Газовый нагреватель воздуха для вентиляции. Газовый бойлер прямого нагрева. Среди лучших представителей сегмента находятся




Жизнь вдали от экватора диктует свои законы. Вслед за понижением уличной температуры остывают и дома внутри. В этом обзоре рассмотрим вариант решения проблемы путём выбора лучших газовых обогревателей — от портативных (для палатки) до конвекторов для дома или дачи, которые могут заменить газовый котел.

Виды газовых обогревателей

Газовые конвекторы

Такие обогреватели могут иметь закрытую и открытую камеру сгорания. Модели закрытого типа для сжигания газа забирают воздух с улицы и выводят продукты сгорания туда же по специальной трубе, проложенной сквозь стену. Они неплохо подходят для дома или дачи и способны стать альтернативой газовому котлу. Модели с открытой камерой горения не очень подходят для жилых помещений или требуют использования вертикального дымохода.

Каталитические газовые обогреватели

Приборы такого типа работают за счёт окисления веществ на поверхности катализатора, при котором выделяется большое количество тепла. Процесс происходит практически бесшумно и без пламени. Каталитический метод сжигания более надёжен, эффективен и безопасен по сравнению с применяемым у обычных инфракрасных обогревателей.

Керамические газовые обогреватели

По аналогии с электрическими собратьями такие обогреватели работают за счёт направленного теплового излучения и греют не воздух, а поверхности стен, предметов, а также присутствующих в помещении людей. Только в качестве источника нагрева выступает газовая горелка. Использование керамических пластин позволяет добиться полного сгорания топлива и исключить вредные выбросы.

Тепловые газовые пушки

Имеют цилиндрическую форму и работают по принципу тепловентилятора, в котором роль нагревательного элемента выполняет газовый тепловой генератор. Работают от баллонного газа, а мощность обычно регулируется редуктором.

Как только не называют данные изделия, начиная от «огневых нагревателей», «тепловых пушек», просто «горелок» и далее — «газовые калориферы», «газовые печи», «генераторы горячего (теплого) воздуха», «воздушные теплогенераторы». Самое распространенное (верное) название все же — газовые воздухонагреватели и, если смотреть со стороны приточных установок, газовые секции нагрева. Какие бывают газовые воздухонагреватели? По способу нагрева воздуха есть воздухонагреватели с применением непрямого нагрева воздуха (их иногда называют рекуперативными воздухонагревателями) и воздухонагреватели прямого нагрева (так называемого смесительного типа). Прямой нагрев воздуха — это когда нет камеры сгорания и теплообменника (фото 1). Пламя горелки напрямую нагревает воздух. Современные системы горения позволяют высокоэффективно сжигать природный газ, однако при проектировании необходимо делать расчет уменьшения концентрации вредных веществ, поступающих в помещение с продуктами сгорания, ниже 30 % ПДК. Данные агрегаты особенно эффективны при больших кратностях воздухообмена, когда уровень выделяемых внутри помещения вредных веществ значительно превышает уровень продуктов сгорания от газовых воздухонагревателей прямого нагрева: литейное производство, сварочные цеха и т.д. Диапазон тепловой мощности 40-1500(2000) кВт. За счет меньшей металлоемкости смесительные газовые воздухонагреватели дешевле рекуперативных, характеризуются большим диапазоном мощности и отсутствием дымохода, т.е. продукты сгорания сразу же перемешиваются с нагреваемым воздухом — не нужно думать о конденсате продуктов сгорания при работе с отрицательными температурами уличного воздуха. Такие газовые воздухонагреватели широко распространены в США, Канаде, Великобритании. Есть производители во Франции, Германии и Голландии. В России пока сравнительно редко используются, хотя и у нас есть несколько отечественных производителей. Непрямой нагрев — это когда воздух (рециркуляционный и/или приточный) при помощи вентилятора (осевого, центробежного) подается внутрь агрегата, после чего он нагревается, проходя вокруг камеры сгорания и через теплообменник, продукты же сгорания выводятся через дымоход (фото 2). Затем нагретый воздух, полученный таким образом, выпускается либо непосредственно в помещение, либо через систему воздуховодов. Газовые воздухонагреватели непрямого нагрева (рекуперативные воздухонагреватели) в свою очередь условно делят: 1. Воздухонагреватели со встроенной атмосферной горелкой или воздухонагреватели с трубчатым теплообменником (фото 4).
Принципиальная схема (фото 3): на входе атмосферная горелка, т.е. работающая под атмосферным давлением и состоящая, как правило, из нескольких сопел/форсунок (аналогичных любой домашней газовой плите). Далее после трубчатого (пластинчатого) теплообменника на выходе дымососный вентилятор, благодаря которому продукты сгорания и проходят теплообменник. Достоинства: простая конструкция, а значит, конкурентная цена. Недостатки: ❏ маленький диапазон тепловой мощности:15-150(200) кВт, для обеспечения большей тепловой мощности данные теплообменные модули устанавливаются последовательно и/или параллельно, что ведет к увеличению стоимости данного решения; ❏ сложности при необходимости работать в режиме конденсации продуктов сгорания.
2. Воздухонагреватели (теплообменные модули) с дополнительной вентиляторной (надувной, дутьевой) горелкой (фото 5). Принципиальная схема: в камеру сгорания теплообменного модуля установлена вентиляторная горелка (т.е. с вентилятором). Благодаря давлению, создаваемому горелкой, продукты сгорания проходят через камеру сгорания и теплообменные трубы (каналы). Диапазон тепловой мощности 40-1000 (1200) кВт. Более дорогое решение по сравнению с соответствующими по тепловой мощности атмосферными горелками, но зато более значительный диапазон по мощности, проще решать вопрос с образованием конденсата продуктов сгорания — возможно использование дизельных горелок. Промежуточный вывод: на данный момент из-за малого диапазона тепловой мощности — газовые воздухонагреватели с атмосферной горелкой целесообразно использовать для небольших приточных установок или моноблочных (крышных — Roof top) кондиционеров. Для больших центральных кондиционеров и приточных установок более конкурентны газовые воздухонагреватели (теплообменные модули) с дополнительной вентиляторной горелкой. Далее более подробно о варианте исполнения газовых секций нагрева, состоящих из теплообменного модуля (воздухонагревателя) и вентиляторной (надувной) горелки. Материалы, используемые для изготовления теплообменного модуля Теплообменный модуль под вентиляторную горелку условно состоит из камеры сгорания и следующего за ней теплообменника. Большинство производителей используют следующие материалы. Камера сгорания выполняется из нержавеющей стали AISI 430 (ГОСТ — 12Х17) при работе с воздухом, нагреваемым максимум до 120 °C. Для камер сгорания и различных соединений при нагреве воздуха до температур от 120 °C до 280/300 °C и при степени нагрева воздуха (Δt) более 80 °C используется жаропрочная нержавеющая сталь AISI 310 (ГОСТ — 20Х23Н18). Иногда при различных давлениях и температурах воздуха используется различная толщина стали для камер сгорания. При исключении конденсации продуктов сгорания внутри теплообменного модуля трубы теплообменника могут изготавливаться из углеродистой стали, например, из стали S235JR (ГОСТ — Ст3сп) или алюминизированной стали. В случае возможной конденсации продуктов сгорания в теплообменнике необходимо приобретать воздухонагреватель с теплообменником из кислотостойкой нержавеющей стали: AISI 316 (Г ОСТ — 08Х17Н13М2), AISI 441 (нет аналога в ГОСТ согласно DIN X2CrTiNb18), AISI 304 (ГОСТ — 08Х18Н10) и на крайний случай AISI409 (нет аналога в ГОСТ согласно DIN X2CrTi12), в котором должен быть предусмотрен слив конденсата.
Явление образования конденсата продуктов сгорания непосредственно в самом теплообменном модуле обусловлено повышенным охлаждением данного модуля. При постоянном номинальном расходе воздуха это может быть вызвано низкой температурой приточного воздуха или понижением тепловой мощности горелки ниже 60-65 % от номинальной при работе на 100 %но рециркулируемом воздухе. Один из способов уменьшить объем конденсата продуктов сгорания внутри теплообменного модуля — это организация байпасной линии, работающей в зависимости от температуры продуктов сгорания в дымоходе (фото 6).Какие газы могут быть использованы для газовых воздухонагревателей? Есть так называемые сжиженные нефтяные газы, т.е. газы которые являются попутными при добыче нефти. Или чаще их называют сжиженные углеводородные газы (СУГ): пропан (условное обозначение G31, химическая формула C3H8) и бутан (G30, C4H10). Эти газы называют еще тяжелыми углеводородами, пропан и бутан в отличии от природного газа тяжелее воздуха и при утечках они более взрывоопасны, т.к. не улетучиваются, а стелятся по полу, заполняют ниши. Именно смесь пропана-бутана продают для бытовых нужд в баллонах в розницу. Почти любая газовая горелка при замене сопла (мембраны на газовом клапане) и перенастройке может работать со сжиженными углеродными газами. В принципе, на любом объекте можно сделать газовую станцию с цистернами под СУГ (газгольдеры), но т.к. сжиженный нефтяной газ не принципиально дешевле дизельного топлива (в полтора раза, тогда как природный газ у нас дешевле дизельного топлива более чем в семь раз), по опыту для промышленных объектов это очень редкий вариант, поэтому более на нем не останавливаемся. Есть еще такой вариант экзотики — сжиженный природный газ, т.е. сжиженный метан. Сжиженный природный газ (СПГ) — дешевле СУГ, но т.к. у нас сделан основной упор на газопроводы — объекты, использующие СПГ, уникальны в России. Наконец, рассмотрим самый распространенный случай: природный газ — метан (G20, CH4). Газопроводы (газовые сети) под природный газ делятся: ❏ газовые сети низкого давления — до 0,05 кгс/см2 (50 мбар или 5 кПа); ❏ среднего давления — от 0,05 до 3 кгс/см2; ❏ высокого давления — от 3 кгс/см2.
Для различных типов помещений можно использовать различные газопроводы. В нашем случае речь будет идти о газопроводе среднего или низкого давления. Входное давление природного газа для атмосферных и премикс горелок только низкое (20 мбар), для них, как правило, при подключении к газопроводу нужно использовать дополнительные понижающие редуктора. Входное давление у вентиляторных горелок (фото 7) может быть различное в зависимости от используемой газовой рампы (мультиблока). Нижний диапазон зависит от характеристик рампы и теплообменного модуля (камеры сгорания), часто это 20 мбар, верхний порог зависит от диаметра газовой рампы (характеристик встроенного в нее редуктора) и обычно это фиксированная величина (100, 360 или 500 мбар). То есть, вентиляторные горелки могут работать с низким (до 50 мбар) и со средним давлением природного газа (от 50 мбар). Воздухонагреватели (теплогенераторы) с дополнительной вентиляторной горелкой также могут работать с использованием дизельных горелок. Или могут использоваться комбинированные горелки, работающие попеременно и с газом и с дизельным топливом. Фактически, если нет частой смены вида топлива, объект предварительно нужно запустить на дизельном топливе, а позже перевести на природный газ, ведь значительно дешевле сначала поставить дизельную горелку, а позже купить газовую горелку, чем сразу приобрести комбинированную. Проектов с дизельными горелками, наверно, в среднем один на 30 газовых, поэтому нюансы устройства топливопроводов под дизельное топливо опустим. Главной особенностью подобных проектов для приточных установок, т.е. проектов при использовании рассматриваемых дизельных горелок, является необходимость в обязательном порядке избегать работы в режиме конденсации продуктов сгорания. Газовые и дизельные вентиляторные горелки, автоматика Воздухонагреватели (теплообменные модули) могут быть укомплектованы только сертифицированными газовыми или дизельными вентиляторными горелками. В зависимости от задачи такие горелки могут быть: одноступенчатые — работают на одной фиксированной мощности; двухступенчатые — работают на двух предварительно установленных значениях мощности (низком и высоком); модулирующие — мощность ее работы может плавно варьироваться от минимальной до максимальной величин. Подбор горелки осуществляется по мощности теплогенератора и противодавлению, создаваемому в камере сгорания, кроме этого, необходимо учитывать длину сопла горелки. Длина сопла горелки должна быть в диапазоне, указанном производителем теплообменных модулей. Воздухонагреватели (теплообменные модули) оборудованы блоком термостатов, которые обеспечивают внутреннюю логику работы и безопасность секции нагрева, но не управляют температурой в отапливаемом и/иливентилируемом помещении. Автоматика для управления температурой в помещении (в воздуховоде) является отдельным вопросом, зависящим от поставленной задачи и используемой горелки. Особенности размещения приточных установок с газовым нагревом 1. При размещении внутри помещения (фото 8). Если внутри отапливаемого помещения — смотри НПБ 252-98 «Аппараты теплогенерирующие, работающие на различных видах топлива. Требования пожарной безопасности». Если в вентиляционной камере (фото 9) — нормы по размещению смотри СНиП II35-76* «Котельные установки».2. Установки уличного исполнения. Самый простой вариант с точки зрения согласований/норм, но есть нюансы по исполнению. Также не стоит забывать и об особенностях техобслуживании «на свежем воздухе». Стандартные же (типовые) европейские напольные воздушные теплогенераторы (воздухонагреватели) в случае уличного исполнения рассчитаны на длительную надежную эксплуатацию при температурах до -15(20) °C. Автоматика горелки позволяет ей включаться при температурах не ниже -15 °C. В данном случае обычно горелку и электрический щит просто закрывают сверху кожухом из сэндвич-панелей (фото 10). В большинстве случаев этого достаточно, т.к. горелка при работе греет себя и пространство вокруг. Есть примеры, когда даже такое стандартное исполнение нормально служит в сложнейших климатических российских условиях не один год.
На фото 11 представлен пример более основательного исполнения секции газового воздухонагревателя в случае его уличного размещения. Секция с горелкой изолирована не только сверху и по сторонам, но и снизу. Для вентиляции секции (поступления воздуха на горение) сделаны решетки. В регионах, где зимой могут быть особо низкие температуры (ниже -30 °C), обязательно нужен дополнительный обогрев секции с горелкой. Чаще всего внутрь блока с горелкой устанавливают дополнительный электрический нагреватель, иногда делают поступление теплого воздуха в секцию с горелкой из отапливаемого помещения или из вентиляционного канала после нагрева воздуха. Когда целесообразно применение газовых воздухонагревателей В общем случае газовый воздухонагреватель (т.е. приточная установка с газовой секцией нагрева) получается дороже по капитальным затратам аналогичной установки с водяным (электрическим) нагревом, но, с другой стороны, газовый воздухонагреватель будет всегда дешевле, чем связка «котельная + водяная приточная установка» аналогичной тепловой мощности. Соответственно, газовые воздухонагреватели наиболее конкурентны, когда нет параллельной большой котельной (теплотрассы), а небольшая котельная используется, допустим, на какой-то небольшой АБК (офисный центр) и/или ГВС (фото 12).То есть, на основе газовых воздухонагревателей строится единая система воздушного отопления и вентиляции: производственного помещения, склада, торгового комплекса, кинотеатра или спортзала. Как правило, в этом случае в приточных установках (воздухонагревателях) предусматриваются камеры смешения для одновременной работы с приточным и рециркулируемым воздухом. Возможно? отапливать и/или вентилировать особо пожароопасные помещения за счет подачи перегретого 100 % приточного воздуха, но такие установки сложны и дороги. Изначально основное назначение газовых воздухонагревателей — это воздушное отопление. Газовый воздухонагреватель в режиме чистой приточной установки, решающей только задачу вентиляции, применяют для помещений обогреваемых газовыми инфракрасными обогревателями (лучистое отопление) или навесными газовыми воздухонагревателями (газовые АВО). В настоящее время на рынке представлены несколько типов агрегатов c газовым нагревом воздуха. Первый тип — это напольные воздушные теплогенераторы (газовые воздухонагреватели). Такие устройства состоят, как правило, только из теплообменного модуля и секции вентиляторов. Второй — моноблочные крышные кондиционеры (на английском их называют Roof Top), которые кроме секции охлаждения могут иметь секцию нагрева на воде, электричестве или газе. Наконец, третий — заказные приточные и приточновытяжные установки с газовой секцией нагрева. Понятно, что использование стандартных решений — это более низкие капитальные затраты, но иногда единственный приемлемый вариант — заказные установки, укомплектованные, например, секциями рекуперации, увлажнения и другим дополнительным оборудованием. На этом тему считаем раскрытой, какие-то нюансы по конкретной задаче лучше уточнить у профильного специалиста.

Технические характеристики:

Примечание: Плотность мощности - количество допустимой мощности по площади поверхности подогревателя.

Корпус:

Материальное исполнение:

Ознакомительный чертеж:

Позиция 2. Панель управления тип клеммная коробка (водонепроницаемое исполнение)

Компоненты панели управления:

  • Основное разъединение
  • Тиристорный преобразователь
  • шаговый регулятор
  • трансформатор устройства управления
  • замыкатели и предохранители для - два блока 40 кВт, 380 В, 3 ф
  • контроллер термопары
  • контроллер верхнего предела
  • переключатель две позиции «выкл. - вкл.»
  • сигнальная красная лампочка «нагреватель включен»
  • соединительные клеммы для (термопар тип J)

Удаленная установка
Повторная передача
Удаленное включение / выключение

Объем поставки:

  • Циркуляционный подогреватель;
  • Нагревательные элементы
  • Панель управления

Промышленный электрический нагреватель битума

Циркуляционный нагреватель для нагрева битума, протекающего через него в количестве 47 000 кг/ч, от температуры 192°С до температуры на выходе 200°C, мощностью 280 кВт. Расчётная температура 200°C при давлении 4 кг/см².

Нагреватель представляет собой 24" сосуд из углеродистой стали, с нагревательными элементами в количестве 231 штук, из сплава Incoloy 800, с фланцевыми соединениями по ANSI на входе и на выходе с размером 4" на 150#.

Камера выводов выполнена согласно NEMA тип 4 и предназначена для работы вне помещения в безопасной зоне.

Технические характеристики

Фланцы

Изоляция 2" с уплотненной оболочкой из SS304

В комплектацию нагревателя дополнительно включено:

Контрольная панель

Стальной кожух NEMA 4X
Размеры кожуха (В х Ш х Г) 1524 мм x 914 мм x 305 мм (60" х 36" х 12")
Нагреватель кожуха для отрицательной температуры окружающей среды
Смонтированное на панели окошко для защиты от погодных условий
Электропитание 380 В/3 ф
Самонастраивающийся PID-регулятор температуры (регулируемая температура технологического процесса, со стандартным вводом термопары тип J)

Управляющий силовой трансформатор 120 В переменного тока с предохранителем на первичной и вторичной стороне трансформатора
Выключатель основного электропитания
7 шт. разъединяющий регулирующий контактор(ов) для резистивных нагрузок
7 шт. 3-х фазный регулятор(ов) мощности с переходом через нулевой уровень
7 шт. комплектов предохранителей 80А.
Селекторный переключатель - ВКЛ/ВЫКЛ со встроенной индикаторной лампой (зеленого цвета)
для индикации "ПИТАНИЕ ВКЛЮЧЕНО"
Клеммы для поставленного заказчиком дистанционного блокировочного устройства
Номинальный ток короткого замыкания 5 KA

Технические характеристики

Фланцы

Электропитание нагревателя

В комплектацию нагревателя дополнительно включено:

  1. Одна термопара для контроля температуры технологического процесса.
  2. Одна термопара для защиты нагревателя от верхнего предела температуры.

Дистанционная панель управления

Для установки вне взрывоопасной зоны
Пропорционально-интегрально-дифференциальный регулятор температуры с цифровым дисплеем
Камера выводов NEMA 4X из нержавеющей стали 304, размер подлежит согласованию
Вывод питания и всех подключений датчиков в дно панели
Корпус нагревателя для температуры окружающей среды -29°С
Все органы управления расположены под стеклом защищающим от холода
(22) Органы управления SCR
Размыкание двери
(1) Защита от перегрева оболочки
(2) Кнопка перезапуска с красной подсветкой (КРАСНАЯ) для визуальной сигнализации «ПЕРЕГРЕВ»
Переключатель с зеленой подсветкой (ЗЕЛЕНАЯ) для индикации «ПИТАНИЕ ВКЛ»
Компоненты, включенные в номенклатуру Лаборатории по технике безопасности, вся панель не
включена в номенклатуру Лаборатории по технике безопасности.
Список материалов и запчастей на замену предоставляется после одобрения.


Стандартная панель управления
Простая в обслуживании и эксплуатации

Все рабочие параметры шкафа управления проверяются на заводе и на месте со схемой проводки.

На крышке панели указана следующая информация:
Блочное управление;
Первичная горелка;
Вторичная ступень горелки;
Блокировка;
Управление насосом;
Блокировка насоса;
Избыточные температуры;
Избыточное давление

Опциональное оборудование

Теплообменник горячей смеси

Диапазон термомеханической нагрузки пластины от 0,5 до 1,5 м и «длинный» тепловой контур будут охватывать большой объем нагрузки, до 70 м 3 /ч в случае однофазового решения - это значит, что все соединения будут находиться в головной части. Это будет гарантировать легкое осуществление сервисных работ и работ с трубами и, в случае демонтажа теплообменника, не будет необходимости демонтажа труб. Передача тепла становится возможной когда теплая среда переносит энергию через тонкие, пластины высокой производительности между каналами и доставляет ее к холодной антагоничной среде без их смешивания. Противоток создает оптимальную эффективность. Пластины, а так же входная конструкция позволяет легко и эффективно осуществлять безразборную очистку (мойку) всех поверхностей течения.

Гофрированная елкообразная поверхность обеспечивает турбулентный поток суммарно эффективной площади. Кроме того, данная поверхность позволяет «металлический» контакт между пластинами, а вместе, с замковым устройством на уплотнении, пакет пластин легко монтируется. Пакет пластин безопасно находится между подвижной и неподвижной опорами рамы.

Техническая характеристика: Горячая сторона Холодная сторона
Производительность, м³/ч 102,99 108,24
Температура на входе, °C 95,00 45,00
Температура на выходе, °C 79,00 60,00
Перепад давлений, бар 0,89 0,95
Теплообмен, кВт 1860
Термодинамические характеристики Вода Вода
Плотность, кг/м³ 967,26 987,00
Удельная теплоемкость, кДж/кг*К 4,20 4,18
Удельная теплопроводность, Вт/м*К 0,67 0,64
Средняя вязкость, мПа*с 0,34 0,54
Граничная вязкость, мПа*с 0,54 0,34
Коэффициент загрязнения, м²*К/кВт 0,0108 0,0108
Размерный фактор, % 21,5
Патрубок на входе F1 F3
Патрубок на выходе F4 F2
Конструкция рамы/пластин: Горячая сторона Холодная сторона
Количество пластин 66
Эффективная поверхность нагрева (м²) 6,57
Общая величина теплопроводности гряз. / чист. (Вт/м²*К) 8203 / 9966
Материал пластин 0,5 мм AISI 316
Материал уплотнения / Макс. температура, °C Нитрил / 140
Максимальная расчетная температура, °C 100
Максимальное рабочее / расчетное давление, бар 10 / 13
Максимальное дифференциальное давление, бар 10
Тип рамы IG № 2
Соединения на горячей стороне (F1-F4) Фланец DN 65, PN 10 / PN 16
Соединения на холодной стороне (F3-F2) Фланец DN 65, PN 10 / PN 16
Объем жидкости, л 19
Длина рамы, мм 538, Макс кол-во пластин 77
Вес нетто, кг 164

Панель управления с ПЛК

Панель управления с программно логическим контроллером, с 7” тач скрином Siemens. Контролирует все операции нагревателя и иего комплектующих. С коммуникационным протоколом MODBUS TCP/IP, коммуникационная локальная сеть Ethernet с главной точкой контроля на заводе-производителе.

Насос в не взрывозащищенном исполнении

передатчик для давления на входе.
передатчик для выходного давления (минимальное управление потоком).
два манометра Ø 100, 0-10 кг /см 2
перепускной и предохранительный клапан, PN-40, изготовленный из углеродистой стали, внутри и пружины из нержавеющей стали AISI-304, работает при максимальном давлении 7,5 бар изб., фланцевое соединение DN-25.
три датчика температуры типа PT-100
  для температуры на входе,
  для температуры на выходе,
  в качестве защиты от перегрева на выходе.
температурный датчик, в качестве ограничителя температуры в дымовых газах.
четыре термочехла для размещения датчиков.

Горелка

Контрольная панель

Группа оборудования циркуляции теплоносителя

Рециркуляционный насос теплоносителя

Элементы соединения между нагревателем и насосом

Два клапана прерывателя, PN-16, соединение с помощью фланцев DN-150.
фильтр грубой очистки PN-16, соединительный фланец DN-150.
три задвижки, PN-16, для наполнения-слива.
три шаровых крана, PN-16, подключение с помощью резьбы ½".
группа реверсивных насосов с электроприводом для опорожнения и заполнения установки.
бесшовные стальные трубы в соответствии с ASTM A106 Gr. B и аксессуаров для этой трубы

Емкость теплоносителя

Объем 3000 л, горизонтальная цилиндрическая. Диаметр 1200 мм, длина 3030 мм. Сделана из углеродистой стали S-235-JR.
Краны уровня, установленного с дренажным краном и стеклянной трубкой, для визуального контроля уровня масла.
Магнитный поплавковый выключатель, из нержавеющей стали AISI-316 буем и фланцем; переключатель корпус выполнен из литого алюминия. Это делается для того, чтобы блокировать горелку в случае, когда масло падает до минимального уровня.

Сборный резервуар

Объем 10000 л, диаметр 1800 м, длина 4270 мм, горизонтальный цилиндрический.

Не включено в объем поставки:

Дымовая труба
Поддержка расширительного бачка
Теплоизоляция запорной арматуры, резервуаров и трубопроводов
Установка и запуск
Подведение электроэнергии и топлива в котел
Все прочее, что не указано выше

A B C D E F
4750 3125 2400 2335 2760 1715

Шкаф управления состоит из секции 600x1800x400 мм.
С размещением силовой части и части управления.
Шкаф управления оснащён главным выключателем 160A с расцепителем перегрузки и короткого замыкания. Управление мощностью от 5...100% посредством тиристора. Управление возможно как посредством встроенного электронного регулятора, так и через ПЛК (Sollwert 4...20 мА).
Предохранительные устройства: встроенный тепловой предохранитель (нагревательные элементы) и контроль изоляции относительно земли (нагреватель).
Распределительное устройство изготовлено, собрано и проверено
согласно действующим техническим нормам DIN, с учётом предписаний по предотвращению несчастных случаев и в соответствии с директивами VDE. Электронная документация обозначена на схеме электропроводки.
Проведение заводских приёмочных испытаний

Документация:

Таблица патрубков

Системы воздушного отопления

В целом ряде случаев можно значительно уменьшить капитальные и эксплуатационные затраты, обеспечив автономное отопление помещений теплым воздухом на основе применения теплогенераторов, работающих на газе или жидком топливе. В таких агрегатах нагревается не вода, а воздух? свежий приточный, рециркуляционный или смешанный. Такой способ особенно эффективен для обеспечения автономного отопления производственных помещений, выставочных павильонов, мастерских, гаражей, станций технического обслуживания, автомобильных моек, киностудий, складов, общественных зданий, спортзалов, супермаркетов, теплиц, оранжерей, животноводческих комплексов, птицеферм и т.п.

Преимущества воздушного отопления
Преимуществ воздушного способа отопления перед традиционным водяным в больших по объему помещениях много, перечислим лишь основные:

1. Экономичность.
Тепло производится непосредственно в нагреваемом помещении и практически целиком расходуется по назначению. Благодаря прямому сжиганию топлива без промежуточного теплоносителя достигается высокий тепловой КПД всей системы отопления: 90-94% для рекуперативных нагревателей и практически 100% для систем прямого нагрева. Применение программируемых термостатов обеспечивает возможность дополнительной экономии от 5 до 25 % тепловой энергии за счет функции дежурного режима автоматического поддержания температуры в помещении в нерабочее время на уровне +5-7ºС.

2. Возможность "включить" приточную вентиляцию. Ни для кого не секрет, что сегодня на большинстве предприятий приточная вентиляция не работает должным образом, что значительно ухудшает условия работы людей и влияет на производительность труда. Теплогенераторы или системы прямого нагрева прогревают воздух на ∆t до 90ºС этого вполне достаточно для того, чтобы "заставить" работать приточную вентиляцию даже в условиях Крайнего Севера. Таким образом, воздушное отопление подразумевает собой не только экономическую эффективность, но и улучшение экологической обстановки и условий труда.

3. Малая инерционность. Агрегаты систем воздушного отопления в считанные минуты выходят на рабочий режим, а за счет высокой оборачиваемости воздуха, помещение полностью прогревается всего за несколько часов. Это дает возможность оперативно и гибко маневрировать при изменении потребностей в тепле.

4. Отсутствие промежуточного теплоносителя позволяет отказаться от строительства и содержания малоэффективной для больших помещений системы водяного отопления, котельной, теплотрасс и станции водоподготовки. Исключаются потери в теплотрассах и их ремонт, что позволяет резко снизить эксплуатационные расходы. В зимнее время отсутствует риск размораживания калориферов и системы отопления в случае продолжительного отключения системы. Охлаждение даже до глубокого "минуса" не приводит к размораживанию системы.

5. Высокая степень автоматизации позволяет вырабатывать ровно то количество тепла, в котором есть необходимость. В сочетании с высокой надежностью газового оборудования это значительно повышает безопасность системы отопления, а для ее эксплуатации достаточно минимума обслуживающего персонала.

6. Малые затраты. Способ отопления крупных помещений при помощи теплогенераторов один из самых дешевых и быстро реализуемых. Капитальные затраты на строительство или реконструкцию воздушной системы, как правило, значительно ниже расходов на организацию водяного или лучистого отопления. Срок окупаемости капитальных затрат обычно не превышает одного-двух отопительных сезонов. В зависимости от решаемых задач, в системах воздушного отопления могут применяться нагреватели различного типа. В этой статье мы рассмотрим только агрегаты, работающие без применения промежуточного теплоносителя рекуперативные воздухонагреватели (с теплообменником и отводом продуктов сгорания наружу) и системы прямого нагрева воздуха (газовые смесительные воздухонагреватели).

Рекуперативные воздухонагреватели

В агрегатах этого типа топливо, смешанное с необходимым количеством воздуха, подается горелкой в камеру сгорания. Образовавшиеся продукты горения проходят через двух- или трехходовой теплообменник. Тепло, полученное при сгорании топлива, передается нагреваемому воздуху через стенки теплообменника, а дымовые газы через дымоход отводятся наружу (рис. 1) именно поэтому их называют теплогенераторами "непрямого нагрева". Рекуперативные воздухонагреватели могут быть использованы не только непосредственно для отопления, но и в составе системы приточной вентиляции, а также для технологического нагрева воздуха. Номинальная тепловая мощность таких систем от 3 кВт до 2 МВт. Подача нагреваемого воздуха в помещение осуществляется через встроенный или выносной нагнетающий вентилятор, что дает возможность использования агрегатов как для прямого подогрева воздуха с выдачей его через жалюзийные решетки, так и с воздуховодами. Омывая камеру сгорания и теплообменник, воздух нагревается и направляется либо непосредственно в отапливаемое помещение через расположенные в верхней части жалюзийные воздухораспределительные решетки, либо распределяется по системе воздуховодов. На лицевой части теплогенератора расположена автоматизированная блочная горелка (рис. 2)

Теплообменники современных воздухонагревателей, как правило, изготовлены из нержавеющей стали (топка из жаропрочной стали) и служат от 5 до 25 лет, после которых могут быть отремонтированы или заменены. КПД современных моделей достигает 90-96%. Главное преимущество рекуперативных воздухонагревателей их универсальность. Они могут работать на природном или сжиженном газе, дизельном топливе, нефти, мазуте или отработанном масле стоит только поменять горелку. Существует возможность работы со свежим воздухом, с подмесом внутреннего и в режиме полной рециркуляции. Такая система позволяет некоторые вольности, например, изменять расход нагреваемого воздуха, "на ходу" перераспределять потоки нагретого воздуха в разные ветви воздуховодов при помощи специальных клапанов.Летом рекуперативные воздухонагреватели могут работать в режиме вентиляции. Монтируются агрегаты как в вертикальном, так и в горизонтальном положении, на полу, стене, или встраиваются в секционную венткамеру в качестве секции нагревателя. Рекуперативные воздухонагреватели могут быть использованы даже для отопления помещений высокой категории комфортности, в случае если сам агрегат будет вынесен за пределы зоны непосредственного обслуживания.
Основные недостатки:
1. Большой и сложный теплообменник увеличивает стоимость и вес системы, по сравнению с воздухонагревателями смесительного типа;
2. Нуждаются в дымовой трубе и отводе конденсата.

Системы прямого нагрева воздуха

Современные технологии позволили добиться такой чистоты сжигания природного газа, что появилась возможность не отводить продукты сгорания "в трубу", а использовать их для прямого нагрева воздуха в системах приточной вентиляции. Газ, поступающий на горение, полностью сгорает в потоке нагреваемого воздуха и, смешиваясь с ним, отдает ему все тепло. Этот принцип реализован в ряде аналогичных конструкций рамповой горелки в США, Англии, Франции и России и с успехом используется с 60-х годов XX века на многих предприятиях России и за рубежом. Основанные на принципе сверхчистого сжигания природного газа непосредственно в потоке нагреваемого воздуха газовые смесительные воздухонагреватели типа STV (STARVEINE "звездный ветер") производятся с номинальной тепловой мощностью от 150 кВт до 21 МВт. Сама технология организации горения, а также высокая степень разбавления продуктов горения, позволяют получить в установках чистый теплый воздух в соответствии со всеми действующими нормами, практически не содержащий вредных примесей (не более 30% ПДК). Воздухонагреватели STV (рис. 3) состоят из модульного горелочного блока, расположенного внутри корпуса (участка воздуховода), газовой линии DUNGS (Германия) и системы автоматики. Корпус, как правило, оснащен гермодверью для удобства обслуживания. Горелочный блок, в зависимости от требуемой тепловой мощности, компонуется из необходимого количества горелочных секций разной конфигурации. Автоматика нагревателей обеспечивает плавный автоматический пуск по циклограмме, контроль параметров безопасной работы и возможность плавного регулирования тепловой мощности (1:4), что позволяет автоматически поддерживать необходимую температуру воздуха в отапливаемом помещении.

Применение газовых смесительных воздухонагревателей
Главное их предназначение - прямой нагрев свежего приточного воздуха, подаваемого в производственные помещения для компенсации вытяжной вентиляции и улучшения, таким образом, условий работы людей. Для помещений с большой кратностью воздухообмена возникает целесообразность совмещения системы приточной вентиляции и системы отопления - в этом плане у систем прямого нагрева нет конкурентов по соотношению цена/качество. Газовые смесительные воздухонагреватели предназначены для:

· автономного воздушного отопления помещений различного назначения с большим воздухообменом (К 1,5);

    нагрева воздуха в воздушно-тепловых завесах отсечного типа, возможно совмещение с системами отопления и приточной вентиляции;

    систем предпускового подогрева двигателей автомобилей на неотапливаемых стоянках;

    отогрева и оттайки вагонов, цистерн, автомобилей, сыпучих материалов, нагрева и сушки изделий перед покраской или другими видами обработки;

прямого нагрева атмосферного воздуха или сушильного агента в различных установках технологического нагрева и сушки, например, сушка зерна, травы, бумаги, текстиля, древесины; применения в камерах окраски и сушки после покраски и т.п.

Размещение
Смесительные нагреватели могут быть встроены в воздушные каналы систем приточной вентиляции и тепловых завес, в воздуховоды сушильных установок как на горизонтальных, так и на вертикальных участках. Могут монтироваться на полу или площадке, под потолком или на стене. Размещаются, какправило, в приточно-вентиляционных камерах, но возможна их установка и непосредственно в отапливаемом помещении (в соответствии с категорией). При дополнительном оборудовании соответствующими элементами могут обслуживать помещения категорий А и Б. Рециркуляция внутреннего воздуха через смесительные воздухонагреватели нежелательна возможно существенное снижение уровня кислорода в помещении.

Сильные стороны систем прямого нагрева
Простота и надежность, низкая себестоимость и экономичность, возможность нагрева до высоких температур, высокая степень автоматизации, плавное регулирование, не нуждаются в устройстве дымохода. Прямой нагрев - самый экономичный способ - КПД системы равен 99,96 %. Уровень удельных капитальных затрат на систему отопления на базе установки прямого нагрева, совмещенной с приточной вентиляцией, самый низкий при высочайшей степени автоматизации. Воздухонагреватели всех типов оснащены системой автоматики безопасности и управления, обеспечивающей плавный пуск, поддержание режима нагрева и отключение в случае возникновения аварийных ситуаций. В целях энергосбережения возможно оснащение воздухонагревателей автоматикой регулирования с учетом наружной и контролем внутренней температур, функциями суточного и недельного режимов программирования нагрева. Возможно также включение параметров системы отопления, состоящей из многих отопительных агрегатов, в систему централизованного управления и диспетчеризации. В этом случае оператор-диспетчер будет иметь оперативную информацию о работе и состоянии отопительных агрегатов, наглядно отображенной на мониторе компьютера, а также управлять режимом их работы непосредственно из удаленного диспетчерского пункта.

Мобильные теплогенераторы и тепловые пушки
Предназначены для временного применения - на стройках, для отопления в межсезонные периоды, технологического нагрева. Мобильные теплогенераторы и тепловые пушки работают на пропане (сжиженном баллонном газе), дизельном топливе или керосине. Могут быть как прямого нагрева, так и с отводом продуктов сгорания.

Типы систем автономного воздушного отопления
Для автономного теплоснабжения различных помещений применяются различные типы систем воздушного отопления - с централизованным распределением тепла и децентрализованные; системы, работающие полностью на приток свежего воздуха, или с полной/частичной рециркуляцией внутреннего воздуха. В децентрализованных системах воздушного отопления нагрев и циркуляция воздуха в помещении осуществляются автономными теплогенераторами, расположенными в различных участках или рабочих зонах - на полу, стене и под крышей. Воздух из нагревателей подается непосредственно в рабочую зону помещения. Иногда для лучшего распределения тепловых потоков теплогенераторы оснащают небольшими (локальными) системами воздуховодов. Для агрегатов в таком исполнении характерна минимальная мощность электродвигателя вентилятора, поэтому децентрализованные системы более экономичны в плане расхода электроэнергии. Возможно также использование воздушно-тепловых завес как части системы воздушного отопления или приточной вентиляции. Возможность локального регулирования и использования теплогенераторов по мере необходимости по зонам, в различное время дает возможность значительного снижения расходов на топливо. Однако капитальные затраты на реализацию данного способа несколько выше. В системах с централизованным распределением тепла используются воздушно-отопительные агрегаты; вырабатываемый ими теплый воздух поступает в рабочие зоны по системе воздуховодов. Установки, как правило, встраиваются в существующие венткамеры, но допускается возможность размещения их непосредственно в обогреваемом помещении на полу или на площадке.

Применение и размещение, подбор оборудования
У каждого из типов вышеперечисленных отопительных агрегатов есть свои неоспоримые преимущества. И нет готового рецепта, в каком случае какой из них целесообразнее это зависит от многих факторов: величины воздухообмена в соотнесении с величиной теплопотерь, категории помещения, наличия свободного места для размещения оборудования, от финансовых возможностей. Попытаемся сформировать наиболее общие принципы целесообразного подбора оборудования.

1. Системы отопления для помещений с небольшим воздухообменом (Квоздухообмена ≤0,5-1)
Суммарная тепловая мощность теплогенераторов в этом случае принимается практически равной количеству тепла, необходимого для компенсации теплопотерь помещения, вентиляция сравнительно мала, поэтому здесь целесообразно применение системы отопления на основе теплогенераторов непрямого нагрева с полной или частичной рециркуляцией внутреннего воздуха помещения. Вентиляция в таких помещениях может быть естественной или с подмесом уличного воздуха к рециркулирующему. Во втором случае мощность нагревателей увеличивают на величину, достаточную для нагрева свежего приточного воздуха. Такая система отопления может быть местной, с напольными или настенными теплогенераторами. При невозможности размещения установки в отапливаемом помещении либо при организации обслуживания нескольких помещений можно применить систему централизованного типа: теплогенераторы расположить в венткамере (пристрое, на антресолях, в соседнем помещении), а тепло распределять по воздуховодам. В рабочее время теплогенераторы могут работать в режиме частичной рециркуляции, попутно нагревая подмешиваемый приточный воздух, в нерабочее можно некоторые из них отключать, а оставшиеся переводить на экономичный дежурный режим +2-5ºС с полной рециркуляцией.

2. Системы отопления для помещений с большой кратностью воздухообмена, постоянно нуждающиеся в подаче больших объемов приточного свежего воздуха (Квоздухообмена >2)
В этом случае количество тепла, необходимое для нагрева приточного воздуха, может уже в несколько раз превышать количество тепла, необходимое для компенсации теплопотерь. Здесь наиболее целесообразно и экономично совмещение системы воздушного отопления с системой приточной вентиляции. Система отопления может строиться на основе установок прямого нагрева воздуха, или на основе применения рекуперативных теплогенераторов в исполнении с повышенной степенью нагрева. Суммарная тепловая мощность нагревателей должна быть равна сумме тепловой потребности на нагрев приточного воздуха и тепла, необходимого для компенсации теплопотерь. В системах прямого нагрева происходит нагрев 100 % уличного воздуха, обеспечивая подачу необходимого объема приточного воздуха. В рабочее время они нагревают воздух от уличной до расчетной температуры +16-40ºС (с учетом перегрева для обеспечения компенсации теплопотерь). С целью экономии в нерабочее время можно выключать часть нагревателей для снижения расхода приточного воздуха, а оставшиеся перевести на дежурный режим поддержания +2-5ºС. Рекуперативные теплогенераторы в дежурном режиме позволяют обеспечить дополнительную экономию за счет перевода их в режим полной рециркуляции. Наименьшие капитальные затраты при организации систем отопления централизованного типа при применении как можно более крупных нагревателей. Капитальные затраты на газовые смесительные воздухонагреватели STV могут составить от 300 до 600 руб/кВт установленной тепловой мощности.

3. Комбинированные системы воздушного отопления
Оптимальный вариант для помещений со значительным воздухообменом в рабочее время при односменном режиме работы, либо прерывистом рабочем цикле - когда разница в необходимости подачи приточного воздуха и тепла в течение дня значительна. В этом случае целесообразно раздельное функционирование двух систем: дежурного отопления и приточной вентиляции, совмещенной с системой отопления (догрева). При этом в отапливаемом помещении или в венткамерах устанавливаются рекуперативные теплогенераторы для поддержания только дежурного режима с полной рециркуляцией (при расчетной наружной температуре). Система приточной вентиляции, совмещенная с системой отопления, обеспечивает нагрев необходимого объема свежего приточного воздуха до +16-30ºС и догрев помещения до необходимой рабочей температуры и в целях экономии включается только в рабочее время. Строится она либо на основе рекуперативных теплогенераторов (с повышенной степенью нагрева), либо на основе мощных систем прямого нагрева (что дешевле в 2-4 раза). Возможна комбинация приточной системы догрева с существующей системой водяного отопления (может оставаться дежурной), вариант применим также для стадийной модернизации существующей системы отопления и вентиляции. При таком способе эксплуатационные расходы будут наименьшими. Таким образом, применяя воздухонагреватели различных типов в различных комбинациях, можно решить одновременно обе задачи - и отопление, и приточную вентиляцию. Примеров применения систем воздушного отопления очень много и возможности комбинации их чрезвычайно разнообразны. В каждом случае необходимо провести тепловые расчеты, учесть все условия применения и выполнить несколько вариантов подбора оборудования, сравнивая их по целесообразности, величине капитальных затрат и эксплуатационных расходов.

Кроме всех перечисленных преимуществ, нагреватель компенсационного воздуха является наиболее экономичным средством обогрева помещения. Как это возможно? Это действительно очень просто.

Система прямого нагрева отдает 100% своего тепла в воздушный поток. Системы с косвенным нагревом всегда имеют вытяжную или вентиляционную трубу, которая отводит из здания в атмосферу горячие газообразные продукты сгорания.

Воздухонагревательный прибор имеет исходный пиковый уровень эффективности около 56%, так как примерно 20% топлива теряется в топочных газах, а дополнительное топливо теряется в теплообменнике, что составляет около 70% эффективности нового устройства. Теплообменник со временем выходит из строя, и уровень эффективности может упасть до 40 – 50% всей эффективности.

Воздухонагревательный прибор не только неэффективен, он не может обеспечить однородную температуру, потому что он зависит от инфильтрации холодного воздуха для горения. Процесс горения требует, примерно, 10 частей атмосферного воздуха на 1 часть природного газа. На один кубический фут природного газа приходится, примерно, 1000 британских тепловых единиц (бте). Типичное здание может потерять около 3,000,000 бте/час в виде обычных тепловых потерь. Это означает, что нагревательные приборы будут потреблять 3,000 кубических футов воздуха для горения каждый час. Этот просачивающийся воздух для процесса горения должен быть нагрет, следовательно, он увеличивает обычную инфильтрационную нагрузку помещения. Стоимость одного только воздуха для горения в нагревательных приборах составляет около $0.95/ч.

В отличие от воздухонагревательных приборов нагреватель компенсационного воздуха не привносит в здание холодный воздух для горения. Он также не вытягивает нагретый воздух. В сжатой атмосфере температура намного более однородна. Нагреватель компенсационного воздуха не использует теплообменника, он не вытягивает и не подает холодный воздух на предприятие. Газовая горелка работает в соответствии с потребностью, и ее эффективность приближается к 100%. Все тепло, полученное в результате сжигания топлива, поступает непосредственно в помещение. Природный газ содержит 8% воды. Во время горения природный газ генерирует "явное/физическое" тепло, которое повышает температуру в помещении. Присутствующая в газе вода генерирует "латентное тепло", обеспечивающее увлажнение на предприятии. При использовании воздухонагревательного прибора латентное тепло теряется в вытяжной трубе.

Без нагревателя компенсационного воздуха естественная сила ветра соединяется с механической вытяжкой здания и создает ситуацию, в которой холодный воздух поступает в помещение, а теплый покидает его. Холодный воздух скапливается у пола, а теплый поднимается к потолку. Потерянная энергия собирается у потолка, в то время как у работников мерзнут ноги. Все горелки реагируют на сквозняки холодного воздуха на уровне полов более интенсивным горением, чтобы компенсировать проникновение холодного воздуха.

Положительное давление из нагревателя компенсационного воздуха обеспечивает вентиляцию с контролируемым вымещением. Здание по-прежнему дышит, но теперь воздух внутри помещения более свежий, а температура ровная. Свежий воздух из нагревателя компенсационного воздуха выталкивает наружу застоявшийся воздух и загрязнители. Объем вымещаемого воздуха контролируется. Вытяжные системы в мойках и вулканизационных печах работают на заданных объемах, без досадных погасаний горелок или обратной тяги.

Возникновение проходящей через оборудование аэродинамической трубы, которая может возникать в воздухонагревательных приборах, исключено. Стоимость на 20 – 40% ниже, чем при косвенном воздухонагревательном отоплении.

Инфильтрация является причиной сильной стратификации температуры. Пол очень холодный, особенно возле дверей и на участках, плохо утепленных снаружи. Воздухонагревательные приборы, часто использующиеся для обогрева помещения, будут работать постоянно, но никогда не повысят температуру на холодных участках до приемлемого уровня. Воздухонагревательные приборы получают свой воздух для горения из трещин в стенах здания. Поскольку холодный воздух проникает через трещины постоянно, нет никакой возможности, что это помещение прогреется. Нагретый воздух из воздухонагревательного прибора поднимается к потолку вместе с теплом, генерируемым вулканизационными печами и мойкой. Температура у пола может быть около 45 °F, в то время как у потолка около 120 °F (5° – 49 °C) и выше. Воздухонагревательный прибор продолжает работать в напрасном усилии повысить температуру воздуха на уровне пола до комфортного значения. Холодный воздух продолжает проникать, британские тепловые единицы потребляются и теряются по мере повышения температуры и инфильтрации холодного воздуха.

Таким образом, нагреватель компенсационного воздуха с прямым обогревом более эффективен, чем воздухонагревательный прибор. Воздух для горения поступает в нагреватель, нагревается до заданного значения и нагнетается в помещение для эффективной передачи энергии. Поскольку воздух в здании сжат, тепло распространяется по нему намного более равномерно. Те 120 °F воздуха, которые терялись под потолком, теперь распространяются по всему предприятию, повышая общий комфорт. В отличие от воздухонагревательного прибора, который позволяет холодному воздуху постоянно проникать в помещение, нагреватель компенсационного воздуха забирает только то количество наружного воздуха, который необходим для удовлетворения нужд помещения, повышает температуру до заданного значения и распространяет ее равномерно по всему зданию. Горелка модулирует, чтобы выработать только то, что нужно, не больше и не меньше.