И или в теории вероятности. Теория вероятностей. средний уровень. Наука и ее применение




События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Основные понятия теории вероятностей

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными , если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными . Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий .

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны , то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий .

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными , если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Определения и свойства вероятностей

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N , которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А :

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой p , не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А .

Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 3. Бросается игральная кость. Событие B - выпадение чётного числа. Вычислить вероятность этого события.

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:

Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами.

Учение о законах, которым подчиняются т. наз. случайные явления. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

теория вероятностей - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN probability theorytheory of chancesprobability calculation … Справочник технического переводчика

Теория вероятностей - есть часть математики, изучающая зависимости между вероятностями (см. Вероятность и Статистика) различных событий. Перечислим важнейшие теоремы, относящиеся к этой науке. Вероятность появления одного из нескольких несовместных событий равняется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - математич. наука позволяющая по вероятностям одних событий случайных (см.) находить вероятности случайных событий, связанных к. л. образом с первыми. Современная Т.в. основана на аксиоматике (см. Метод аксиоматический) А. Н. Колмогорова. На… … Российская социологическая энциклопедия

Теория вероятностей - раздел математики, в котором по данным вероятностям одних случайных событий находят вероятности других событий, связанных некоторым образом с первыми. Теория вероятностей изучает также случайные величины и случайные процессы. Одна из основных… … Концепции современного естествознания. Словарь основных терминов

теория вероятностей - tikimybių teorija statusas T sritis fizika atitikmenys: angl. probability theory vok. Wahrscheinlichkeitstheorie, f rus. теория вероятностей, f pranc. théorie des probabilités, f … Fizikos terminų žodynas

Теория Вероятностей - … Википедия

Теория вероятностей - математическая дисциплина, изучающая закономерности случайных явлений … Начала современного естествознания

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - (probability theory) см. Вероятность … Большой толковый социологический словарь

Теория вероятностей и её применения - («Теория вероятностей и её применения»,) научный журнал Отделения математики АН СССР. Публикует оригинальные статьи и краткие сообщения по теории вероятностей, общим вопросам математической статистики и их применениям в естествознании и… … Большая советская энциклопедия

Книги

  • Теория вероятностей. , Вентцель Е.С.. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного втузовского курса и интересующихся техническими приложениямитеории вероятностей, в… Купить за 1993 грн (только Украина)
  • Теория вероятностей. , Вентцель Е.С.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного…

(или ТВиМС) - именно так часто звучит название предмета в вашем расписании или рекомендуемом учебнике. Почему два предмета в одном? Как они связаны? Если речь идет об углубленном изучении предмета, обычно первый семестр посвящен изучению теории вероятностей, и только во втором, основываясь на полученных знаниях, переходят к математической статистике.

Остановимся подробнее на каждом предмете и узнаем, как же они связаны друг с другом.

Полезная страница? Сохрани или расскажи друзьям

Что изучает теория вероятностей?

Теория вероятностей , как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события - явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность - это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 - событие практически невозможно, 1 - событие практически достоверно, 0,5 (или "50 на 50") - с равной вероятностью событие произойдет или нет.

От теории вероятностей к математической статистике

Теория вероятностей изучает математические законы распределения случайных событий, и фактически является теоретической базой для математической статистики. Но, если в теории вероятностей обычно распределение задано тем или иным образом, и требуется найти вероятности, числовые характеристики (например, математическое ожидание, дисперсию и т.п.), построить графики функции и плотности распределения, то в задачах математической статистики , напротив, известны данные (выборка), собранные по результатам какого-то эксперимента или наблюдения, по которым следует определить закон распределения, наиболее подходящий в данном случае, достоверную с некоторой долей вероятности информацию о том, какими могут быть математическое ожидание или среднеквадратическое отклонение величины и т.п.

Что изучает математическая статистика?

Если говорить строго, то математическая статистика - это раздел математики, который изучеет методы сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия на их основе решений.

Почему же для обработки простых наборов данных требуется целая наука? Потом, что эти данные, как бы мы не старались, никогда не являются точными, содержат случайные ошибки. Это могут быть и погрешности измерительных приборов, и ошибки человеческие (связанные с тем, кто проводит исследование и измерение), и неоднородность данных или, конечно, их недостаточность (невозможно изучить, например, всех коров в мире, чтобы делать выводы об их удоях;), или опросить всех избирателей чтобы сделать прогноз выигрыша для кандидата на выборах).

Обычно исследователь многократно повторяет (если это физически возможно) свой опыт, получая большое количество однотипных данных, которые теперь надо обработать и сделать весомые выводы, которые позволят не только продвинуться глубже в изучении предмета (будь то удои коров или политические предпочтения), но и сделать выводы, прогнозы, принять важные экономические решения и т.д.

Именно математическая статистика дает методы для обработки данных, алгоритмы для проверки статистических гипотез, критерии адекватности и значимости выбранной модели или закона, обоснованные границы точности для параметров распределения, которые мы можем получить исходя из наших данных и т.п.

Как изучить теорию вероятностей и математическую статистику? Читайте (и прорешивайте в них примеры) учебники по математической статистике , изучите примеры решений , используйте калькуляторы по ТВ , таблицы и формулы статистики для удобства. Онлайн решебник по теории вероятностей поможет с трудными задачами.

Нижегородский Государственный Технический Университет

им. А.Е.Алексеева

Реферат по дисциплине теория вероятности

Выполнила: Ручина Н.А гр 10МЕНз

Проверил: Гладков В.В

Нижний Новгород, 2011

    Теория вероятностей……………………………………

    Предмет теории вероятностей…………………………

    Основные понятия теории вероятностей……………

    Случайные события, вероятности событий…………………………………………………

    Предельные теоремы……………………………………

    Случайные процессы……………………………………

    Историческая справка…………………………………

Используемая литература…………………………………………

Теория вероятностей

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например 0,75, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо событияА весьма близка к единице или (что то же самое) вероятность не наступления событияА весьма мала. В соответствии с принципом «пренебрежения достаточно малыми вероятностями» такое событие справедливо считают практически достоверным. Имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление событияА зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов

Предмет теории вероятностей

Предмет теории вероятностей. Для описания закономерной связи между некоторыми условиямиS и событиемА, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событиеА. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событиеА имеет определённую вероятностьP (A / S ), равнуюр. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо числоN атомов.

Назовем частотой события А в данной серии изn испытаний (то есть изn повторных осуществлений условийS ) отношениеh = m/n числаm тех испытаний, в которыхА наступило, к общему их числуn. Наличие у событияА при условияхS определённой вероятности, равнойр, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота событияА приблизительно равнар.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям. Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей

Основные понятия теории вероятностей. Наиболее просто определяются основные понятия теории вероятностей, как математической дисциплины, в рамках так называемой элементарной теории вероятностей. Каждое испытаниеТ, рассматриваемое в элементарной теории вероятностей, таково, что оно заканчивается одним и только одним из событийE 1 , E 2 ,..., E S (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходомE k связывается положительное числор к - вероятность этого исхода. Числаp k должны при этом в сумме давать единицу. Затем рассматриваются событияА, заключающиеся в том, что «наступает илиE i , илиE j ,..., илиE k ». ИсходыE i , E j ,..., E k называются благоприятствующимиА, и по определению полагают вероятностьР (А ) событияА , равной сумме вероятностей благоприятствующих ему исходов:

P (A ) =p i +p s ++p k . (1)

Частный случай p 1 =p 2 =...p s =1/S приводит к формуле

Р (А ) =r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числаr исходов, благоприятствующихА, к числуs всех «равновозможных» исходов. Классическое определение вероятности лишь сводит понятие «вероятности» к понятию «равновозможности», которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i ,j ), гдеi - число очков, выпадающее на первой кости,j - на второй. Исходы предполагаются равновероятными. СобытиюА - «сумма очков равна 4», благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно,Р (A ) = 3/36= 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение).

Событие В называется объединением событийA 1 , A 2 ,..., A r ,-, если оно имеет вид: «наступает илиA 1 , илиА 2 ,..., илиA r ».

Событие С называется совмещением событий A 1 , А. 2 ,..., A r , если оно имеет вид: «наступает иA 1 , и A 2 ,..., и A r ». Объединение событий обозначают знаком, а совмещение - знаком. Таким образом, пишут:

B = A 1 A 2  …  A r , C = A 1 A 2  …  A r .

События А иВ называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего иА иВ.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы теории вероятностей - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей: Если событияA 1 , A 2 ,...,A r таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - «сумма очков не превосходит 4», есть объединение трёх несовместных событийA 2 , A 3 , A 4 , заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятностьР (В ) равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

События A 1 , A 2 ,...,A r называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его «безусловной» вероятности.

Теорема умножения вероятностей: Вероятность совмещения событийA 1 , A 2 ,...,A r равна вероятности событияA 1 , умноженной на вероятность событияA 2 , взятую при условии, чтоА 1 наступило,..., умноженной на вероятность событияA r при условии, чтоA 1 , A 2 ,...,A r-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A 1 A 2 …A r ) =P (A 1 ) · P (A 2 ) · … · P (A r ), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию «в цель попадают три раза» благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;

следовательно, искомая вероятность равна

4·0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A 1 , A 2 ,..., A n независимы и имеют каждое вероятностьр, то вероятность наступления ровноm из них равна

P n (m ) = C n m p m (1 - p ) n-m ; (4)

здесь C n m обозначает число сочетаний изn элементов поm. При большихn вычисления по формуле (4) становятся затруднительными.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности : если событияA 1 , A 2 ,..., A r попарно несовместны и их объединение есть достоверное событие, то для любого событияВ его вероятность равна их сумме.

Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытанийT 1 , T 2 ,..., T n-1 , T n , если каждый исход испытанияТ есть совмещение некоторых исходовA i , B j ,..., X k , Y l соответствующих испытанийT 1 , T 2 ,..., T n-1 , T n . Из тех или иных соображений часто бывают известны вероятности

P (A i ), P (B j /A i ), …,P (Y l /A i B j …X k ). (5)

По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности Р (Е ) для всех исходовЕ составного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием. Наиболее значительными с практической точки зрения представляются два типа составных испытаний:

а) составляющие испытания не зависимы, то есть вероятности (5) равны безусловным вероятностям P (A i ), P (B j ),..., P (Y l );

б) на вероятности исходов какого-либо испытания влияют результаты лишь непосредственно предшествующего испытания, то есть вероятности (5) равны соответственно: P (A i ), P (B j /A i ),..., P (Y i / X k ). В этом случае говорят об испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностямиР (А i ) и переходными вероятностямиP (B j / A i ),..., P (Y l / X k ).

Основные формулы по теории вероятности

Формулы теории вероятностей.

1. Основные формулы комбинаторики

а) перестановки.

\б) размещения

в) сочетания .

2. Классическое определение вероятности.

Где- число благоприятствующих событиюисходов,- число всех элементарных равновозможных исходов.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

Теорема сложения вероятностей совместных событий:

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

Теорема умножения вероятностей зависимых событий:

,

    Условная вероятность события при условии, что произошло событие,

    Условная вероятность события при условии, что произошло событие.

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиально возможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из ni элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n1*n2*n3*...*nk.

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n1 элементов, а вторая - из n2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n2. Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n2. Так как в первой группе всего n1 элемент, всего возможных вариантов будет n1*n2.

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

Решение: n1=6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n2=7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n3=4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).

Итак, N=n1*n2*n3=6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n1=n2=...nk=n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно nk.Такой способ выбора носит название выборки с возвращением.

Пример. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?

Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=54=625.

Рассмотрим множество, состоящие из n элементов. Это множество будем называть генеральной совокупностью.

Определение 1. Размещением из n элементов по m называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений обозначается А, м от nи вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5. Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?

Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6. Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний обозначается Cnm и вычисляется по формуле:

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P7=7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?

Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок, которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением: , где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдетв том случае, если его центр попадет в полосу, т.е., или будет находится от края полосы на расстоянии меньшем чем радиус, т.е..

Для искомой вероятности получаем: .

Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

1. Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Примеры событий:

– попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);

– выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);

– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие -выпадание трех очков на первой игральной кости, событие- выпадание трех очков на второй кости.и- совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие- наудачу взятая коробка окажется с обувью черного цвета, событие- коробка окажется с обувью коричневого цвета,и- несовместные события.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.

Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении,- появление белого шара,- появление шара с номером. Событияобразуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие, либо бракованным- событие.

2. Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.