Кислотный способ умягчения воды и фильтрование. Физико-химические методы умягчения воды. Умягчение воды диализом




Химические методы умягчения воды

Физические методы умягчения воды

Воду нагревают до кипения, в результате чего растворимые гидрокарбонаты кальция и магния превращаются в карбонаты и выпадают в осадок:

Ca(HCO 3) 2 == CaCO 3 ↓ + H 2 O + CO 2

Этим методом удаляется только временная жёсткость воды.

В промышленности применяют следующие способы умягчения воды: известковый, натронный, содовый, фосфатный.

1. Известковый способ. Обрабатывая воду гашёной известью Ca(OH) 2 , устраняют временную жёсткость воды и связывают оксид углерода (IV) :

Ca(HCO 3) 2 + Ca(OH) 2 = 2CaCO 3 ↓ + 2H 2 O:

Mg(HCO 3) 2 + Ca(OH) 2 = CaCO 3 ↓ + Mg(OH) 2 + H 2 O +CO 2

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O

2. Натронный способ. При действии на воду едким натром достигают устранения временной и постоянной жёсткости:

Mg(HCO 3) 2 + 4NaOH = Mg(OH) 2 + Na 2 CO 3 ↓ + 2H 2 O

CaCl 2 +2NaOH = Ca(OH) 2 + 2NaCl

3. Содовый способ. При действии на воду кальцинированной содой Na 2 CO 3 достигают устранения временной и постоянной жёсткости:

Ca(HCO 3) 2 + Na 2 CO 3 = 2NaHCO 3 + CaCO 3 ↓

CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ +Na 2 SO 4

4. Фосфатный способ. Обработка воды фосфатом натрия тоже ведёт к связыванию ионов, образующих накипь в виде нерастворимых солей:

3Ca(HCO 3) 2 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 ↓ +6NaHCO 3

3CaSO 4 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 ↓ + 3Na 2 SO 4

MgCl 2 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 ↓ + 6NaCl

Эффективность умягчения воды возрастает от известкового к фосфатному способу при одновременном существенном увеличении стоимости этого процесса.

Поэтому на практике применяют и комбинированные способы, в которых основная часть ионов жёсткости связывается дешёвыми реагентами - известковым молоком и содой , а доумягчение осуществляется фосфатом натрия .

Известково-содовый метод даёт возможность снизить жёсткость до
0,3 мг-экв/л, а фосфатный - до 0,03 мг-экв/л .

Наиболее широкое распространение получил метод ионного обмена благодаря своей эффективности, простоте и экономичности (Рис. 2.4):

Принципиальная схема обессоливания воды методом ионоионообмена (катионирование и анионирование) показана на рисунке 2.4.

Рис. 2.4. Схема установки для обессоливания воды ионообменным методом. 1 - катионитный фильтр, 2 - анионитный фильтр, 3 -дегазатор, 4 - сборник очищенной воды.

Из воды сначала удаляются ионы кальция, магния и натрия в Н-катионитовом фильтре, в котором на слое крупного кварцевого песка или измельченного керамзита расположен слой катионита. Затем вода последовательно поступает в анионитовый фильтр для удаления анионов. Для регенерации катионита в фильтр периодически по­дается кислота или раствор хлорида натрия, для регенерации анионита - раствор щелочи. Затем вода подается в дегазатор, где удаляются и воды растворенные диоксид углерода и кислород.


Дегазация осуществляется химическим или физическим способами. Для удаления СО 2 воду пропускают через фильтр, заполненный гашеной известью, или добавляют к воде известковое молоко:

СО 2 + Са(ОН) 2 = СаСО 3 + Н 2 О.

Кислород удаляется фильтрацией воды через слой железных опилок или стружек. Физические способы дегазации состоят в нагревании воды в вакууме или острым паром. В случае необходимости производят обеззараживание воды с целью уничтожения болезнетворных бактерий и окисления органических примесей хлорированием (газообразным хлором, хлорной известью или гидрохлоратом кальция).

!!! Метод основан на способности некоторых нерастворимых синтетических материалов обменивать свои ионы на эквивалентное количество ионов, присутствующих в воде .

Иониты подразделяются на аниониты и катиониты.

Иониты, обменивающие свои катионы на катионы, находящиеся в воде, называют катионитами.

Катиониты обычно содержат подвижные , т. е. способные обмениваться , ионы натрия Na + (Na + -катиониты ) и водорода H + (H + -катиониты ).

Иониты, обменивающие свои анионы на анионы, находящиеся в воде, называются анионитами. Аниониты содержат подвижные гидроксильные группы .

Знать степень жесткости используемой воды обязательно. От показателя жесткости питьевой воды зависит множество аспектов нашей жизни: сколько использовать стирального порошка, нужны ли меры по умягчению жесткой воды, сколько проживут аквариумные рыбки в воде, нужно ли введение полифосфатов в обратном осмосе и т.д.

Существует множество способов определения жесткости:

  • по количеству образованной пены моющего средства;
  • по району;
  • по количеству накипи на нагревательных элементах;
  • по вкусовым свойствам воды;
  • с помощью реагентов и специальных приборов

Что такое жесткость?

В воде присутствуют основные катионы: кальций, магний, марганец, железо, стронций. Последние три катиона мало влияют на жесткость воды. Существуют еще трехвалентный катион алюминия и железа, которые при определенном рН образуют известняковый налет.

Жесткость может быть разного вида:

  • общая жесткость – общее содержание ионов магния и кальция;
  • карбонатная жесткость – содержание гидрокарбонатов и карбонатов при рН большем 8,3. Их легко удалить через кипячение: во время нагревания распадаются на угольную кислоту и осадка;
  • некарбонатная жесткость – соли кальция и магния сильных кислот; нельзя удалить с помощью кипячения.

Существует несколько единиц жесткости воды: моль/м 3 , мг-экв/л, dH, d⁰, f⁰, ppm CaCO 3 .

Почему вода имеет жесткость? Ионы щелочноземельных металлов есть во всех минерализованных водах. Они берутся из залежей доломитов, гипса и известняка. Источники воды могут иметь жесткость в различных диапазонах. Существует несколько систем жесткости. За границей к ней подходят более «жестко». К примеру у нас вода считается мягкой при жесткости 0-4 мг-экв/л, а в США – 0-1,5 мг-экв/л; очень жесткая вода в России – свыше 12 мг-эк/л, а в США – свыше 6 мг-экв/л.

Жесткость маломинерализованных вод на 80% обусловлена ионами кальция. С ростом минерализации доля ионов кальция резко снижается, а ионов магния – увеличивается.

Чаще всего поверхностные воды обладают меньшей жесткостью, чем подземные. Так же жесткость зависит от сезона: во время таяния снегов она снижается.

Жесткость питьевой воды изменяет ее вкус. Порог чувствительности для иона кальция – от 2 до 6 мг-экв/л, зависит от анионов. Вода становиться горьковатой и плохо влияет на процесс пищеварения. ВОЗ не дает каких-либо рекомендаций по жесткости воды, так как нет точных доказательств ее влияния на организм человека.

Ограничение жесткости необходимо для нагревательных приборов. Например, в котлах – до 0,1 мг-экв/л. Мягкая вода имеет низкую щелочность и вызывает коррозию водопроводных коммуникаций. Коммунальные службы используют специальную обработку, что бы найти компромисс между налетом и коррозией.

Существует три группы способов умягчения воды:

  • физический;
  • химический;
  • экстрасенсорный.

Реагентные способы умягчения воды

Ионный обмен

Химические способы основаны на ионном обмене. Фильтрующей массой является ионообменная смола. Она представляет собой длинные молекулы, которые собрали в шарики желтого цвета. Из шариков выступают маленькие отростки с ионами натрия.

Во время фильтрации вода пропитывает всю смолу, а ее соли становятся на место натрия. Сам натрий уноситься водой. Из-за разницы зарядов ионов вымывается в 2 раза больше солей, чем оседает. С течением времени соли все заменяются и смола перестает работать. Период работы у каждой смолы свой.

Ионообменная смола может быть в картриджах или насыпаться в длинный болон — колонна. Картриджи имеют небольшой размер и используются только для снижения жесткости питьевой воды. Идеально подходит для умягчения воды в домашних условиях. Ионообменная колонна используется для умягчение воды в квартире или небольшом производстве. Кроме большой стоимости колонна должна периодически загружаться восстановленной фильтрующей массой.

Если в смоле картриджа не осталось ионов натрия, то его просто заменяют на новый, а старый – выбрасывают. При использовании ионообменной колоны смолу восстанавливают в специальном баке с рассолом. Для этого растворяют таблетированию соль. Солевой раствор регенерирует способность смолы к обмену ионами.

Обратной стороной является дополнительная способность воды удалять железо. Оно забивает смолу и приводит ее в полную непригодность. Следует вовремя делать анализ воды!

Использование других химических реагентов

Существует ряд менее популярных, но эффективных способов умягчения воды:

  • кальцинированная сода или известь;
  • полифосфаты;
  • антискаланты – соединения против образования накипи.
Умягчение известью и содой

Умягчение воды содой

Метод умягчения воды с использованием извести называется известкованием. Используют гашенную известь. Содержание карбонатов снижается.

Смесь соды и извести наиболее эффективно. Для наглядности умягчения воды в домашних условиях можно добавить кальцинированную соду в воду для стирки. На ведро берут 1-2 чайные ложки. Хорошо размешивают и ожидают выпадения осадка. Подобным методом пользовались женщины в Древней Греции, используя печную золу.

Вода после извести и соды не пригодна для пищевых целей!

Умягчение полифосфатами

Полифосфаты способны связывать соли жесткости. Они представляют собой крупные белые кристаллы. Вода проходит через фильтр и растворяет полифосфаты, связывая соли.

Недостатком является опасность полифосфатов для живых организмов, в том числе и человека. Они являются удобрением: после попадания в водоем наблюдается активный рост водорослей.

Полифосфаты так же непригодны для умягчения питьевой воды!

Физический метод умягчения воды

Физические способы борются с последствиями высокой жесткости – накипью. Это безреагентная очистка воды. При ее использовании не происходит снижение концентрации соли, а просто предотвращается вред для труб и нагревательных элементов. Вода становиться мягкой или для большего понимания – умягченной.

Выделяют следующие физические способы:

  • использование магнитного поля;
  • с помощью электрического поля;
  • ультразвуковая обработка;
  • термический способ;
  • использование малоточечных токовых импульсов.
Магнитное поле

Безреагентное умягчение воды с помощью магнитного поля имеет множество нюансов. Эффективность достигается только при соблюдении определенных правил:

  • определенная скорость потока воды;
  • подобранная напряженность поля;
  • определенный ионный и молекулярный состав воды;
  • температура входящей и выходящей воды;
  • время обработки;
  • атмосферное давление;
  • давление воды и т.д.

Изменение какого-либо параметра требует полной перенастройки всей системы. Реакция должна быть незамедлительной. Несмотря на сложность контроля параметров, магнитное умягчение воды используют в котельных.

Но для умягчения воды в домашних условиях с помощью магнитного поля почти невозможно. При появлении желания приобрести магнитик на трубопровод, подумайте, как вы подберете и будите обеспечивать необходимые параметры.

Использование ультразвука

Ультразвук приводит к кавитации – образованию газовых пузырьков. Повышается вероятность встречи ионов магния и кальция. Появляются центры кристаллизации не на поверхности труб, а в толще воды.

При умягчении горячей воды ультразвуком кристаллы не достигают размера, необходимого для осаждения – накипь не образуется на теплообменных поверхностях.

Дополнительно возникают высокочастотные колебания, которые препятствуют образования налета: отталкивают кристаллы от поверхности.

Изгибные колебания пагубны для образованного слоя накипи. Она начинает откалываться кусочками, которые могут засорить каналы. Перед использованием ультразвука необходимо очистить поверхности от накипи.

Электромагнитные импульсы

Безреагентные умягчители воды на основе электромагнитных импульсов меняют способ кристаллизации солей. Создаются динамические электрические импульсы с разными характеристиками. Они идут по проводу-обмотке на трубе. Кристаллы обретают форму длинных полочек, которым трудно закрепиться на поверхности теплообмена.

В процессе обработки выделяется углекислота, которая борется с уже имеющимся известковым налетом и образует защитную пленку на металлических поверхностях.

Термоумягчение

Кто-то слышит про этот метод первый раз. Но на самом деле им пользуется каждый с детства. Это привычное для нас кипячение воды.

Все замечали, что после кипячения воды образуется осадок из солей жесткости. Кофе или чай делают из более мягкой воды, чем водопроводная.

А сколько нужно кипятить? Все просто: с ростом температуры и ее воздействием соли жесткости менее растворимые и больше выпадают в осадок. В процессе нагревания выделяется углекислый газ. Чем быстрее он улетучивается, тем больше образуется известняковый налет. Плотно закрытая крышка препятствует выведению углекислого газа, а в открытой емкости быстро испаряется жидкость.

При использовании термоумягчения следует оставлять крышку в емкости слегка открытой. Так же следует обеспечить максимальную площадь осаждения солей для ускорения умягчения питьевой воды.

При жесткости до 4 мг-экв/л термическое умягчение не нужно: соли будут оседать медленнее, чем испаряется вода. В оставшейся воде будет повышенная концентрация многих примесей.

Как смягчить жесткую воду. Способы, советы, вред и польза, разные методы, особенности и допустимые показатели.

Все мы слышали о вреде жесткой воды – не только для кухонной техники и отопительного оборудования, но и для человеческого организма. Однако мало кто знает, что ее жесткость бывает разной по «происхождению», и к тому же не является абсолютным злом. Поэтому сегодня мы рассмотрим, как можно сделать наиболее эффективным смягчение воды для питья и бытовых нужд, чтобы получить от нее максимум пользы.

Особенности жесткой воды

Вода становится жесткой от растворенных солей – соединений кальция и/или магния (катионы последнего встречаются гораздо реже). Есть и другие элементы, присутствие которых может отразиться на конечных показателях жесткости, например, марганец, стронций, барий. Но их влияние настолько незначительно, что его просто не принимают во внимание.

Общий же показатель жесткости принято разделять в соответствии с составом солей:

  1. Карбонатная или временная жесткость – определяет содержание в воде гидрокарбонатов Ca и Mg при уровне рН, превышающем 8,3 единицы. С ней можно легко справиться длительным кипячением – через час соли просто распадутся под действием высокой температуры и выпадут в осадок.
  2. Некарбонатная жесткость носит название постоянной, поскольку от нее так просто не избавиться. Ее определяет содержание стабильных солей различных кислот, которые не распадаются и должны удаляться другими способами, например, обратным осмосом.

В сумме эти два показателя как раз и дают общую жесткость, хотя по отдельности вычислять их сложно и дорого. Обычно для определения фактической величины содержания солей используют специальные реагенты или полоски-индикаторы.

Но о том, что в вашей системе жесткая вода, можно узнать и без лабораторных исследований. В процессе использования она доставляет немало проблем, которые просто невозможно не замечать:

  • Белые следы на постиранных вещах;
  • Слабое пенообразование моющих средств, и как следствие – их неэффективность;
  • Накипь на стенках чайника (а представьте, что происходит с ТЭНами бойлеров, стиральных и посудомоечных машин);
  • Постоянно появляющийся налет на смесителе и мойке.


Человеческому организму жесткая вода тоже наносит немалый вред. Ощущение сухости кожи после контакта с такой средой – не что иное как смывание защитной липидной пленки с ее поверхности. А употребление этой воды внутрь без предварительного умягчения способно спровоцировать мочекаменную болезнь.

Но это не значит, что смягчение воды должно быть тотальным, даже если она применяется для питья и приготовления пищи. Совершенно лишенная солей жидкость приводит к дефициту ионов кальция и магния в организме, что негативно отражается на работе сердечно-сосудистой системы. Вред и польза жесткости питьевой воды – один из медицинских парадоксов. Но разрешается он просто – соблюдением меры.

С точки зрения врачей, употребление слишком жесткой, как и излишне мягкой воды, недопустимо. Здесь нужно придерживаться золотой середины.

«Переумягченная» вода способна нанести вред и стальным трубам водопроводных и отопительных систем – из-за нее они в большей мере подвергаются коррозионному износу и служат меньше, чем трубопроводы, транспортирующие жесткие среды.

Народные способы умягчения

С проблемами жесткой воды сталкивались и наши бабушки, а о вреде ее употребления они как минимум догадывались. Поэтому простых и доступных способов умягчения в копилке народной мудрости хватает. Приведем самые популярные из них.


Кипячение (причем не в электрочайнике, а на плите, поскольку добиться нужного эффекта распада солей жесткости можно лишь при длительном нагреве). После этого жидкости нужно дать сутки отстояться, и только потом осторожно ее слить, не взмучивая осадок на дне.

Вымораживание – более щадящий способ, который позволит хотя бы частично сохранить в воде полезные вещества и не испортить вкус. Прозрачную емкость с водой нужно отправить в морозильную камеру и следить за ее замерзанием. Как только 75-80% общего объема превратится в лед, посудину достают и сливают жидкий остаток – в нем сконцентрированы соли, которые и дают высокую жесткость.

Отстаивание. Вам потребуется просто налить воду в любую емкость и убрать подальше от солнечных лучей на 3-6 дней. После этого нужно осторожно слить верхние слои, не потревожив осадок. Для питья такая вода не подойдет, но для использования в быту – вполне.

Добавление кремния или шунгита – минералов, буквально впитывающих в себя соли жесткости. Наши прадеды обкладывали кремниевой пластушкой колодцы для смягчения хранящейся в них воды. Нам же доступен более простой способ: нужно лишь опустить стерильные камни кремния или шунгита в емкость с питьевой водой. Природные абсорбенты впитают в себя соли и через 2-3 дня, хотя многие рекомендуют увеличивать этот срок до недели.

Омыление – один из способов подготовки воды для стирки. Нужно будет натереть 15-20 г хозяйственного или туалетного мыла и развести его в 0,5 л воды до полного растворения и появления пены. Этого количества хватит на ведро жидкости, после чего нужно все отстоять хотя бы ночь – мыло вступит в реакцию с солями и отправит их в осадок. Утром раствор аккуратно переливают в другую емкость и добавляют в него борную кислоту (2-3 ст. л).


Современные методы

Для нас, современных людей, есть и более простые способы, как смягчить жесткую воду. Для этого достаточно купить и врезать в систему подачи фильтры умягчения с ионообменными смолами. Они представляют собой сдвоенные резервуары и работают по такому принципу:

  1. Жесткая вода попадает в отсек со смолой, которая «извлекает» из нее ионы кальция, магния и других щелочноземельных элементов.
  2. Обедненная жидкость перетекает во второй резервуар с обычной поваренной солью, где обогащается ионами натрия – куда более полезными для организма.
  3. Остатки с «вредными» элементами удаляются вместе со стоками.

На выходе получаем безопасную и вкусную умягченную воду нормализованной жесткости. Ее можно использовать как для бытовых нужд, так и для питья или приготовления пищи.

В разных странах действуют свои нормы жесткости. У нас максимальные показатели для питьевой воды установлены на уровне 7 мг-экв/л, для технической – не более 9 мг-экв/л.


Эффект умягчения получают и после прогонки воды через систему обратного осмоса. Она действует совершенно иначе: продавливает жидкость сквозь специальную мембрану с очень мелкими порами (размером 0,0001 микрона) и задерживает примеси на молекулярном уровне. Таким образом, вода освобождается не только от солей, но и от бактерий и прочих посторонних элементов, превращаясь практически в дистиллят.

Увы, постоянное употребление ее в пищу приносит больше вреда, чем пользы. Поэтому после очистки и умягчения такую воду желательно пропускать через систему минерализаторов, которые обогатят ее безопасными веществами и восстановят оптимальную жесткость. Впрочем, для бытовых нужд она вполне пригодна.

Также для защиты техники от жесткой воды, используют различные добавки:

  • Пищевую, кальцинированную соду;
  • Лимонную кислоту;
  • Уксус;
  • Любой смягчитель воды на основе полифосфатов (Calgon, Эонит, Sodasan и пр.).

Федеральное государственное образовательное учреждение высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический Институт

Реферат

Методы осветления и умягчения воды.

Использование ингибитора ИОМС.

Руководитель ________________ Яковенко А.А

Студент ТЭ 06 - 03 ________________ Минаева Д.С

Красноярск 2009

Методы осветление воды.

Под осветлением воды понимают выделение из нее взвешенных веществ при непрерывном движении воды через специальные сооружения (отстойники, осветлители) с малыми скоростями. При малых скоростях движения воды содержащиеся в ней взвешенные вещества, удельный вес которых больше удельного веса воды, под действием силы тяжести осаждаются, образуя в отстойнике осадок.

Технологические схемы обработки воды определяются в каждом конкретном случае в зависимости от предъявляемых требований и включают следующие этапы работы:

    технологические исследования и предварительные лабораторные испытания применяемых реагентов;

    подбор и расчет оборудования для дозирования и смешивания реагентов;

    выбор оборудования для тонкослойного осветления и уплотнения взвеси;

    выбор и расчет скорых фильтров с зернистой загрузкой, как напорного, так и открытого типа;

    выбор технологии и оборудования для обезвоживания шлама с последующей утилизацией;

    выбор оборудования по обеззараживанию путем дозирования раствора хлорреагента (гипохлорит натрия) и контролю качества обработанной воды.

В зависимости от направления движения воды отстойники разделяют на горизонтальные, вертикальные и радиальные.

Горизонтальный отстойник (рис. 1) представляет собой резервуар прямоугольного сечения, продольная (более длинная) ось которого направлена по движению воды. Осветляемая вода по трубе 1 направляется в распределительный желоб 2, имеющий ряд отверстий, служащих для более равномерного распределения потока воды по сечению отстойника. Скорость движения воды в этих отверстиях не должна превышать 0,4 м/сек. Осветленная вода поступает в другой желоб 3 и из него по трубе 4 отводится на фильтры. Осевшие частицы (шлам) скапливаются на дне, которое должно иметь уклон, обратный движению воды.

Время отстаивания для горизонтальных отстойников принимают обычно для коагулированной смеси не более 4 ч. Горизонтальные отстойники для осветления больших количеств воды могут разделяться по высоте на несколько параллельно включенных отделений (этажей). Преимущества этажных отстойников (предложение проф. П. И. Пискунова) - малая площадь застройки и меньший расход бетона. Такой отстойник построен на одной из крупнейших очистных станций Советского Союза.

Рис. 1. Схема горизонтального отстойника: 1 - лоток; 2 - приемная камера; 3 - приемный желоб; 4 - на фильтр; 5 - для удаления осадка

Рис. 2. Схема вертикального отстойника 1 - центральная труба; 2-лоток; 3- отводящая труба; 4 - трубопровод для удаления осадка

Вертикальные отстойники (рис. 2) представляют собой круглый в плане, иногда квадратный, резервуар с коническим днищем и центральной трубой, в которую подается осветляемая вода из камеры хлопье образования.

По выходе из центральной трубы в отстойник вода движется вверх с малой скоростью и сливается уже осветленной через борт концентрически расположенного желоба, откуда отводится на фильтр. Выпадающий на дно отстойника осадок периодически удаляется.

Скорость протекания воды в центральной трубе принимается от 30 до 75 мм/сек. Время отстаивания воды в отстойнике Т = 2 ч. Скорость восходящего движения воды составляет 0,5-0,6 мм/сек.

Диаметр отстойника не должен превышать 12 м, а отношение диаметра к высоте отстойника обычно принимают не более 1,5.

Радиальные отстойники представляют собой круглые резервуары с малоконическим дном. Вода поступает в центральную трубу и из нее направляется в радиальном направлении к сборному лотку по периферии отстойника. Отстойники имеют небольшую глубину, осадок удаляют механизированным способом без нарушения работы отстойника. Радиальные отстойники сооружают диаметром от 10 л* и более при глубине от 1,5-2,5 ж (у стенки отстойника) до З-5 м (в центре).

Выбор типа отстойника зависит от суточной производительности станции, общей ее компоновки, рельефа местности, характера грунтов и т. д. Вертикальные отстойники рекомендуется применять при суточной производительности до 3000 м3. Горизонтальные Отстойники применяют при производительности станции более 30 000 м3/сут как в случае коагулирования воды, так и без него.

Радиальные отстойники целесообразны при больших расходах воды (более 40 000 м3/сут). Преимуществом этих отстойников по сравнению с прямоугольными горизонтальными является механизированное удаление осадка без прекращения работы отстойника. Их применяют при большой мутности речной воды (с коагулированием и без него) в основном для осветления производственной воды.

Осветлители со взвешенным осадком. Процесс осветления протекает значительно интенсивнее, если осветляемая вода после коагулирования пропускается через массу ранее образованного осадка, поддерживаемого во взвешенном состоянии током

Рис. 3. Осветлители: а - первоначальной конструкции; б - коридорного типа: 1 - распределительные трубы; 2 - желоба с затопленными отверстиями; 3 - рабочая часть осветлителя; 4- защитная зона; 5 - лоток отвода; 6 - труба для подсоса осадка; 7 - осадкоприемные окна; 8-уплотнитель осадка; 9 - трубы для сброса осадка) 10 - труба для отвода осветленной воды

Такие осветлители дают более высокий эффект осветления воды, чем в обычных отстойниках, что объясняется более быстрым укрупнением и задержанием взвеси при прохождении коагулированной воды через взвешенный осадок.

Применение осветлителя со взвешенным остатком дает возможность по сравнению с обычным отстойником снизить расход коагулянта, уменьшить размеры сооружений и получить более высокий эффект осветления воды.

Осветлитель первоначальной конструкции представляет собой цилиндрический резервуар с шламоуплотнителем в центральной его части (рис. 3, а). Здесь вода с реагентом поступает в воздухоотделитель, затем проходит вниз в дырчатые распределительные трубы 1, а далее- в отверстия дырчатого дна 2.

Вода, проходя через слой взвешенного осадка 3, выходит в зону осветления 4 и переливается в отводные желоба. В шламонакопитель 5 поступает излишек взвешенного осадка, откуда его периодически удаляют в канализацию.

Осветлитель коридорного типа (см. рис. 3, б) представляет собой прямоугольный резервуар. Коагулированная вода поступает в осветлитель по трубе 1 и через дырчатые трубы 2 распределяется в нижней (рабочей) части 3 осветлителя. Скорость движения воды в рабочей части должна быть такой, чтобы хлопья коагулянта находились во взвешенном состоянии. Этот слой способствует задержанию взвешенных частиц. Степень осветления воды при этом значительно выше, чем в обычном отстойнике.

Над рабочей частью находится защитная зона 4, где взвешенного слоя нет. Осветленная вода отводится лотком 5 и трубами 10 для последующей обработки. Избыточное количество осадка посредством отсоса в трубу 6 отводится через окна 7 в осадкоуплотнитель 8, где осадок уплотняется и периодически сбрасывается в канализацию по трубам 9.

Восходящую скорость потока в рабочей части осветлителя принимают равной 1-1,2 мм/сек.

Методы умягчения воды.

Устранение из воды солей жесткости, т. е. умягчение ее, необходимо производить для питания котельных установок, причем жесткость воды для котлов среднего и низкого давления должна быть не более 0,3 мг.экв/л. Умягчать воду требуется также для таких производств, как текстильное, бумажное, химическое, где вода должна иметь жесткость не более 0,7-1,0 мг.экв/л. Умягчение воды для хозяйственно-питьевых целей также целесообразно, особенно в случае, если она превышает 7 мг.экв/л.

Применяют следующие основные методы умягчения воды:

1) реагентный метод.- путем введения реагентов, способствующих образованию малорастворимых соединений кальция и магния и выпадению их в осадок;

2) катионитовый метод, при котором умягчаемая вода фильтруется через вещества, обладающие способностью обменивать содержащиеся в них катионы (натрия или водорода) на катионы кальция и магния, растворенных в воде солей. В результате обмена Задерживаются ионы кальция и магния и образуются натриевые соли, не придающие воде жесткость;

3) термический метод, заключающийся в нагревании воды до температуры выше 100°, при этом почти полностью удаляются соли карбонатной жесткости.

Часто методы умягчения применяют комбинированно. Например, часть солей жесткости удаляют реагентным способом, а оставшуюся часть - с помощью катионного обмена.

Из реагентных методов содово-известковый способ умягчения является наиболее распространенным. Сущность его сводится к получению вместо растворенных в воде солей Са Mg нерастворимых солей СаС0 3 и Mg(OH) 2 , выпадающих в осадок.

Оба реагента - соду Na 2 C0 3 и известь Са(ОН) 2 -вводят в умягчаемую воду одновременно или поочередно.

Соли карбонатной, временной жесткости удаляют известью, не карбонатной, постоянной жесткости - содой. Химические реакции при удалении карбонатной жесткости протекают следующим образом:

Са (НС0 3) 2 + Са (ОН) 2 = 2 СаС0 3 + 2Н 2 0.

При этом карбонат кальция СаС03 выпадает в осадок. При удалении бикарбоната магния Mg(HC0 3) 2 реакция идет так:

Mg (НСОа)2 + 2Са (ОН) 2 = Mg (ОН) 2 + 2СаС0 3 + 2Н 2 0.

Гидрат окиси магния Mg(OH) 2 коагулирует и выпадает в осадок. Для устранения некарбонатной жесткости в умягчаемую воду вводят Na 2 C0 3 . Химические реакции при удалении некарбонатной жесткости следующие:

Na 2 C0 8 + CaS0 4 = CaCO 8 +Na 2 S0 4 ;

Na 2 CO 3 + CaCl 2 = CaC0 3 + 2NaCl.

В результате реакции получается углекислый кальций, который выпадает в осадок.

Для глубокого умягчения применяют такие вспомогательные мероприятия, как подогревание обрабатываемой воды примерно до 90, при этом остаточная жесткость может быть доведена до 0,2- 0,4 мг.экв/л.

Без подогрева обработка воды проводится большими избыточными дозами извести с последующим удалением этих избытков путем продувки воды углекислотой. Последний процесс называется рекарбонизацией.

На рис. 4 представлена схема реагентной водоумягчительной установки, в состав которой входят устройство для приготовления и дозирования растворов реагентов, смесители, камеры реакции, осветлители, фильтры.

Для умягчения равномерно подаваемой воды, поступающей непрерывно, применяют те же дозаторы растворов соды и извести, что и при коагулировании. Если же расход умягчаемой воды имеет колебания, применяют так называемые пропорциональные дозаторы.

Рис. 4. Схема реагентного умягчения воды:1 -камера реакций (вихревой реактор); 2 - осветлитель; 3 - кварцевый фильтр; 4 -смеситель; 5, 6 и 7 - дозаторы растворов реагентов; 8, 9 и 10 - баки для растворения коагулянтов и соды для приготовления известкового молока; 11 - бак; 12 - насос; 13 - воздухоотделитель.

Содово-известковый способ пригоден для умягчения воды с любым соотношением карбонатной и некарбонатной жесткости.

Недостатки содово-известкового способа умягчения заключаются в следующем: 1) вода не умягчается полностью; 2) установки для умягчения громоздки; 3) необходима тщательная дозировка соды и извести, чего трудно достичь из-за непостоянства состава умягчаемой воды и реагентов.

Катионитовый способ умягчения основан на способности веществ, называемых катеонитами, обменивать содержащиеся в них катионы натрия Na+ или водорода Н+ на катионы кальция или магния, растворенных в воде. В соответствии с этим различают натрий-катионитовый и водород-натрий: катионитовый методы умягчения воды.

При помощи катионитов вода умягчается на установке, состоящей из нескольких металлических напорных резервуаров, загруженных катионитом (рис. 5).

Необработанная вода поступает в фильтр по трубам А, Б и В; выпуск умягченной воды происходит по трубе Г При работе фильтра задвижки 2 и 5 открыты, а остальные {1, 3, 4 и 6) закрыты. Перед регенерацией фильтр промывают.

Для промывки фильтра вода из бака Д подается по трубе Е и проходит по дренам снизу вверх. Продолжительность промывки 20-30 мин, интенсивность 4-6 л/сек на 1 м2. Промывная вода с фильтров отводится по трубам В, Б, Ж, причем задвижки 4 и 3 открыты, а остальные закрыты.

Регенерирующий раствор катионита при регенерации подается по трубе В, проходит фильтр сверху вниз и сбрасывается по трубе. В этом случае задвижки 1 и 6 открыты, остальные (2-5) закрыты; продолжительность регенерации около 30-60 мин, а отмывки от регенерирующего раствора 40-60 мин.

Рис. 5. Схема катионитовой водоумягчительной установки

Преимущества катионитового способа заключаются в следующем: 1) вода умягчается почти полностью; 2) дозировать нужно только раствор поваренной соли или серной кислоты; 3) фильтры изготовляют заводским способом. К числу недостатков этого способа следует отнести необходимость предварительного осветления воды, так как коллоидные и органические вещества обволакивают зерна катионитов и уменьшают их обменную способность.

Реагенты, применяемые при обработке воды, вводят, в воду в следующих местах:

а) хлор (при предварительном хлорировании) - во всасывающие трубопроводы насосной станции первого подъема или в водоводы, подающие воду на станцию очистки;

б) коагулянт - в трубопровод перед смесителем или в смеситель;

в) известь для подщелачивания при коагулировании - одновременно с коагулянтом;

г) активированный уголь для удаления запахов и привкусов в воде до 5 мг/л - перед фильтрами. При больших дозах уголь следует вводить на насосный станции первого подъема или одновременно с коагулянтом в смеситель водоочистной станции, но не ранее чем через 10 мин после введения хлора;

д) хлор и аммиак для обеззараживания воды вводят до очистных сооружений и в фильтрованную воду. При наличии в воде фенолов аммиак следует вводить как при предварительном, так и при окончательном хлорировании.

Раствор коагулянта приготовляют в растворных баках; откуда его надлежит выпускать или перекачивать в расходные баки. Для подачи в воду заданного количества раствора коагулянта следует предусматривать установку дозаторов.

При использовании автоматических дозаторов, основанных на принципе изменения электропроводности воды в зависимости от примесей, известь для подщелачивания следует вводить после отбора коагулированной воды, идущей к дозатору.

К специальным видам очистки и обработки воды относятся: опреснение, обессоливание, обезжелезивание, удаление из воды растворенных газов и стабилизация.

Механизм действия ингибиторов ИОМС.

При нагреве воды в процессе работы системы отопления происходит термический распад присутствующих в ней гидрокарбонат-ионов с образованием карбонат-ионов. Карбонат-ионы, взаимодействуя с присутствующими в избытке ионами кальция, образуют зародыши кристаллов карбоната кальция. На поверхности зародышей осаждаются все новые карбонат-ионы и ионы кальция, вследствие чего образуются кристаллы карбоната кальция, в котором часто присутствует карбонат магния в виде твердого раствора замещения. Осаждаясь на стенках теплотехнического оборудования, эти кристаллы срастаются, образуя накипь (рис. 6, а).

Основным компонентом, обеспечивающим противонакипную активность всех рассматриваемых ингибиторов, являются органофосфонаты - соли органических фосфоновых кислот. При введении органофосфонатов в воду, содержащую ионы кальция, магния и других металлов они образуют весьма прочные химические соединения - комплексы. (Во многие современные ингибиторы органофосфонаты входят уже в виде комплексов с переходными металлами, главным образом с цинком.) Так как в одном литре природной или технической воды содержится 1020–1021 ионов кальция и магния, а органофосфонаты вводят в количестве всего лишь 1018–1019 молекул на литр воды, все молекулы органофосфонатов образуют комплексы с ионами металлов, а комплексоны как таковые в воде не присутствуют. Комплексы органофосфонатов адсорбируются (осаждаются) на поверхности зародышей кристаллов карбоната кальция, препятствуя дальнейшей кристаллизации карбоната кальция. Поэтому при введении в воду 1–10 г/м3 органофосфонатов накипь не образуется даже при нагревании очень жесткой воды (рис. 6, б).

Комплексы органофосфонатов способны адсорбироваться не только на поверхности зародышей кристаллов, но и на металлических поверхностях. Образующаяся тонкая пленка затрудняет доступ кислорода к поверхности металла, вследствие чего скорость коррозии металла снижается. Однако наиболее эффективную защиту металла от коррозии обеспечивают ингибиторы на основе комплексов органических фосфоновых кислот с цинком и некоторыми другими металлами, которые были разработаны и внедрены в практику профессором Ю.И. Кузнецовым. В приповерхностном слое металла эти соединения способны распадаться с образованием нерастворимых соединений гидроксида цинка, а также комплексов сложной структуры, в которых участвует много атомов цинка и железа. В результате этого образуется тонкая, плотная, прочно сцепленная с металлом пленка, защищающая металл от коррозии. Степень защиты металла от коррозии при использовании таких ингибиторов может достигать 98%.

Современные препараты на основе органофосфонатов не только ингибируют солеотложения и коррозию, но и постепенно разрушают застарелые отложения накипи и продуктов коррозии. Это объясняется образованием в порах накипи поверхностных адсорбционных слоев органофосфонатов, структура и свойства (например, коэффициент температурного расширения) которых отличаются от структуры кристаллов накипи. Возникающие при эксплуатации системы отопления колебания и градиенты температуры приводят к расклиниванию кристаллических сростков накипи. В результате накипь разрушается, превращаясь в тонкую взвесь, легко удаляемую из системы. Поэтому при введении препаратов, содержащих органофосфонаты, в системы отопления с большим количеством застарелых отложений накипи и продуктов коррозии, необходимо регулярно спускать отстой из фильтров и грязевиков, установленных в нижних точках системы. Спуск отстоя следует производить, в зависимости от количества отложений, 1–2 раза в сутки, из расчета подпитки системы чистой, обработанной ингибитором, водой в количестве 0,25–1% водного объема системы в час. Необходимо отметить, что при повышении концентрации ингибитора свыше 10–20 г/м3 накипь разрушается с образованием весьма грубых взвесей, способных забить узкие места системы отопления. Поэтому передозировка ингибитора в этом случае грозит засорением системы. Наиболее эффективная и безопасная очистка систем отопления от застарелых отложений накипи и продуктов коррозии достигается при использовании препаратов, содержащих поверхностно-активные вещества, например, композиции «ККФ».

а) б)

Рис. 6. Разрез внутриквартального 89 мм трубопровода горячего водоснабжения:

а - по истечении двух лет работы на воде жeсткостью 8–12 мг-экв/дм3;

б - через шесть месяцев после начала обработки воды ингибитором ИОМС-1.

Разбирать проблемы излишней жесткости современной воды невозможно без детального изучения многообразия способов умягчения воды . Обилие фильтров на полках магазинов и рынков заставляет задуматься над тем, что выбор прибора для квартиры не так прост. И чтобы выбрать нужный вариант умягчителя нужно ознакомиться хотя бы с разными видами способов умягчения воды. Не зная основ, невозможно разбираться в теме.

Хотя о накипи у нас знают достаточно много, до сих пор существует слишком много предубеждений в отношении фильтрующих приборов, а также мифов о бесполезности , по крайне мере для бытовых условий. Излишняя жесткость воды приводит к большому количеству нежелательных явлений. Цена образования накипи и плохой растворимости жестковатой некачественной водой любых моющих средств слишком дорога, чтобы сегодня пренебрегать вопросами умягчения воды.

У нас почему-то считается, что излишняя жесткость в воде это миф, и что использование фильтров, это выкачка денег из доверчивых граждан. При этом все прекрасно видели и знают, что такое накипь и насколько трудно бороться с ней, как непросто ее удалять, постоянно из месяца в месяц. Если у вас есть сомнения в степени жесткости вашей воды, вы всегда можете провести химический анализ воды. Он всегда поможет вам не только определить, на сколько вода у вас чистая, и пригодная в пищу. На основе ее результатов вы сможете составить правильную, то есть грамотную .

О том, что вы пользуетесь некачественной водой, вы узнаете по многим признаком, столь нам всем хорошо знакомым. Излишняя жесткость проявит себя даже при варке. Такая вода заставляет мясо становится более жестким. Овощи при варке в такой воде разваливаются. И извечная кромка осадка солей жесткости. Если у вас уже есть такие чайники или кастрюли с извечной твердой кромкой внутри на поверхностях, то сто процентов жесткость в вашей воде давно превысила допустимые пределы. О наличии подобной воды в квартире вы узнаете не только по известковому налету внутри чайника, оставит свой след вода и даже при мытье посуды в посудомоечной машине. Казалось бы, бокалы и тарелки после мытья в такой машинке должны выходить скрипящими и идеально чистыми, но не в случае с жестковатой водой. Об использовании подобной воды можно будет узнать по предательским белым разводам на бокалах, по едва заметному белому налету на тарелках.

Сказывается жесткость и на качестве приготовленных блюд, и чая с кофе. У настоящего натурального кофе, заваренного на хорошей воде совсем другой вкус, и если вы настоящий кофеман, то вопрос создания системы очистки от жесткости вас ни разу не смутит. Стоит только попробовать хороший кофе на правильной воде.

О присутствии в воде излишков солей кальция с магнием скажет и плохо выстиранная одежда. Образование накипи – это далеко не все к чему приводит работа с подобной водой. Есть у нее еще такая особенность – как плохая растворимость, что порошка, что мыла с моющим средством для посуды. Работая с жестковатой водой, сэкономить никак не удастся. Вот эта особенность приводит к быстрому износу тканей, они начинают трещать и рваться буквально на глазах. И стоит установить перед стиральной машинкой один электромагнитный умягчитель воды АкваЩИт и проблема с повышенной жесткостью воды будет решена. Но многие считают, что прибор на магнитах не может чистить воду. Пока они же на собственном примере не убеждаются, как рационально и экономно работают способы умягчения воды.

И еще один момент - использование некачественной воды для личного употребления, в конце концов, негативно отразиться на нашем здоровье. Нельзя безнаказанно пить такую воду. И ваш организм вам ответит различными хроническими заболеваниями, ранним старением кожи и выпадением волос. Только не все люди могут сразу идентифицировать причину таких болезней в жесткости воды.

Способы умягчения воды подразумевают применение специальных приборов. Их задача устранить из воды излишек двух карбонатных солей. Но есть и более примитивные способы. Их почти не используют сегодня, но когда-то до изобретения , их применяли наши предки в стремлении хоть как-то оградить себя от пагубного влияния кальция и магния.

Таким самым простым способом умягчения воды является применение простого кусочка кремния. Все, что вам нужно для получения мягкой воды, это купить кусочек кремния размером где-то 5х5 см и положить его в бутыль (3-литровый) с водопроводной водой. Через недели вы сможете пить «заряженную» воду и она будет не плесневелая, а мягкая и вкусная, еще и с лекарственными свойствами. Таково влияние кремния на соли кальция и магния. Очень часто в древности облицовывали колодец кремнием, чтобы получить хорошую воду.

На сегодня использование такого кремниевого способа умягчения воды имеет право на жизнь, но очистить с его помощью большое количество воды вряд ли удастся. Поэтому только лечебное, лекарственное применение такого способа.

Для промышленности использование примитивных способов умягчения воды невозможно. В этой ситуации даже применение тщательно продуманной, сделанной на основе химического анализа воды, системы подготовки воды не является полной защитой от образования накипи. Так в теплоэнергетике, все равно придется проводить очистку от известкового налета. И разница состоит в том, что после работы , налет образуется слабенький, а нарастает медленнее и что немаловажно достаточно легко устраняется. Вам даже не придется покупать под него специальные средства. Достаточно обычной промывки водой.

Образование накипи не хуже плохой растворимости в воде вредит бытовым приборам и оборудованию. Проблема еще в том, что если накипь не убирать своевременно, то она начинает нарастать еще быстрее, и еще увереннее. И в след за ней, начинает потихоньку развивать свою деятельность коррозия. Эти два явления неразрывно связаны между собой.

Мало того, что накипь, это не эстетично, некрасиво, мало полезно, но еще и вместе с образованием накипи возрастает угроза потерять технику и дорогостоящее оборудование. Проблемы с накипью особенно в промышленности – это всегда очень большие расходы. Способы умягчения воды. как реагентные, так и безреагентные не могли проявиться просто так. Должны были быть веские причины для их создания. Вот такой причиной и является накипь.

В котельных, особенно паровых, – это целая история. Для того, чтобы паровая котельная работала, качество пара должно быть очень высоким и за время очистки, что вода, что пар проходят огромное количество инстанций, что помогает в дальнейшем паровым электростанциям прослужить гораздо дольше, чем при работе с неочищенной водой.

К чему же приводит плохая вода? Ее разогревают. Соли жесткости в процессе нагрева образуют малорастворимый осадок, то есть накипь, которая при нагреве оседает именно на нагреваемую поверхность. Образованный слой, хоть и образовался в процессе нагрева, но сам по себе тепло не поглощает,и не передает. И мы помним, отложился он как раз на нагревательной поверхности. Со временем плотность слоя накипи достигает таких пределов, что тепло абсолютно перестает передаваться в воду.

За этот отрезок времени расход топлива растет просто невообразимо. Ведь прибор или оборудование пытается работать. А их работа – это греть воду. И чтобы это сделать, нужно попытаться так нагреть накипь, чтобы она хотя бы 10 процентов переданного ей тепла отдала в воду. Для этого приходится расходовать очень много топлива. Это занимает много времени и поверхности при этом терпят бешенные перегрузки. Естественно вечно это продолжаться не может. Металлы, как будь то попадают в мартеновскую печь, если они покрыты слоем накипи.

Вот и получается, что бытовой прибор может отключиться, чтобы не перегореть, а котел на твердом топливе этого сделать не может. Его только может разорвать от подобного эффекта. Здесь и человеческие жертвы возможны. Поэтому к тому, нужно относиться очень правильно и внимательно. Упускать очистки от накипи особенно в промышленности категорически нельзя.

Любая очистка от накипи промышленного оборудования подразумевает под собой обязательную остановку системы. Это простои, это снова недопоставленная вовремя продукция, это расходы. Сделать очистку от накипи при работающем оборудовании не представляется возможным. Только остановка и очистка. И чаще всего разборная очистка, т.к. оборудование, что в котельных, что в металлургии сложное. Добраться до самых отдаленных мест сразу не получится. Вот и считайте, так ли уж дешево удаление. Бригады по монтажу оборудования, бригады по чистке поверхностей, время на простои, оплата за чистящие средства. На удалении накипи сэкономить точно не получится.

И как бы вы не старались, бесследно провести какую либо противонакипную очистку точно не удастся. Всегда будут царапины, механическая очистка снимает не только защитное покрытие, она заденет и основной слой. Ну а любая испорченная поверхность – любимое место отложения накипи. Вот и получается, что устраняя одну накипь, мы стимулируем быстрое образование других слоев. Так, что невыгодно постоянно удалять накипь, совсем не выгодно.

Теперь, что касается способов умягчения жесткой воды. Хоть и может показаться на первый взгляд, что приборов для умягчения много, и, тем не менее, способов умягчения жесткой воды не так уж много, хотя выбор какой-никакой есть. Способы можно смело поделить на химические и физические. Химическая очистка воды подразумевает использование разнообразных реагентов, в процессе работы которых соли жесткости становятся малорастворимыми, выпадают в осадок и легко выводятся из систем, где используют воду. Давайте подробнее узнаем про эти способы умягчения жесткой воды. Их виды и преимущества.

Физические способы умягчения воды

Группа же физических способов умягчения воды работает без применения каких-либо химикатов. Эта группа идеальна для очистки водопроводной воды, то есть той воды, которая в том числе идет для личного использования – пить и есть. Там вода должна быть мягкой по умолчанию.

Мембранные способы умягчения воды

Еще можно выделить группу мембранных способов умягчения воды . Сюда входят очень популярный в промышленности обратный осмос. Это метод тонкой очистки с помощью давления. Внутри такого прибора располагается тонкая мембрана, выполненная из дорогостоящих материалов. Вся поверхность такой мембраны испещрена отверстиями. Диаметр таких дырочек не превышает размера молекулы воды. Такая полупроницаемая поверхность дает возможность устранить из воды практически любые примеси, которые имеют размер более молекулы воды.

С таким прибором вы легко сможете получить воду идеальную для той же фармакологии или для производства питьевой воды. Дистиллят получают с помощью нанофильтрации. Это еще один вид обратного осмоса, только низконапорного.

Главный козырь этого способа умягчения воды – высочайшая степень очистки, возможность получить воду с заданными признаками, только сменив мембрану. Но есть у обратного осмоса, как и у других мембранных способов очистки воды, свои минусы. Когда прибор работает, очень много воды находится внутри прибора. Так происходит по нескольким причинам. Во-первых, скорость просачивания через мембрану далеко не такая высокая, плюс прибор включает в себя не один фильтр. В установку могут входить обратный осмос, механический фильтр и кондиционер. Последний в обязательном порядке ставят на установках для производства питьевой воды. Такой способ умягчения воды очень хорошо устраняет любые примеси вплоть до бактерий с вирусами, что для питьевой воды немаловажно. Потом без кондиционирования такая вода становится непригодной для личного использования. Ну и потом использование обратного осмоса значительно ограничивает стоимость установки. Далеко не все в быту пока могут дозволить себе, использовать такую установку.

Химический способ умягчения воды

Химический способ умягчения воды как мы уже говорили, подразумевает использование химических веществ. Сюда относят и натрий хлор, и фосфаты. Для такого умягчения чаще всего используют дозаторы, которые монтируют на трубу водопровода. Такие способы плохи тем, что химикаты могут образовывать другие примеси в воде и получается все тот же осадок. Только он еще и очень плохо устраняется. При этом к химическому способу умягчения воды относится и химическое восстановление фильтрующих частей приборов. Поэтому самым известной такого способа является ионный обмен. Здесь картридж восстанавливают с помощью очень соленого раствора. После восстановления картридж сможет снова работать.

Ионообменный способ умягчения воды

Ионный обмен , как способ умягчения воды один из самых простых. Каких-то особых конструкций он не требует. Основа, как понятно из названия ионный обмен. Работает внутри такого прибора гелеобразная смола. В ней содержится большое количество натрия, который очень быстро при контакте с жестковатой водой сменяется на кристаллы солей кальция и магния. Вот и получается простой и быстрый процесс очистки, без каких либо усилий. Спустя определенный период времени, весь натрий из картриджа вымывается.

В промышленности картридж восстанавливают, промывая раствором, а вот в быту просто меняют, т.к. питьевая вода не терпит реагентов. Скорость очистки отличная, только вот расходы на картриджи или их восстановление довольно большие. Да и в быту фильтр-кувшин в состоянии от силы очистить вам пару тройку литров. Для полной защиты от накипи и жесткости придется в обязательном порядке использовать еще один фильтр.

Безреагентный способ умягчения воды

Ярким представителем безреагентного способа умягчения воды является магнитное силовое воздействие. Основу таких приборов составляют мощные магниты. Обязательно постоянные. Такой прибор еще только монтируешь, а магнитное поле уже работает. При этом прибор легко установить, легко снять. Обслуживания он не требует, не нужны ему картриджи и очистки. Он работает. Магнитное силовое поле, таким образом, пронизывает воду, что находящиеся в ней соли жесткости теряют прежнюю форму. Теперь это острые иголочки. Они натирают поверхности со старой накипью, очень качественно при этом ее удаляя. Но магнитное воздействие очень придирчиво к воде. Ему нужна вода комнатной температуры, текущая в одном направлении и с определенной скоростью. Убрать все минусы магнитного способа умягчения воды получилось только путем добавления электрического тока. Так и изобрели электромагнитную установку.

Ознакомившись со всеми способами умягчения воды , нужно сделать вывод, что сегодня отказаться от умягчения означает рисковать здоровьем своей семьи и полное отсутствие дальновидности. Поэтому все больше народу, сегодня выбирает именно такой путь .