Извлечь корень 6. Вычисление квадратного корня из числа: как вычислить вручную




Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

А у вас есть зависимость от калькулятора ? Или вы считаете, что кроме как с калькулятором или при помощи таблицы квадратов очень сложно вычислить, например, .

Случается, школьники привязаны к калькулятору и даже 0,7 на 0,5 умножают, нажимая на заветные кнопочки. Говорят, ну я все равно знаю как посчитать, а сейчас сэкономлю время… Вот будет экзамен… тогда и напрягусь…

Так дело в том, что на экзамене и так будет предостаточно «напряжных моментов»… Как говорится, вода камень точит. Вот и на экзамене мелочи, если их много, способны подкосить…

Давайте минимизируем количество возможных неприятностей.

Извлекаем квадратный корень из большого числа

Мы будем говорить сейчас только о случае, когда результат извлечения корня квадратного – целое число.

Случай 1.

Итак, пусть нам во что-бы то ни стало (например, при вычислении дискриминанта) нужно вычислить корень квадратный из 86436.

Мы будем раскладывать число 86436 на простые множители. Делим на 2, – получаем 43218; снова делим на 2, – получаем 21609. На 2 больше нацело число не делится. Но так как сумма цифр делится на 3, то и само число делится на 3 (вообще говоря, видно, что оно и на 9 делится). . Еще раз делим на 3, – получаем 2401. 2401 на 3 нацело не делится. На пять не делится (не оканчивается цифрой 0 или 5).

Подозреваем делимость на 7. Действительно, а ,

Итак, Полный порядок!

Случай 2.

Пусть нам нужно вычислить . Действовать так же, как описано выше, неудобно. Пытаемся разложить на простые множители…

На 2 число 1849 нацело не делится (не является четным)…

На 3 нацело не делится (сумма цифр не кратна 3)…

На 5 нацело не делится (последняя цифра – не 5 и не 0)…

На 7 нацело не делится, на 11 не делится, на 13 не делится… Ну и долго нам так перебирать все простые числа?

Будем рассуждать несколько иначе.

Мы понимаем, что

Мы сузили круг поиска. Теперь перебираем числа от 41 до 49. Причем ясно, что раз последняя цифра числа – 9, то останавливаться стоит на вариантах 43 или 47, – только эти числа при возведении в квадрат дадут последнюю цифру 9.

Ну и тут уже, конечно, мы останавливаемся на 43. Действительно,

P.S. А как, ксатати, мы умножаем 0,7 на 0,5?

Следует умножить 5 на 7, не обращая внимание на нули и знаки, а потом отделить, идя справа налево, два знака запятой. Получаем 0,35.

    Вычисление (или извлечение) квадратного корня можно производить несколькими способами, но все они не сказать что уж очень просты. Проще, конечно, прибегнуть к помощи калькулятора. Но если такой возможности нет (или вы хотите понять суть квадратного корня), могу посоветовать пойти следующим путем, его алгоритм таков:

    Если на такие длительные вычисления у вас нет сил, желания или терпения, можно прибегнуть к помощи грубого подбора, его плюс в том, что он невероятно быстрый и при должной смекалке точный. Пример:

    Когда я учился в школе (в начале 60-х годов), нас учили извлекать квадратный корень из любого числа. Методика несложная, внешне похожа на деление столбиком, но излагать е здесь, это потребуется полчаса времени и 4-5 тысяч знаков текста. Но зачем это Вам? У вас есть телефон или иной гаджет, в нм есть калькулятор. Калькулятор есть и в любом компьютере. Лично я предпочитаю производить такого рода вычисления в Excel.

    Зачастую в школе требуется находить квадратные корни разных чисел. Но если вот мы привыкли пользоваться постоянно для этого калькулятором, то на экзаменах такой возможности не будет, поэтому нужно учиться искать корень без помощи калькулятора. А сделать-то это в принципе возможно.

    Алгоритм таков:

    Смотрите сначала на последнюю цифру вашего числа:

    Например,

    Теперь требуется определить примерно значение для корня из самой левой группы

    В случае когда число имеет больше двух групп, то находить корень надо так:

    А вот следующая циферка должна быть именно наибольшей, подобрать е надо так:

    Теперь надо образовать новое число А посредством добавления к остатку, который был получен выше, следующую группу.

    В наших примерах:

  • Столбиком наджней, а когда нужно больше пятнадцати знаков, то компьютеры и телефоны с калькуляторами чаще всего отдыхают. Осталось проверить, займт ли описание методики 4-5 тыс. знаков.

    Берм любое число, от запятой отсчитываем пары цифр вправо и влево

    Например, 1234567890,098765432100

    Пара цифр - это как бы двузначное число. Корень из двузначного - однозначное. Подбираем однозначное, квадрат которого меньше первой пары цифр. В нашем случае это 3.

    Как при делении столбиком, под первой парой выписываем этот квадрат и из первой пары вычитаем. Результат сносим под подчерк. 12 - 9 = 3. Добавляем к этой разнице вторую пару цифр (будет 334). Слева от числа берм удвоенное значение той части результата, которую уже нашли о дополняем цифрой (у нас 2*6=6), такой, чтобы при умножении на не полученное число не превосходило число со второй парой цифр. Получаем, что найденная цифра - пятрка. Снова находим разность (9), сносим следующую пару цифр получая 956, снова выписываем удвоенную часть результата (70), снова е дополняем нужной цифрой и так далее до упора. Или до нужной точности вычислений.

    Во-первых для того что бы вычислить квадратный корень надо хорошо знать таблицу умножения. Самые простые примеры - это 25 (5 на 5 = 25) и так далее. Если же брать числа посложнее, то можно использовать данную таблицу, где по горизонтали единицы, а по вертикале десятки.

    Есть хороший способ как найти корень из числа без помощи калькуляторов. Для этого вам понадобится линейка и циркуль. Суть в том, что вы находите на линейке значение, которое у вас под корнем. Например, ставите отметку возле 9. Ваша задача - поделить это число на равное количество отрезков, то есть на два линии по 4,5 см, а на ровный отрезок. Несложно догадаться, что в итоге получится 3 отрезка по 3 сантиметра.

    Способ нелегкий и для больших чисел не подойдет, но зато считается без калькулятора.

    без помощи калькулятора способу извлечения корня квадратного учили в советские времена в школе в 8-м классе.

    Для этого надо разбить многозначное число справа налево на грани по 2 цифры :

    Первая цифра корня это целый корень из левой грани, в данном случае, 5.

    Вычитаем 5 в квадрате из 31, 31-25=6 и к шестерке приписываем следующую грань, имеем 678.

    Следующая цифра х подбирается к удвоенной пятерке так, чтобы

    10х*х было максимально большим, но меньшим чем 678.

    х=6, поскольку 106*6 = 636,

    теперь вычисляем 678 - 636 = 42 и добавляем следующую грань 92, имеем 4292.

    Снова ищем максимальный х, такой что 112х*х lt; 4292.

    Ответ: корень равен 563

    Так можно продолжать сколько требуется.

    В некоторых случаях можно попытаться разложить подкоренное число на два или несколько квадратных множителей.

    Также полезно запомнить таблицу (или хотя бы какую-то ее часть) - квадраты натуральных чисел от 10 до 99.

    Предлагаю изобретенный мною вариант извлечения квадратного корня в столбик. Он отличается от общеизвестного, исключением подбора чисел. Но как выяснил позже, данный метод уже существовал за много лет до моего рождения. Описал его в своей книге Всеобщая арифметика или книга об арифметических синтезе и анализе великий Исаак Ньютон. Так что здесь излагаю свое видение и обоснование алгоритма метода по Ньютону. Запоминать алгоритм не стоит. Можно просто при необходимости пользоваться схемой на рисунке в качестве наглядного пособия.

    С помощью таблиц можно не вычислить, а найти, корни квадратные толь из чисел которые есть в таблицах. Проще всего вычислять корни не только квадратные, но и других степеней, методом последовательных приближений. Например вычислим корень квадратный из 10739, заменяем три последние цифры нулями и извлечем корень из 10000 получим 100 с недостатком, поэтому берем число 102 возводим его в квадрат, получаем 10404, что тоже меньше заданного, берем 103*103=10609 опять с недостатком, берем 103,5*103,5=10712,25, берем ещ больше 103,6*103,6=10732, берем 103,7*103,7=10753,69, что уже с избытком. Можно принять корень из 10739 примерно равны 103,6. Более точно 10739=103,629... . . Аналогично вычисляем корень кубический сначала из 10000 получаем примерно 25*25*25=15625, что с избытком, берем 22*22*22=10,648, берем чуть больше 22,06*22,06*22,06=10735, что очень близко к заданному.

Вы хотите хорошо сдать ЕГЭ по математике? Тогда вам необходимо уметь считать быстро, правильно и без калькулятора. Ведь главная причина потери баллов на ЕГЭ по математике – вычислительные ошибки.

По правилам проведения ЕГЭ, пользоваться калькулятором на экзамене по математике запрещается. Цена может быть слишком высокой - удаление с экзамена.

На самом деле калькулятор на ЕГЭ по математике не нужен. Все задачи решаются без него. Главное – внимание, аккуратность и некоторые секретные приемы, о которых мы расскажем.

Начнем с главного правила. Если какое-то вычисление можно упростить – упростите его.

Вот, например, такое «дьявольское уравнение»:

Семьдесят процентов выпускников решают его «в лоб». Считают дискриминант по формуле , после чего говорят, что корень невозможно извлечь без калькулятора. Но ведь можно разделить левую и правую части уравнения на . Получится

Какой способ проще? :-)

Многие школьники не любят умножение в «столбик». Никому не нравилось в четвертом классе решать скучные «примеры». Однако перемножить числа во многих случаях можно и без «столбика», в строчку. Это намного быстрее.

Обратите внимание, что мы начинаем не с меньших разрядов, а с бoльших. Это удобно.

Теперь – деление. Нелегко «в столбик» разделить на . Но вспомним, что знак деления: и дробная черта – одно и то же. Запишем в виде дроби и сократим дробь:

Другой пример.

Как быстро и без всяких столбиков возвести в квадрат двузначное число? Применяем формулы сокращенного умножения:

Иногда удобно использовать и другую формулу:

Числа, оканчивающиеся на , в квадрат возводятся моментально.

Допустим, надо найти квадрат числа ( - не обязательно цифра, любое натуральное число). Умножаем на и к результату приписываем . Всё!

Например: ( и приписали ).

( и приписали ).

( и приписали ).

Этот способ полезен не только для возведения в квадрат, но для извлечения квадратного корня из чисел, оканчивающихся на .

А как вообще извлечь квадратный корень без калькулятора? Покажем два способа.

Первый способ – разложение подкоренного выражения на множители.

Например, найдем
Число делится на (так как сумма его цифр делится на ). Разложим на множители:

Найдем . Это число делится на . На оно тоже делится. Раскладываем на множители.

Еще пример.

Есть и второй способ. Он удобен, если число, из которого надо извлечь корень, никак не получается разложить на множители.

Например, надо найти . Число под корнем – нечетное, оно не делится на , не делится на , не делится на ... Можно и дальше искать, на что же оно все-таки делится, а можно поступить проще – найти этот корень подбором.

Очевидно, что в квадрат возводили двузначное число, которое находится между числами и , поскольку , , а число находится между ними. Первую цифру в ответе мы уже знаем, это .

Последняя цифра в числе равна . Поскольку , , последняя цифра в ответе – либо , либо . Проверим:
. Получилось!

Найдем .

Значит, первая цифра в ответе – пятерка.

В числе последняя цифра – девятка. , . Значит, последняя цифра в ответе – либо , либо .

Проверим:

Если число, из которого надо извлечь квадратный корень, заканчивается на или – значит, квадратный корень из него будет числом иррациональным. Потому что ни один квадрат целого числа не заканчивается на или . Помните, что в задачах части вариантов ЕГЭ по математике ответ должен быть записан в виде целого числа или конечной десятичной дроби, то есть должен являться рациональным числом.

Квадратные уравнения встречаются нам в задачах , и вариантов ЕГЭ, а также в части . В них нужно считать дискриминант, а затем извлекать из него корень. И совсем не обязательно искать корни из пятизначных чисел. Во многих случаях дискриминант удается разложить на множители.

Например, в уравнении

Еще одна ситуация, в которой выражение под корнем можно разложить на множители, взята из задачи .

Гипотенуза прямоугольного треугольника равна , один из катетов равен , найти второй катет.

По теореме Пифагора, он равен . Можно долго считать в столбик, но проще применить формулу сокращенного умножения.

А теперь расскажем самое интересное - из-за чего все-таки выпускники теряют на ЕГЭ драгоценные баллы. Ведь ошибки в вычислениях возникают не просто так.

1 . Верный путь к потере баллов - неаккуратные вычисления, в которых что-то исправлено, зачеркнуто, одна цифра написана поверх другой. Посмотрите на свои черновики. Возможно, они выглядят так же? :-)

Пишите разборчиво! Не экономьте бумагу. Если что-то неправильно – не исправляйте одну цифру на другую, лучше напишите заново.

2 . Почему-то многие школьники, считая в столбик, стараются сделать это 1) очень-очень быстро, 2) очень мелкими цифрами, в уголке тетради и 3) карандашом. В результате получается вот что:

Разобрать что-либо невозможно. Что ж тогда удивляться, что оценка за ЕГЭ ниже, чем ожидали?

3 . Многие школьники привыкли игнорировать скобки в выражениях. Иногда встречается и такое:

Помните, что знак равенства ставится не где попало, а только между равными величинами. Пишите грамотно, даже на черновике.

4 . Огромное количество вычислительных ошибок связано с дробями. Если вы делите дробь на дробь – пользуйтесь тем, что
Здесь нарисован «гамбургер», то есть многоэтажная дробь. Крайне сложно при таком способе получить правильный ответ.

Подведем итоги.

Проверка заданий первой части профильного ЕГЭ по математике - автоматическая. Здесь не бывает «почти правильного» ответа. Либо он правилен, либо нет. Одна вычислительная ошибка – и привет, задача не засчитывается. Поэтому в ваших интересах научиться считать быстро, правильно и без калькулятора.

Задания второй части профильного ЕГЭ по математике проверяет эксперт. Позаботьтесь о нем! Пусть ему будет понятен и ваш почерк, и логика решения.

В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “... умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.

В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.

Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.

Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.

Основой этого способа, является состав числа =.

=&, т.е. & 2 =596334.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа &.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.

Доказательство приведено мной для случаев:

1. Извлечение квадратного корня из трехзначного числа;

2. Извлечение квадратного корня из четырехзначного числа.

Приближенные методы извлечения квадратного корня (без использования калькулятора) .

1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего х) .

Следующее, более точное приближение а 2 числа найдется по формуле .