Все виды неравенств. Квадратные неравенства




Многие считают, что показательные неравенства — это что-то такое сложное и непостижимое. И что научиться их решать — чуть ли не великое искусство, постичь которое способны лишь Избранные...

Полная брехня! Показательные неравенства — это просто. И решаются они всегда просто. Ну, почти всегда.:)

Сегодня мы разберём эту тему вдоль и поперёк. Этот урок будет очень полезен тем, кто только начинает разбираться в данном разделе школьной математики. Начнём с простых задач и будем двигаться к более сложным вопросам. Никакой жести сегодня не будет, но того, что вы сейчас прочитаете, будет достаточно, чтобы решить большинство неравенств на всяких контрольных и самостоятельных работах. И на этом вашем ЕГЭ тоже.

Как всегда, начнём с определения. Показательное неравенство — это любое неравенство, содержащее в себе показательную функцию. Другими словами, его всегда можно свести к неравенству вида

\[{{a}^{x}} \gt b\]

Где в роли $b$ может быть обычное число, а может быть и что-нибудь пожёстче. Примеры? Да пожалуйста:

\[\begin{align} & {{2}^{x}} \gt 4;\quad {{2}^{x-1}}\le \frac{1}{\sqrt{2}};\quad {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,1}^{1-x}} \lt 0,01;\quad {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}. \\\end{align}\]

Думаю, смысл понятен: есть показательная функция ${{a}^{x}}$, её с чем-то сравнивают, а затем просят найти $x$. В особо клинических случаях вместо переменной $x$ могут засунуть какую-нибудь функцию $f\left(x \right)$ и тем самым чуть-чуть усложнить неравенство.:)

Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:

\[{{9}^{x}}+8 \gt {{3}^{x+2}}\]

Или даже вот:

В целом, сложность таких неравенств может быть самой разной, но в итоге они всё равно сводятся к простой конструкции ${{a}^{x}} \gt b$. А уж с такой конструкцией мы как-нибудь разберёмся (в особо клинических случаях, когда ничего не приходит в голову, нам помогут логарифмы). Поэтому сейчас мы научимя решать такие простые конструкции.

Решение простейших показательных неравенств

Рассмотрим что-нибудь совсем простое. Например, вот это:

\[{{2}^{x}} \gt 4\]

Очевидно, что число справа можно переписать в виде степени двойки: $4={{2}^{2}}$. Таким образом, исходное неравенство перепишется в очень удобной форме:

\[{{2}^{x}} \gt {{2}^{2}}\]

И вот уже руки чешутся «зачеркнуть» двойки, стоящие в основаниях степеней, дабы получить ответ $x \gt 2$. Но перед тем как что там зачёркивать, давайте вспомним степени двойки:

\[{{2}^{1}}=2;\quad {{2}^{2}}=4;\quad {{2}^{3}}=8;\quad {{2}^{4}}=16;...\]

Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:

\[{{\left(\frac{1}{2} \right)}^{1}}=\frac{1}{2};\quad {{\left(\frac{1}{2} \right)}^{2}}=\frac{1}{4};\quad {{\left(\frac{1}{2} \right)}^{3}}=\frac{1}{8};...\]

Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:

  • Если основание степени $a \gt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ тоже будет расти;
  • И наоборот, если $0 \lt a \lt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ будет убывать.

Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:

Если $a \gt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \gt n$. Если $0 \lt a \lt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \lt n$.

Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.

Обратите внимание: мы не рассмотрели варианты $a=1$ и $a\le 0$. Потому что в этих случаях возникает неопределённость. Допустим, как решить неравенство вида ${{1}^{x}} \gt 3$? Единица в любой степени снова даст единицу — мы никогда не получим тройку или больше. Т.е. решений нет.

С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:

\[{{\left(-2 \right)}^{x}} \gt 4\]

На первый взгляд, всё просто:

Правильно? А вот и нет! Достаточно подставить вместо $x$ парочку чётных и парочку нечётных чисел, чтобы убедиться что решение неверно. Взгляните:

\[\begin{align} & x=4\Rightarrow {{\left(-2 \right)}^{4}}=16 \gt 4; \\ & x=5\Rightarrow {{\left(-2 \right)}^{5}}=-32 \lt 4; \\ & x=6\Rightarrow {{\left(-2 \right)}^{6}}=64 \gt 4; \\ & x=7\Rightarrow {{\left(-2 \right)}^{7}}=-128 \lt 4. \\\end{align}\]

Как видите, знаки чередуются. А ведь есть ещё дробные степени и прочая жесть. Как, например, прикажете считать ${{\left(-2 \right)}^{\sqrt{7}}}$ (минус двойка в степени корень из семи)? Да никак!

Поэтому для определённости полагают, что во всех показательных неравенствах (и уравнениях, кстати, тоже) $1\ne a \gt 0$. И тогда всё решается очень просто:

\[{{a}^{x}} \gt {{a}^{n}}\Rightarrow \left[ \begin{align} & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\end{align} \right.\]

В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.

Примеры решения

Итак, рассмотрим несколько простых показательных неравенств:

\[\begin{align} & {{2}^{x-1}}\le \frac{1}{\sqrt{2}}; \\ & {{0,1}^{1-x}} \lt 0,01; \\ & {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}. \\\end{align}\]

Первостепенная задача во всех случаях одна и та же: свести неравенств к простейшему виду ${{a}^{x}} \gt {{a}^{n}}$. Именно это мы сейчас и сделаем с каждым неравенством, а заодно повторим свойства степеней и показательной функции. Итак, поехали!

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\]

Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!

Однако вспомним правила работы с дробями и степенями:

\[\begin{align} & \frac{1}{{{a}^{n}}}={{a}^{-n}}; \\ & \sqrt[k]{a}={{a}^{\frac{1}{k}}}. \\\end{align}\]

Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.

Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:

\[\frac{1}{\sqrt{2}}={{\left(\sqrt{2} \right)}^{-1}}={{\left({{2}^{\frac{1}{3}}} \right)}^{-1}}={{2}^{\frac{1}{3}\cdot \left(-1 \right)}}={{2}^{-\frac{1}{3}}}\]

Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:

\[\begin{align} & {{a}^{x}}\cdot {{a}^{y}}={{a}^{x+y}}; \\ & \frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}; \\ & {{\left({{a}^{x}} \right)}^{y}}={{a}^{x\cdot y}}. \\\end{align}\]

Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\Rightarrow {{2}^{x-1}}\le {{2}^{-\frac{1}{3}}}\]

Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:

\[\begin{align} & x-1\le -\frac{1}{3}\Rightarrow x\le 1-\frac{1}{3}=\frac{2}{3}; \\ & x\in \left(-\infty ;\frac{2}{3} \right]. \\\end{align}\]

Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.

Рассмотрим второе неравенство:

\[{{0,1}^{1-x}} \lt 0,01\]

Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:

\[\begin{align} & 0,1=\frac{1}{10};\quad 0,01=\frac{1}{100}={{\left(\frac{1}{10} \right)}^{2}}; \\ & {{0,1}^{1-x}} \lt 0,01\Rightarrow {{\left(\frac{1}{10} \right)}^{1-x}} \lt {{\left(\frac{1}{10} \right)}^{2}}. \\\end{align}\]

Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:

\[\begin{align} & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end{align}\]

Получили окончательный ответ: $x\in \left(-\infty ;-1 \right)$. Обратите внимание: ответом является именно множество, а ни в коем случае не конструкция вида $x \lt -1$. Потому что формально такая конструкция — это вовсе не множество, а неравенство относительно переменной $x$. Да, оно очень простое, но это не ответ!

Важное замечание . Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:

\[\frac{1}{10}={{10}^{-1}}\Rightarrow {{\left({{10}^{-1}} \right)}^{1-x}} \lt {{\left({{10}^{-1}} \right)}^{2}}\Rightarrow {{10}^{-1\cdot \left(1-x \right)}} \lt {{10}^{-1\cdot 2}}\]

После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end{align}\]

Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)

\[{{2}^{{{x}^{2}}-7x+14}} \lt 16\]

Однако пусть вас это не пугает. Чтобы ни находилось в показателях, технология решения самого неравенства остаётся прежней. Поэтому заметим для начала, что 16 = 2 4 . Перепишем исходное неравенство с учётом этого факта:

\[\begin{align} & {{2}^{{{x}^{2}}-7x+14}} \lt {{2}^{4}}; \\ & {{x}^{2}}-7x+14 \lt 4; \\ & {{x}^{2}}-7x+10 \lt 0. \\\end{align}\]

Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.

Нули функции на числовой прямой

Расставляем знаки функции $f\left(x \right)={{x}^{2}}-7x+10$ — очевидно, её графиком будет парабола ветвями вверх, поэтому по бокам будут «плюсы». Нас интересует та область, где функция меньше нуля, т.е. $x\in \left(2;5 \right)$ — это и есть ответ к исходной задаче.

Наконец, рассмотрим ещё одно неравенство:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\]

Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:

\[\begin{align} & 0,2=\frac{2}{10}=\frac{1}{5}={{5}^{-1}}\Rightarrow \\ & \Rightarrow {{0,2}^{1+{{x}^{2}}}}={{\left({{5}^{-1}} \right)}^{1+{{x}^{2}}}}={{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\end{align}\]

В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:

\[\frac{1}{25}={{\left(\frac{1}{5} \right)}^{2}}={{\left({{5}^{-1}} \right)}^{2}}={{5}^{-1\cdot 2}}={{5}^{-2}}\]

Перепишем исходное неравенство с учётом обоих преобразований:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\Rightarrow {{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\ge {{5}^{-2}}\]

Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:

\[\begin{align} & -1\cdot \left(1+{{x}^{2}} \right)\ge -2; \\ & -1-{{x}^{2}}\ge -2; \\ & -{{x}^{2}}\ge -2+1; \\ & -{{x}^{2}}\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}\le 1. \\\end{align}\]

Вот тут надо быть аккуратнее. Многие ученики любят просто извлечь квадратный корень их обеих частей неравенства и записать что-нибудь в духе $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. Делать этого ни в коем случае нельзя, поскольку корень из точного квадрата — это модуль, а ни в коем случае не исходная переменная:

\[\sqrt{{{x}^{2}}}=\left| x \right|\]

Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:

$\begin{align} & {{x}^{2}}-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & {{x}_{1}}=1;\quad {{x}_{2}}=-1; \\\end{align}$

Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:

Обратите внимание: точки закрашены

Поскольку мы решали нестрогое неравенство, все точки на графике закрашены. Поэтому ответ будет такой: $x\in \left[ -1;1 \right]$ — не интервал, а именно отрезок.

В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:

  • Найти основание, к которому будем приводить все степени;
  • Аккуратно выполнить преобразования, чтобы получилось неравенство вида ${{a}^{x}} \gt {{a}^{n}}$. Разумеется вместо переменных $x$ и $n$ могут стоять гораздо более сложные функции, но смысл от этого не поменяется;
  • Зачеркнуть основания степеней. При этом может поменяться знак неравенства, если основание $a \lt 1$.

По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)

Метод рационализации

Рассмотрим ещё одну партию неравенств:

\[\begin{align} & {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1; \\ & {{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}; \\ & {{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1. \\\end{align}\]

Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?

А как возвести в степень число $2\sqrt{3}-3$? Или $3-2\sqrt{2}$? Составители задач, очевидно, перепили «Боярышника» перед тем, как сесть за работу.:)

На самом деле ничего страшного в этих задачах нет. Напомню: показательной функцией называется выражение вида ${{a}^{x}}$, где основание $a$ — это любое положительное число, за исключением единицы. Число π положительно — это мы и так знаем. Числа $2\sqrt{3}-3$ и $3-2\sqrt{2}$ тоже положительны — в этом легко убедиться, если сравнить их с нулём.

Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:

Всякое показательное неравенство вида ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $\left(x-n \right)\cdot \left(a-1 \right) \gt 0$.

Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:

\[\begin{matrix} {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}} \\ \Downarrow \\ \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\\end{matrix}\]

Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left(\text{ }\!\!\pi\!\!\text{ }-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:

\[\text{ }\!\!\pi\!\!\text{ }\approx 3,14... \gt 3\Rightarrow \text{ }\!\!\pi\!\!\text{ }-1 \gt 3-1=2\]

В общем, точное значение π нас особо-то и не колышет — нам лишь важно понимать, что в любом случае $\text{ }\!\!\pi\!\!\text{ }-1 \gt 2$, т.е. это положительная константа, и мы можем разделить на неё обе части неравенства:

\[\begin{align} & \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\ & x+7-\left({{x}^{2}}-3x+2 \right) \gt 0; \\ & x+7-{{x}^{2}}+3x-2 \gt 0; \\ & -{{x}^{2}}+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end{align}\]

Как видите, в определённый момент пришлось разделить на минус единицу — при этом знак неравенства поменялся. В конце я разложил квадратный трёхчлен по теореме Виета — очевидно, что корни равны ${{x}_{1}}=5$ и ${{x}_{2}}=-1$. Дальше всё решается классическим методом интервалов:

Решаем неравенство методом интервалов

Все точки выколоты, поскольку исходное неравенство строгое. Нас интересует область с отрицательными значениями, поэтому ответ: $x\in \left(-1;5 \right)$. Вот и всё решение.:)

Перейдём к следующей задаче:

\[{{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1\]

Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:

\[\begin{align} & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1={{\left(2\sqrt{3}-3 \right)}^{0}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt {{\left(2\sqrt{3}-3 \right)}^{0}}; \\\end{align}\]

Что ж, выполняем рационализацию:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-3-1 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-4 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0. \\\end{align}\]

Осталось лишь разобраться со знаками. Множитель $2\left(\sqrt{3}-2 \right)$ не содержит переменной $x$ — это просто константа, и нам необходимо выяснить её знак. Для этого заметим следующее:

\[\begin{matrix} \sqrt{3} \lt \sqrt{4}=2 \\ \Downarrow \\ 2\left(\sqrt{3}-2 \right) \lt 2\cdot \left(2-2 \right)=0 \\\end{matrix}\]

Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0; \\ & {{x}^{2}}-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end{align}\]

Теперь всё становится совсем очевидно. Корни квадратного трёхчлена, стоящего справа: ${{x}_{1}}=0$ и ${{x}_{2}}=2$. Отмечаем их на числовой прямой и смотрим знаки функции $f\left(x \right)=x\left(x-2 \right)$:

Случай, когда нас интересуют боковые интервалы

Нас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:

Переходим к следующему примеру:

\[{{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}\]

Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:

\[\begin{matrix} \frac{1}{3}={{3}^{-1}};\quad \frac{1}{9}=\frac{1}{{{3}^{2}}}={{3}^{-2}} \\ \Downarrow \\ {{\left({{3}^{-1}} \right)}^{{{x}^{2}}+2x}} \gt {{\left({{3}^{-2}} \right)}^{16-x}} \\\end{matrix}\]

\[\begin{align} & {{3}^{-1\cdot \left({{x}^{2}}+2x \right)}} \gt {{3}^{-2\cdot \left(16-x \right)}}; \\ & {{3}^{-{{x}^{2}}-2x}} \gt {{3}^{-32+2x}}; \\ & \left(-{{x}^{2}}-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -{{x}^{2}}-2x+32-2x \gt 0; \\ & -{{x}^{2}}-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end{align}\]

Как видите, в процессе преобразований пришлось умножать на отрицательное число, поэтому поменялся знак неравенства. В самом конце я вновь применил теорему Виета для разложения на множители квадратного трёхчлена. В итоге ответ будет следующий: $x\in \left(-8;4 \right)$ — желающие могут убедиться в этом, нарисовав числовую прямую, отметив точки и посчитав знаки. А мы тем временем перейдём к последнему неравенству из нашего «комплекта»:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1\]

Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt {{\left(3-2\sqrt{2} \right)}^{0}}\]

Применяем рационализацию:

\[\begin{align} & \left(3x-{{x}^{2}}-0 \right)\cdot \left(3-2\sqrt{2}-1 \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot \left(2-2\sqrt{2} \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0. \\\end{align}\]

Однако совершенно очевидно, что $1-\sqrt{2} \lt 0$, поскольку $\sqrt{2}\approx 1,4... \gt 1$. Поэтому второй множитель — вновь отрицательная константа, на которую можно разделить обе части неравенства:

\[\begin{matrix} \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0 \\ \Downarrow \\\end{matrix}\]

\[\begin{align} & 3x-{{x}^{2}}-0 \gt 0; \\ & 3x-{{x}^{2}} \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end{align}\]

Переход к другому основанию

Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.

Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:

\[\begin{align} & {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}; \\ & {{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & {{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1; \\ & {{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81. \\\end{align}\]

Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:

\[{{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}\]

Ну, я думают, тут и ежу всё понятно:

Переписываем исходное неравенство, сводя всё к основанию «два»:

\[{{2}^{\frac{x}{2}}} \lt {{2}^{\frac{8}{x}}}\Rightarrow \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0\]

Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.

\[\begin{align} & \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac{{{x}^{2}}-16}{2x} \right)\cdot 1 \lt 0; \\ & \frac{{{x}^{2}}-16}{2x} \lt 0. \\\end{align}\]

Теперь используем стандартный метод интервалов. Нули числителя: $x=\pm 4$. Знаменатель обращается в ноль только при $x=0$. Итого три точки, которые надо отметить на числовой прямой (все точки выколоты, т.к. знак неравенства строгий). Получим:


Более сложный случай: три корня

Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:

Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.

Переходим к следующей задаче:

\[{{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\]

Здесь тоже никаких проблем, поскольку мы уже знаем, что $\frac{1}{3}={{3}^{-1}}$, поэтому всё неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{-1}} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\Rightarrow {{3}^{-\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & \left(-\frac{3}{x}-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac{3}{x}-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac{3}{x}+2+x\le 0; \\ & \frac{{{x}^{2}}+2x+3}{x}\le 0. \\\end{align}\]

Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.

Далее в дело вступает знакомый нам метод интервалов. Нули числителя: а их нет. Потому что дискриминант будет отрицательный. В свою очередь знаменатель обнуляется лишь при $x=0$ — как и в прошлый раз. Ну и понятно, что справа от $x=0$ дробь будет принимать положительные значения, а слева — отрицательные. Поскольку нас интересуют именно отрицательные значения, то окончательный ответ: $x\in \left(-\infty ;0 \right)$.

\[{{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1\]

А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:

\[\begin{align} & 0,16=\frac{16}{100}=\frac{4}{25}\Rightarrow {{\left(0,16 \right)}^{1+2x}}={{\left(\frac{4}{25} \right)}^{1+2x}}; \\ & 6,25=\frac{625}{100}=\frac{25}{4}\Rightarrow {{\left(6,25 \right)}^{x}}={{\left(\frac{25}{4} \right)}^{x}}. \\\end{align}\]

Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:

\[\frac{25}{4}={{\left(\frac{4}{25} \right)}^{-1}}\Rightarrow {{\left(\frac{25}{4} \right)}^{x}}={{\left({{\left(\frac{4}{25} \right)}^{-1}} \right)}^{x}}={{\left(\frac{4}{25} \right)}^{-x}}\]

Таким образом исходное неравенство можно переписать так:

\[\begin{align} & {{\left(\frac{4}{25} \right)}^{1+2x}}\cdot {{\left(\frac{4}{25} \right)}^{-x}}\ge 1; \\ & {{\left(\frac{4}{25} \right)}^{1+2x+\left(-x \right)}}\ge {{\left(\frac{4}{25} \right)}^{0}}; \\ & {{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}. \\\end{align}\]

Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:

\[{{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}\Rightarrow \left(x+1-0 \right)\cdot \left(\frac{4}{25}-1 \right)\ge 0\]

Заметим, что $\frac{4}{25}-1=\frac{4-25}{25} \lt 0$, т.е. второй множитель является отрицательной константой, и при делении на неё знак неравенства поменяется:

\[\begin{align} & x+1-0\le 0\Rightarrow x\le -1; \\ & x\in \left(-\infty ;-1 \right]. \\\end{align}\]

Наконец, последнее неравенство из текущего «комплекта»:

\[{{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81\]

В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:

\[\begin{align} & \frac{27}{\sqrt{3}}=\frac{{{3}^{3}}}{{{3}^{\frac{1}{3}}}}={{3}^{3-\frac{1}{3}}}={{3}^{\frac{8}{3}}}; \\ & 9={{3}^{2}};\quad 81={{3}^{4}}. \\\end{align}\]

С учётом этих фактов исходное неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{\frac{8}{3}}} \right)}^{-x}} \lt {{\left({{3}^{2}} \right)}^{4-2x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x+4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{4-4x}}. \\\end{align}\]

Обратите внимание на 2-ю и 3-ю строчку выкладок: прежде чем что-то делать с неравенством, обязательно приведите его к тому виду, о котором мы говорили с самого начала урока: ${{a}^{x}} \lt {{a}^{n}}$. До тех пор, пока у вас слева или справа есть какие-то левые множители, дополнительные константы и т.д., никакую рационализацию и «зачёркивание» оснований выполнять нельзя ! Бесчисленное множество задач было выполнено неправильно из-за непонимания этого простого факта. Я сам постоянно наблюдаю эту проблему у моих учеников, когда мы только-только приступаем к разбору показательных и логарифмических неравенств.

Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -\frac{8x}{3} \lt 4-4x; \\ & 4x-\frac{8x}{3} \lt 4; \\ & \frac{4x}{3} \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end{align}\]

Вот и всё. Окончательный ответ: $x\in \left(-\infty ;3 \right)$.

Выделение устойчивого выражения и замена переменной

В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.

Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:

\[\begin{align} & {{5}^{x+2}}+{{5}^{x+1}}\ge 6; \\ & {{3}^{x}}+{{3}^{x+2}}\ge 90; \\ & {{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500; \\ & {{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768. \\\end{align}\]

Начнём с самой первой строчки. Выпишем это неравенство отдельно:

\[{{5}^{x+2}}+{{5}^{x+1}}\ge 6\]

Заметим, что ${{5}^{x+2}}={{5}^{x+1+1}}={{5}^{x+1}}\cdot 5$, поэтому правую часть можно переписать:

Заметим, что никаких других показательных функций, кроме ${{5}^{x+1}}$, в неравенстве нет. И вообще, нигде больше не встречается переменная $x$, поэтому введём новую переменную: ${{5}^{x+1}}=t$. Получим следующую конструкцию:

\[\begin{align} & 5t+t\ge 6; \\ & 6t\ge 6; \\ & t\ge 1. \\\end{align}\]

Возвращаемся к исходной переменной ($t={{5}^{x+1}}$), а заодно вспоминаем, что 1=5 0 . Имеем:

\[\begin{align} & {{5}^{x+1}}\ge {{5}^{0}}; \\ & x+1\ge 0; \\ & x\ge -1. \\\end{align}\]

Вот и всё решение! Ответ: $x\in \left[ -1;+\infty \right)$. Переходим ко второму неравенству:

\[{{3}^{x}}+{{3}^{x+2}}\ge 90\]

Здесь всё то же самое. Заметим, что ${{3}^{x+2}}={{3}^{x}}\cdot {{3}^{2}}=9\cdot {{3}^{x}}$. Тогда левую часть можно переписать:

\[\begin{align} & {{3}^{x}}+9\cdot {{3}^{x}}\ge 90;\quad \left| {{3}^{x}}=t \right. \\ & t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow {{3}^{x}}\ge 9\Rightarrow {{3}^{x}}\ge {{3}^{2}}; \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end{align}\]

Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.

Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:

\[{{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500\]

В чём тут проблема? Прежде всего, основания показательных функций, стоящих слева, разные: 5 и 25. Однако 25 = 5 2 , поэтому первое слагаемое можно преобразовать:

\[\begin{align} & {{25}^{x+1,5}}={{\left({{5}^{2}} \right)}^{x+1,5}}={{5}^{2x+3}}; \\ & {{5}^{2x+3}}={{5}^{2x+2+1}}={{5}^{2x+2}}\cdot 5. \\\end{align}\]

Как видите, сначала мы всё привели к одинаковому основанию, а затем заметили, что первое слагаемое легко сводится ко второму — достаточно лишь разложить показатель. Теперь можно смело вводить новую переменную: ${{5}^{2x+2}}=t$, и всё неравенство перепишется так:

\[\begin{align} & 5t-t\ge 2500; \\ & 4t\ge 2500; \\ & t\ge 625={{5}^{4}}; \\ & {{5}^{2x+2}}\ge {{5}^{4}}; \\ & 2x+2\ge 4; \\ & 2x\ge 2; \\ & x\ge 1. \\\end{align}\]

И вновь никаких трудностей! Окончательный ответ: $x\in \left[ 1;+\infty \right)$. Переходим к заключительному неравенству в сегодняшнем уроке:

\[{{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768\]

Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:

\[\begin{align} & 0,5=\frac{1}{2}={{2}^{-1}}\Rightarrow {{\left(0,5 \right)}^{-4x-8}}={{\left({{2}^{-1}} \right)}^{-4x-8}}={{2}^{4x+8}}; \\ & 16={{2}^{4}}\Rightarrow {{16}^{x+1,5}}={{\left({{2}^{4}} \right)}^{x+1,5}}={{2}^{4x+6}}; \\ & {{2}^{4x+8}}-{{2}^{4x+6}} \gt 768. \\\end{align}\]

Отлично, первый шаг мы сделали — всё привели к одному и тому же основанию. Теперь необходимо выделить устойчивое выражение. Заметим, что ${{2}^{4x+8}}={{2}^{4x+6+2}}={{2}^{4x+6}}\cdot 4$. Если ввести новую переменную ${{2}^{4x+6}}=t$, то исходное неравенство можно переписать так:

\[\begin{align} & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256={{2}^{8}}; \\ & {{2}^{4x+6}} \gt {{2}^{8}}; \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac{1}{2}=0,5. \\\end{align}\]

Естественно, может возникнуть вопрос: каким это образом мы обнаружили, что 256 = 2 8 ? К сожалению, тут нужно просто знать степени двойки (а заодно степени тройки и пятёрки). Ну, или делить 256 на 2 (делить можно, поскольку 256 — чётное число) до тех пор, пока не получим результат. Выглядеть это будет примерно так:

\[\begin{align} & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & ={{2}^{8}}.\end{align}\]

То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:

\[\begin{align} & {{5}^{2}}=25; \\ & {{5}^{3}}=125; \\ & {{5}^{4}}=625; \\ & {{5}^{5}}=3125. \\\end{align}\]

Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.

Как решать линейные неравенства? Для начала неравенство надо упростить: раскрыть скобки, привести подобные слагаемые.

Рассмотрим примеры решения линейных неравенств с одной переменной.

Раскрываем скобки . Если перед скобками стоит множитель, умножаем его на каждое слагаемое в скобках. Если перед скобками стоит знак «плюс», знаки в скобках не меняются. Если перед скобками стоит знак «минус», знаки в скобках меняются на противоположные.

Приводим подобные слагаемые.

Получили неравенство вида ax+b≤cx+d. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками (можно было сначала перенести неизвестные в одну сторону, известные в другую, а уже потом привести подобные слагаемые).

Обе части неравенства делим на число, стоящее перед иксом. Так как 8 больше нуля, знак неравенства не меняется:

Title="Rendered by QuickLaTeX.com">

Так как , точку -2 отмечаем на числовой прямой закрашенной. от -2, на минус бесконечность.

Так как неравенство нестрогое и точка закрашенная, в ответ -2 записываем с квадратной скобкой.

Чтобы от десятичных дробей перейти к целым числам, можно обе части неравенства умножить на 10 (это не обязательно. Можно работать с десятичными дробями).

Title="Rendered by QuickLaTeX.com">

При умножении обеих частей на положительное число знак неравенства не меняется. Умножать на 10 надо каждое слагаемое. При умножении произведения на 10 используем сочетательное свойство умножения , то есть умножаем на 10 только один множитель.

Раскрываем скобки:

Приводим подобные слагаемые:

Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:

Обе части неравенства делим на число, стоящее перед иксом. Поскольку -6 — отрицательное число, знак неравенства меняется на противоположный:

Title="Rendered by QuickLaTeX.com">

Сокращаем дробь:

Title="Rendered by QuickLaTeX.com">

Так как неравенство строгое, на числовой прямой -2/3 отмечаем выколотой точкой. Штриховка идёт вправо, на плюс бесконечность:

Неравенство строгое, точка выколотая, поэтому в ответ -2/3 записываем с круглой скобкой:

Title="Rendered by QuickLaTeX.com">

Раскрываем скобки. Если перед произведением двух скобок стоит знак «минус», удобно сначала выполнить умножение, и только потом раскрывать скобки, изменяя знак каждого слагаемого на противоположный:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Приводим подобные слагаемые:

Title="Rendered by QuickLaTeX.com">

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Обе части неравенства делим на число, стоящее перед иксом. Так как -10<0, знак неравенства меняется на противоположный:

Поскольку неравенство строгое, 1,6 отмечаем на числовой прямой выколотой точкой. Штриховка от 1,6 идёт влево, на минус бесконечность:

Так как неравенство строгое и точка выколотая, 1,6 в ответ записываем с круглой скобкой.

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

Понятие математического неравенства возникло в глубокой древности. Это произошло тогда, когда у первобытного человека появилась потребность при счёте и действиях с различными предметами сравнивать их количество и величину. Начиная с античных времён неравенствами пользовались в своих рассуждениях Архимед, Евклид и другие прославленные деятели науки: математики, астрономы, конструкторы и философы.

Но они, как правило, применяли в своих работах словесную терминологию. Впервые современные знаки для обозначения понятий «больше» и «меньше» в том виде, каком их сегодня знает каждый школьник, придумали и применили на практике в Англии. Оказал такую услугу потомкам математик Томас Гарриот. А случилось это около четырёх столетий назад.

Известно множество видов неравенств. Среди них простые, содержащие одну, две и больше переменных, квадратные, дробные, сложные соотношения и даже представленные системой выражений. А понять, как решать неравенства, лучше всего на различных примерах.

Не опоздать на поезд

Для начала представим себе, что житель сельской местности спешит на железнодорожную станцию, которая находится на расстоянии 20 км от его деревни. Чтобы не опоздать на поезд, отходящий в 11 часов, он должен вовремя выйти из дома. В котором часу это необходимо сделать, если скорость его движения составляет 5 км/ч? Решение этой практической задачи сводится к выполнению условий выражения: 5 (11 - Х) ≥ 20, где Х - время отправления.

Это понятно, ведь расстояние, которое необходимо преодолеть селянину до станции равно скорости движения, умноженной на количество часов в пути. Прийти раньше человек может, но вот опоздать ему никак нельзя. Зная, как решать неравенства, и применив свои умения на практике, в итоге получим Х ≤ 7, что и является ответом. Это значит, что селянину следует отправиться на железнодорожную станцию в семь утра или несколько ранее.

Числовые промежутки на координатной прямой

Теперь выясним, как отобразить описываемые соотношения на Полученное выше неравенство не является строгим. Оно означает, что переменная может принимать значения меньше 7, а может быть равным этому числу. Приведём другие примеры. Для этого внимательно рассмотрим четыре рисунка, представленных ниже.

На первом из них можно увидеть графическое изображение промежутка [-7; 7]. Он состоит из множества чисел, размещённых на координатной прямой и находящихся между -7 и 7, включая границы. При этом точки на графике изображаются в виде закрашенных кругов, а запись промежутка производится с использованием

Второй рисунок является графическим представлением строгого неравенства. В данной случае пограничные числа -7 и 7, показанные выколотыми (не закрашенными) точками, не включаются в указанное множество. А запись самого промежутка производится в круглых скобках следующим образом: (-7; 7).

То есть, выяснив, как решать неравенстватакого типа, и получив подобный ответ, можно заключить, что он состоит из чисел, находящихся между рассматриваемыми границами, кроме -7 и 7. Следующие два случая необходимо оценивать аналогичным образом. На третьем рисунке даются изображения промежутков (-∞; -7] U .

Приобретя сноровку в работе с линейными неравенствами, их решения можно будет записывать кратко без пояснений. При этом сначала записывают исходное линейное неравенство, а ниже – равносильные ему неравенства, получающиеся на каждом шаге решения:
3·x+12≤0 ;
3·x≤−12 ;
x≤−4 .

Ответ:

x≤−4 или (−∞, −4] .

Пример.

Укажите все решения линейного неравенства −2,7·z>0 .

Решение.

Здесь коэффициент a при переменной z равен −2,7 . А коэффициент b отсутствует в явном виде, то есть, он равен нулю. Поэтому, первый шаг алгоритма решения линейного неравенства с одной переменной выполнять не нужно, так как перенос нуля из левой части в правую не изменит вид исходного неравенства.

Остается разделить обе части неравенства на −2,7 , не забыв изменить знак неравенства на противоположный, так как −2,7 – отрицательное число. Имеем (−2,7·z):(−2,7)<0:(−2,7) , и дальше z<0 .

А теперь кратко:
−2,7·z>0 ;
z<0 .

Ответ:

z<0 или (−∞, 0) .

Пример.

Решите неравенство .

Решение.

Нам нужно решить линейное неравенство с коэффициентом a при переменной x , равным −5 , и с коэффициентом b , которому отвечает дробь −15/22 . Действуем по известной схеме: сначала переносим −15/22 в правую часть с противоположным знаком, после чего выполняем деление обеих частей неравенства на отрицательное число −5 , изменяя при этом знак неравенства:

В последнем переходе в правой части используется , затем выполняется .

Ответ:

Теперь переходим к случаю, когда a=0 . Принцип решения линейного неравенства a·x+b<0 (знак, естественно, может быть и другим) при a=0 , то есть, неравенства 0·x+b<0 , заключается в рассмотрении числового неравенства b<0 и выяснении, верное оно или нет.

На чем это основано? Очень просто: на определении решения неравенства . Каким образом? Да вот каким: какое бы значение переменной x мы не подставили в исходное линейное неравенство, мы получим числовое неравенство вида b<0 (так как при подстановке любого значения t вместо переменной x мы имеем 0·t+b<0 , откуда b<0 ). Если оно верное, то это означает, что любое число является решением исходного неравенства. Если же числовое неравенство b<0 оказывается неверным, то это говорит о том, что исходное линейное неравенство не имеет решений, так как не существует ни одного значения переменной, которое обращало бы его в верное числовое равенство.

Сформулируем приведенные рассуждения в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥) :

  • Рассматриваем числовое неравенство b<0 (≤, >, ≥) и
    • если оно верное, то решением исходного неравенства является любое число;
    • если же оно неверное, то исходное линейное неравенство не имеет решений.

А теперь разберемся с этим на примерах.

Пример.

Решите неравенство 0·x+7>0 .

Решение.

Для любого значения переменной x линейное неравенство 0·x+7>0 обратится в числовое неравенство 7>0 . Последнее неравенство верное, следовательно, любое число является решением исходного неравенства.

Ответ:

решением является любое число или (−∞, +∞) .

Пример.

Имеет ли решения линейное неравенство 0·x−12,7≥0 .

Решение.

Если подставить вместо переменной x любое число, то исходное неравенство обратиться в числовое неравенство −12,7≥0 , которое неверное. А это значит, что ни одно число не является решением линейного неравенства 0·x−12,7≥0 .

Ответ:

нет, не имеет.

В заключение этого пункта разберем решения двух линейных неравенств, оба коэффициента которых равны нулю.

Пример.

Какое из линейных неравенств 0·x+0>0 и 0·x+0≥0 не имеет решений, а какое – имеет бесконечно много решений?

Решение.

Если вместо переменной x подставить любое число, то первое неравенство примет вид 0>0 , а второе – 0≥0 . Первое из них неверное, а второе – верное. Следовательно, линейное неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений, а именно, его решением является любое число.

Ответ:

неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений.

Методом интервалов

Вообще, метод интервалов изучается в школьном курсе алгебры позже, чем проходится тема решение линейных неравенств с одной переменной. Но метод интервалов позволяет решать самые разные неравенства, в том числе и линейные. Поэтому, остановимся на нем.

Сразу заметим, что метод интервалов целесообразно применять для решения линейных неравенств с отличным от нуля коэффициентом при переменной x . В противном случае вывод о решении неравенства быстрее и удобнее сделать способом, разобранным в конце предыдущего пункта.

Метод интервалов подразумевает

  • введение функции, отвечающей левой части неравенства, в нашем случае – линейной функции y=a·x+b ,
  • нахождение ее нулей, которые разбивают область определения на промежутки,
  • определение знаков, которые имеют значения функции на этих промежутках, на основе которых делается вывод о решении линейного неравенства.

Соберем эти моменты в алгоритм , раскрывающий как решать линейные неравенства a·x+b<0 (≤, >, ≥) при a≠0 методом интервалов:

  • Находятся нули функции y=a·x+b , для чего решается a·x+b=0 . Как известно, при a≠0 оно имеет единственный корень, который обозначим x 0 .
  • Строится , и на ней изображается точка с координатой x 0 . Причем, если решается строгое неравенство (со знаком < или >), то эту точку делают выколотой (с пустым центром), а если нестрогое (со знаком ≤ или ≥), то ставят обычную точку. Эта точка разбивает координатную прямую на два промежутка (−∞, x 0) и (x 0 , +∞) .
  • Определяются знаки функции y=a·x+b на этих промежутках. Для этого вычисляется значение этой функции в любой точке промежутка (−∞, x 0) , и знак этого значения и будет искомым знаком на промежутке (−∞, x 0) . Аналогично, знак на промежутке (x 0 , +∞) совпадает со знаком значения функции y=a·x+b в любой точке этого промежутка. Но можно обойтись без этих вычислений, а выводы о знаках сделать по значению коэффициента a : если a>0 , то на промежутках (−∞, x 0) и (x 0 , +∞) будут знаки − и + соответственно, а если a>0 , то + и −.
  • Если решается неравенство со знаками > или ≥, то ставится штриховка над промежутком со знаком плюс, а если решаются неравенства со знаками < или ≤, то – со знаком минус. В результате получается , которое и является искомым решением линейного неравенства.

Рассмотрим пример решения линейного неравенства методом интервалов.

Пример.

Решите неравенство −3·x+12>0 .

Решение.

Коль скоро мы разбираем метод интервалов, то им и воспользуемся. Согласно алгоритму, сначала находим корень уравнения −3·x+12=0 , −3·x=−12 , x=4 . Дальше изображаем координатную прямую и отмечаем на ней точку с координатой 4 , причем эту точку делаем выколотой, так как решаем строгое неравенство:

Теперь определяем знаки на промежутках. Для определения знака на промежутке (−∞, 4) можно вычислить значение функции y=−3·x+12 , например, при x=3 . Имеем −3·3+12=3>0 , значит, на этом промежутке знак +. Для определения знака на другом промежутке (4, +∞) можно вычислить значение функции y=−3·x+12 , к примеру, в точке x=5 . Имеем −3·5+12=−3<0 , значит, на этом промежутке знак −. Эти же выводы можно было сделать на основании значения коэффициента при x : так как он равен −3 , то есть, он отрицательный, то на промежутке (−∞, 4) будет знак +, а на промежутке (4, +∞) знак −. Проставляем определенные знаки над соответствующими промежутками:

Так как мы решаем неравенство со знаком >, то изображаем штриховку над промежутком со знаком +, чертеж принимает вид

По полученному изображению делаем вывод, что искомым решением является (−∞, 4) или в другой записи x<4 .

Ответ:

(−∞, 4) или x<4 .

Графическим способом

Полезно иметь представление о геометрической интерпретации решения линейных неравенств с одной переменной. Чтобы его получить, давайте рассмотрим четыре линейных неравенства с одной и той же левой частью: 0,5·x−1<0 , 0,5·x−1≤0 , 0,5·x−1>0 и 0,5·x−1≥0 , их решениями являются соответственно x<2 , x≤2 , x>2 и x≥2 , а также изобразим график линейной функции y=0,5·x−1 .

Несложно заметить, что

  • решение неравенства 0,5·x−1<0 представляет собой промежуток, на котором график функции y=0,5·x−1 располагается ниже оси абсцисс (эта часть графика изображена синим цветом),
  • решение неравенства 0,5·x−1≤0 представляет собой промежуток, на котором график функции y=0,5·x−1 находится ниже оси Ox или совпадает с ней (другими словами, не выше оси абсцисс),
  • аналогично решение неравенства 0,5·x−1>0 есть промежуток, на котором график функции выше оси Ox (эта часть графика изображена красным цветом),
  • и решение неравенства 0,5·x−1≥0 является промежутком, на котором график функции выше или совпадает с осью абсцисс.

Графический способ решения неравенств , в частности линейных, и подразумевает нахождение промежутков, на которых график функции, соответствующей левой части неравенства, располагается выше, ниже, не ниже или не выше графика функции, соответствующей правой части неравенства. В нашем случае линейного неравенства функция, отвечающая левой части, есть y=a·x+b , а правой части – y=0 , совпадающая с осью Ox .

Учитывая приведенную информацию, несложно сформулировать алгоритм решения линейных неравенств графическим способом :

  • Строится график функции y=a·x+b (можно схематически) и
    • при решении неравенства a·x+b<0 определяется промежуток, на котором график ниже оси Ox ,
    • при решении неравенства a·x+b≤0 определяется промежуток, на котором график ниже или совпадает с осью Ox ,
    • при решении неравенства a·x+b>0 определяется промежуток, на котором график выше оси Ox ,
    • при решении неравенства a·x+b≥0 определяется промежуток, на котором график выше или совпадает с осью Ox .

Пример.

Решите неравенство графически.

Решение.

Построим эскиз графика линейной функции . Это прямая, которая убывает, так как коэффициент при x – отрицательный. Еще нам понадобится координата точки его пересечения с осью абсцисс, она является корнем уравнения , который равен . Для наших нужд можно даже не изображать ось Oy . Так наш схематический чертеж будет иметь такой вид

Так как мы решаем неравенство со знаком >, то нас интересует промежуток, на котором график функции выше оси Ox . Для наглядности выделим эту часть графика красным цветом, а чтобы легко определить соответствующий этой части промежуток, подсветим красным цветом часть координатной плоскости, в которой расположена выделенная часть графика, так, как на рисунке ниже:

Интересующий нас промежуток представляет собой часть оси Ox , оказавшуюся подсвеченной красным цветом. Очевидно, это открытый числовой луч . Это и есть искомое решение. Заметим, что если бы мы решали неравенство не со знаком >, а со знаком нестрогого неравенства ≥, то в ответ пришлось бы добавить , так как в этой точке график функции совпадает с осью Ox .y=0·x+7 , что то же самое y=7 , задает на координатной плоскости прямую, параллельную оси Ox и лежащую выше нее. Следовательно, неравенство 0·x+7<=0 не имеет решений, так как нет промежутков, на которых график функции y=0·x+7 ниже оси абсцисс.

А графиком функции y=0·x+0 , что то же самое y=0 , является прямая, совпадающая с осью Ox . Следовательно, решением неравенства 0·x+0≥0 является множество всех действительных чисел.

Ответ:

второе неравенство, его решением является любое действительное число.

Неравенства, сводящиеся к линейным

Огромное количество неравенств с помощью равносильных преобразований можно заменить равносильным линейным неравенством, другими словами, свести к линейному неравенству. Такие неравенства называют неравенствами, сводящимися к линейным .

В школе почти одновременно с решением линейных неравенств рассматривают и несложные неравенства, сводящиеся к линейным. Они представляют собой частные случаи целых неравенств , а именно в их левой и правой части находятся целые выражения, которые представляют собой или линейные двучлены , или преобразуются к ним путем и . Для наглядности приведем несколько примеров таких неравенств: 5−2·x>0 , 7·(x−1)+3≤4·x−2+x , .

Неравенства, которые подобны по виду указанным выше, всегда можно свести к линейным. Это можно сделать путем раскрытия скобок, приведения подобных слагаемых, перестановки слагаемых местами и переноса слагаемых из одной части неравенства в другую с противоположным знаком.

Например, чтобы свести неравенство 5−2·x>0 к линейному, достаточно переставить слагаемые в его левой части местами, имеем −2·x+5>0 . Для сведения второго неравенства 7·(x−1)+3≤4·x−2+x к линейному нужно немного больше действий: в левой части раскрываем скобки 7·x−7+3≤4·x−2+x , после этого приводим подобные слагаемые в обеих частях 7·x−4≤5·x−2 , дальше переносим слагаемые из правой части в левую 7·x−4−5·x+2≤0 , наконец, приводим подобные слагаемые в левой части 2·x−2≤0 . Подобным образом и третье неравенство можно свести к линейному неравенству.

Из-за того, что подобные неравенства всегда можно свести к линейным, некоторые авторы даже называют их тоже линейными. Но все же будем их считать сводящимися к линейным.

Теперь становится понятно, почему подобные неравенства рассматривают вместе с линейными неравенствами. Да и принцип их решения абсолютно такой же: выполняя равносильные преобразования, их можно привести к элементарным неравенствам, представляющим собой искомые решения.

Чтобы решить неравенство подобного вида можно его предварительно свести к линейному, после чего решить это линейное неравенство. Но рациональнее и удобнее поступать так:

  • после раскрытия скобок собрать все слагаемые с переменной в левой части неравенства, а все числа – в правой,
  • после чего привести подобные слагаемые,
  • а дальше – выполнить деление обеих частей полученного неравенства на коэффициент при x (если он, конечно, отличен от нуля). Это даст ответ.

Пример.

Решите неравенство 5·(x+3)+x≤6·(x−3)+1 .

Решение.

Сначала раскроем скобки, в результате придем к неравенству 5·x+15+x≤6·x−18+1 . Теперь приведем подобные слагаемые: 6·x+15≤6·x−17 . Дальше переносим слагаемые с левую часть, получаем 6·x+15−6·x+17≤0 , и снова приводим подобные слагаемые (что приводит нас к линейному неравенству 0·x+32≤0 ) и имеем 32≤0 . Так мы пришли к неверному числовому неравенству, откуда делаем вывод, что исходное неравенство не имеет решений.

Ответ:

нет решений.

В заключение отметим, что существует и масса других неравенств, сводящихся к линейным неравенствам, или к неравенствам рассмотренного выше вида. Например, решение показательного неравенства 5 2·x−1 ≥1 сводится к решению линейного неравенства 2·x−1≥0 . Но об этом будем говорить, разбирая решения неравенств соответствующего вида.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.