадежных реле защиты и элементов электрических схем, резервированием реле и других элементов защиты в особо ответственных случаях, уменьшением числа элементов, последовательно включаемых в САЗ, использованием наиболее безопасных вариантов электрических схем, организацией профилактических проверок и ремонтов в процессе эксплуатации.

Применение высоконадежных реле защиты и элементов электрических схем - наиболее простой и естественный путь, так как при прочих равных условиях использование более надежных элементов позволяет создать более надежную систему. Следует лишь иметь в виду, что при эксплуатации реле и другие элементы САЗ имеют весьма малую циклическую наработку (малое число срабатываний). Поэтому при оценке надежности в расчет следует принимать не циклическую долговечность и циклическую наработку на отказ, а другие показатели, характеризующие способность элементов сохранять готовность к срабатыванию (например, наработку на отказ по времени). При этом за отказ принимают любое нарушение способности элемента к срабатыванию.

Резервирование представляет собой параллельное включение двух или более однородных и совместно работающих элементов, выполняющих одинаковые функции. Выход из строя одного из них не нарушает работоспособности системы в целом. Резервирование используют в особо опасных случаях, когда внезапный отказ САЗ может привести к серьезным последствиям. К таким случаям относят, например, защиту от попадания жидкого аммиака в поршневой компрессор. Для этого на сосудах перед компрессором устанавливают основные и резервные реле уровня.

На упрощенной схеме (рис. 7.2) показан отделитель жидкого аммиака ОЖ, установленный между испарителем и компрессором Км. При нормальной работе жидкий аммиак в отделителе жидкости отсутствует. При выбросе жидкости из испарителя она накапливается в отделителе жидкого аммиака, и, если ее уровень достигает допустимого предела, срабатывают реле защит РЗ 1 и РЗ 2 (на схеме показаны их первичные преобразователи). Оба реле постоянно включены в работу и выполняют одну и ту же функцию. Такое резервирование значительно повышает надежность, так как вероятность одновременного отказа обоих реле крайне мала.

Уменьшение числа элементов, последовательно включаемых в САЗ, является одним из способов повышения надежности электрических схем САЗ. Наиболее надежна система, в которой реле защиты связаны непосредственно с пускателем двигателя компрессора без промежуточных элементов. Однако такую схему применяют только на самых малых установках. На более крупных установках приходится использовать промежуточные реле, что уменьшает надежность. Поэтому число последовательных промежуточных элементов, входящих в цепь аварийного отключения компрессора, должно быть минимальным.

Рис. 7.2. Упрощенная схема отделителя жидкости с резервированием реле защиты

от влажного хода компрессора

При использовании наиболее безопасных электрических схем обеспечивается остановка компрессора при возникновении отказов в САЗ. Наиболее характерным отказом электрической цепи является обрыв (исчезновение напряжения или тока), что может иметь место при физическом обрыве проводов, подгорании контактов, выходе из строя радиоэлектронных элементов (диодов, транзисторов, резисторов и др.), нарушениях в работе источников электропитания. Для того чтобы указанные отказы сигнализировались как аварийные, необходимо, чтобы в цепях защиты при нормальном состоянии циркулировал ток, а сигнал аварийной остановки соответствовал его прекращению. Следовательно, наиболее безопасной является электрическая схема защиты на нормально замкнутых контактах или других элементах.

Так, в схеме (рис. 7.3) контакты реле защиты РЗ 1 , РЗ 2 и РЗ 3 замкнуты, если контролируемые величины находятся в нормальных пределах, и разомкнуты при достижении предельно допустимых значений. Эти контакты включены последовательно в цепь обмотки электромагнитного реле РА, которое при срабатывании защиты отключает обмотку магнитного пускателя (на схеме не показан) и останавливает компрессор.

Рис. 7.3. Электрическая схема защиты на нормально замкнутых контактах

Когда все контакты реле защит замкнуты, цепь электромагнитного реле можно ввести в работу кратковременным нажатием кнопки КВЗ. При этом через обмотку электромагнитного реле потечет ток, это реле сработает и замкнет свой контакт РА. После отпускания кнопки цепь остается под током. Достаточно одному из реле защит разомкнуть контакт, как электромагнитное реле отпустит и его контакт разомкнется. Повторное включение будет возможно только после нажатия кнопки. Это схема однократного действия. В схеме с повторным включением контакт РА и кнопка не требуются.

Организация профилактических проверок и ремонтов в процессе эксплуатации играет решающую роль в обеспечении безопасной работы установок. Эти меры, если они выполняются через необходимые промежутки времени, практически исключают опасные ситуации, связанные с внезапными отказами в саз.

Для организации профилактических проверок необходимо, чтобы САЗ снабжались устройствами и приспособлениями, позволяющими по возможности в полном объеме проверять работоспособность защит. При этом желательно, чтобы проверка не вызывала вывода установки за предельно допустимые режимы. Так, в схеме (см. рис. 7.2) проверить работу реле защит можно без наполнения отделителя жидкости.

При нормальной работе вентили В 1 и В 2 открыты, а вентиль В 3 закрыт. Первичные преобразователи реле защит РЗ 1 и РЗ 2 подключены к сосуду.

Для проверки закрывают вентиль В 2 и открывают вентиль В 3 . Из трубопровода жидкость подается непосредственно в поплавковые камеры реле уровня и заполняет их. Если реле исправны, то они, срабатывая, выдают соответствующие сигналы.

После этого вентиль В 3 закрывают, а вентиль В 2 открывают. Жидкость стекает в сосуд, что свидетельствует об отсутствии засорения соединительного патрубка.

В процессе эксплуатации должен действовать график профилактических проверок, периодичность которых должна быть выбрана с учетом фактических показателей надежности.

СОСТАВ САЗ

Количество параметров, контролируемых с помощью САЗ, зависит от вида оборудования, его размеров и производительности, вида хладагента и др. Обычно число защит увеличивается с увеличением размеров оборудования. Более сложные САЗ обычно применяют на аммиачных установках.

В табл. 7.1 приведен рекомендуемый перечень контролируемых параметров для наиболее распространенных видов холодильного оборудования. Для некоторых видов оборудования предлагается несколько вариантов набора защит, которые выбираются исходя из конкретных условий. Так, для герметичных компрессоров можно использовать два варианта. Вариант со встроенными устройствами для защиты от повышения температуры обмоток электродвигателей является предпочтительным, так как при том же числе приборов обеспечивается защита от большего числа неисправностей.

В табл. 7.1 не вошли компрессоры бытовых холодильников и кондиционеров.

Некоторые из защит, входящих в состав САЗ, не обязательно вводить в схему однократного действия, при необходимости допускается включать их в схему с повторным включением.

На особо крупных установках с винтовыми и центробежными компрессорами целесообразно применять предупредительную сигнализацию. При достижении параметров предельно допустимых значений включается предупредительная сигнализация. Компрессор останавливается лишь в том случае, когда через заданный промежуток времени параметр не войдет в нормальные пределы. Параметры, допускающие включение через предупредительную сигнализацию, также отмечены в табл. 7.1. При этом следует обратить внимание на надежность устройства временной задержки и при необходимости принять соответствующие меры, например резервирование.


Таблица 7.1


Оборудование Давление Температура Уровень жидкости Осевой сдвиг вала Область применения
кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
Компрессор поршневой герметичный +* +* +* +* +* +* + Хладоновые компрессоры малых холодильных установок (торговое оборудование, кондиционеры и др.) То же »
Компрессор поршневой бессальниковый + + + + + +* + + + + + +* + + + + + + + Хладоновые компрессоры средней производительности То же Хладоновые компрессоры большой производительности То же Хладоновые компрессоры малых холодильных установок
Компрессор поршневой открытый + + + + + + + Хладоновые и аммиачные компрессоры средней производительности То же, большой производительности

Окончание табл. 7.1

Оборудование Давление Перепад давлений в маслосистеме Температура Уровень жидкости Осевой сдвиг вала Область применения
кипения (температура) всасывания нагнетания нагнетания масла масла редуктора обмоток электродвигателя подшипников выходящего теплоносителя
Агрегат компрессорный винтовой +** + + +**
Агрегат компрессорный центорожный +** + + +** +** +** +** + Аммиачные и хладоновые агрегаты
Аммиачный кожухотрубный испаритель +*** Без ограничения
Испаритель хладоновый с межтрубным кипением +*** То же
Испаритель хладоновый с внутритрубным кипением +*** »
Отделитель жидкости, ресивер циркуляционный + »

Примечание. Звездочка (*) означает, что предусматривается защита:

* Допускается включение по схеме с повторным включением.

** Допускается остановка компрессора после включения предупредительной сигнализации.

*** Допускается включение через предупредительную сигнализацию.


АВТОМАТИЗАЦИЯ СИСТЕМ

КОНДИЦИОНИРОВАНИЯ ВОЗДУХА


Похожая информация.


Автоматизированная система управления способствует созданию защиты от различных аварийных ситуаций. Помогает увеличить срок эксплуатации используемого оборудования. Сокращает количество задействованных в обслуживании аппаратуры служащих. Это сокращает риск влияния человеческого фактора, экономит финансовые затраты на оплату труда, снижает уровень травм опасности.

Автоматизация холодильного оборудования, холодильных машин разной мощности допускает настраивание всех параметров. Алгоритм способен регулировать подачу необходимого испарителям хладагента. Он отвечает за перемещение жидкостей, рассолов, воды, прочих веществ в холодильных установках.

Автоматизация систем холодильных установок позволяет выполнять запуск, плановую остановку компрессора, электромотора, прочих механизмов. При этом остановка работы холодильного оборудования происходит при наступлении аварийной ситуации.

Установленный алгоритм блокировки не дает продолжить работу холодильной машине. Она прекращает функционировать до поступления разрешительной команды. Происходит это тогда, когда устраняются неполадки холодильного оборудования. Также агрегат будет стоять на месте во время осуществления ремонтных работ, сервисного обслуживания предприятия.

Автоматизация холодильной установки дает возможность регулировать показатели заданного температурного режима помещения. Если он нарушается, автоматика подает соответствующий звуковой сигнал.

При возникновении температурных сбоев пропановой холодильной установки допускается автоматическое сокращение холодопроизводительных процессов.

Грамотная автоматизация агрегатов подразумевает регулирование плавного или позиционного типа. В первом случае автоматизация осуществляет плавное изменение количества используемых оборотов. Во втором – сокращением числа включенных в работу устройств цилиндров, компрессоров, прочих механизмов.

Предполагаете автоматизировать свои производственные объекты в Москве и Московской области? Ждем вашего звонка. Заказать проект, разработку, монтаж, внедрение, выполнение пусконаладочных работ, наладку ПО АСУ, сможете на официальном сайте компании «ОЛАЙСИС».

Представители этой организации готовы помочь с внедрением на вашу площадку современных АСУ. Продажа услуг по автоматизации устройств осуществляется после написания заявки, согласования цены, требований заказчика, выполнения необходимых расчетов.

Компания производит запасные детали к АСУ. Здесь же реально приобрести механизмы, выполнить заказ на комплексное, индивидуальное обслуживание. Работает быстрая доставка по городу. Предусмотрен самовывоз по решению заказчика.