Связь квантовых чисел. Электронное строение атомов. Квантовые числа электрона




Многое в квантовой механике остается за гранью понимания, многое кажется фантастичным. То же относится и к квантовым числам, природа которых загадочна и сегодня. В статье рассказывается о понятии, видах и общих принципах работы с ними.

Общая характеристика

Целые или полуцелые квантовые числа у физических величин определяют всевозможные дискретные значения, характеризующие системы квантов (молекулу, атом, ядро) и элементарные частицы. Их применение тесным образом связано с существованием постоянной Планка. Дискретность, протекающих в микромире процессов, отражают квантовые числа и их физический смысл. Впервые их ввели для того, чтобы описать закономерности спектров атома. Но физический смысл и дискретность отдельных величин были раскрыты только в квантовой механике.
Набор, который определяет исчерпывающе состояние этой системы, получил название полного. Все состояния, отвечающие за возможные значения из такого набора, образуют полную систему состояний. Квантовые числа в химии со степенями свободы электрона определяют его в трех пространственных координатах и внутренней степенью свободы — спином.

Конфигурации электронов а атомах

В атоме располагаются ядро и электроны, между которыми действуют силы электростатической природы. Энергия будет увеличиваться по мере того, как уменьшается расстояние между ядром и электроном. Считается, что будет равна нулю в случае, если он удален от ядра бесконечно. Такое состояние используется как начало отсчета. Таким образом определяется относительная энергия электрона.

Электронная оболочка, является набором Принадлежность к одному из них выражается главным квантовым числом n.

Главное число

Оно относится к определенному уровню энергии с набором орбиталей, у которых схожие значения, состоящие из n= 1, 2, 3, 4, 5… Когда электрон переходит с одной на другую ступень, изменяется Следует учитывать, что не все уровни наполнены электронами. При заполнении оболочки атома, реализуется принцип наименьшей энергии. Его состояние в этом случае называют невозбужденным или основным.

Орбитальные числа

В каждом уровне имеются орбитали. Те из них, у которых сходная энергия, образуют подуровень. Такое отнесение производится с помощью орбитального (или как его еще называют - побочного) квантового числа l, которое принимает значения целых чисел от нуля и до n - 1. Так электрон, имеющий главное и орбитальное квантовые числа n и l, может равняться, начиная l = 0 и заканчивая l = n - 1.

Это показывает характер движения соответствующих подуровня и уровня энергии. При l = 0 и любом значении n, электронное облако будет иметь форму сферы. Ее радиус будет прямо пропорционален n. При l = 1 электронное облако примет форму бесконечности или восьмерки. Чем больше значение l, тем форма будет становиться сложнее, а энергия электрона — возрастать.

Магнитные числа

Ml является проекцией орбитального (побочного) на то или иное направление магнитного поля. Оно показывает пространственную ориентацию тех орбиталей, у которых число l одинаковое. Ml может иметь различные значения 2l + 1, от -l до +l.
Другое магнитное квантовое число называется спином — ms, который является собственным моментом числа движения. Чтобы понять это, можно вообразить вращение электрона как бы вокруг собственной оси. Ms может равняться -1/2, +1/2, 1.
Вообще для любого электрона абсолютное значение спина s = 1/2, а ms означает его проекцию на ось.


Принцип Паули: в атоме не может находиться двух электронов с 4-мя аналогичными квантовыми числами. Хотя бы одно из них должно быть отличным.
Правило составления формул атомов.
  1. Принцип минимальной энергии. По нему сначала заполняются уровни и подуровни, которые расположены ближе к ядру, по правилам Клечковского.
  2. Положение элемента указывает на то, как распределены электроны по энергетическим уровням и подуровням:
  • номер совпадает с зарядом атома и количеством его электронов;
  • периодический номер соответствует числу уровней энергии;
  • групповой номер совпадает с количеством в атоме;
  • подгруппа показывает их распределение.

Элементарные частицы и ядра

Квантовые числа в физике являются их внутренними характеристиками, которые определяют взаимодействия и закономерности превращений. Кроме спина s, это электрический заряд Q, который у всех элементарных частиц равен нулю или целому числу, отрицательному или положительному; барионный заряд В (в частице — ноль или единица, в античастице — ноль или минус один); лептонные заряды, где Le и Lm равны нулю, единице, а в античастице — нулю и минус единице; изотопический спин с целым или полуцелым числом; странность S и другие. Все эти квантовые числа применяются как к элементарным частицам, так и к атомным ядрам.
В широком смысле слова их называют физическими величинами, которые определяют движение частицы или системы и которые сохраняются. Однако совсем необязательно, что они принадлежат дискретному спектру всевозможных значений.

главное . Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He +, Li 2+ и т. д.). В этом случае энергия электрона

Орбитальное квантовое число l характеризует форму орбиталей и принимает значения от 0 до n – 1. Кроме числовых l имеет буквенные обозначения

Электроны с одинаковым значением l образуют подуровень.

Квантовое число l определяет квантование орбитального момента количества движения электрона в сферически симметричном кулоновском поле ядра.

Квантовое число m l называют магнитным . Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +l через нуль, то есть 2l + 1 значений. Расположение орбитали характеризуется значением проекции вектора орбитального момента количества движения M z на какую-либо ось координат (обычно ось z ):

Все вышесказанное можно представить таблицей:

Орбитальное квантовое число

Магнитное квантовое число

Число орбиталей с данным значением l

–2, –1, 0, +1, +2

–3, –2, –1, 0, +1, +2, +3

Таблица 2.1.

Число орбиталей на энергетических подуровнях.

Орбитали одного подуровня (l = const) имеют одинаковую энергию. Такое состояние называют вырожденным по энергии . Так p -орбиталь – трехкратно, d – пятикратно, а f – семикратно вырождены.

Граничные поверхности s -, p -, d -, f - орбиталей показаны на рис. 2.1.

s -Орбитали сферически симметричны для любого n и отличаются друг от друга только размером сферы. Их максимально симметричная форма обусловлена тем, что при l = 0 и μ l = 0.

p -Орбитали существуют при n ≥ 2 и l = 1, поэтому возможны три варианта ориентации в пространстве: m l = –1, 0, +1. Все p-орбитали обладают узловой плоскостью, делящей орбиталь на две области, поэтому граничные поверхности имеют форму гантелей, ориентированных в пространстве под углом 90° друг относительно друга. Осями симметрии для них являются координатные оси, которые обозначаются p x , p y , p z .

d -Орбитали определяются квантовым числом l = 2 (n ≥ 3), при котором m l = –2, –1, 0, +1, +2, то есть характеризуются пятью вариантами ориентации в пространстве. d -Орбитали, ориентированные лопастями по осям координат, обозначаются d z ² и d x ²–y ², а ориентированные лопастями по биссектрисам координатных углов – d xy , d yz , d xz .

Семь f -орбиталей , соответствующих l = 3 (n ≥ 4), изображаются в виде граничных поверхностей, приведенных на рис. 2.1.

Квантовые числа n , l и m l не полностью характеризуют состояние электрона в атоме. Экспериментально установленно, что электрон имеет еще одно свойство – спин. Упрощенно спин можно представить как вращение электрона вокруг собственной оси. Спиновое квантовое число m s имеет только два значения m s = ±1/2, представляющие собой две проекции углового момента электрона на выделенную ось. Электроны с разными m s обозначаются стрелками, направленными вверх и вниз .

В многоэлектронных атомах, как и в атоме водорода, состояние электрона определяется значениями тех же четырех квантовых чисел, однако в этом случае электрон находится не только в поле ядра, но и в поле других электронов. Поэтому энергия в многоэлектронных атомах определяется не только главным, но и орбитальным квантовым числом, а вернее их суммой: энергия атомных орбиталей возрастает по мере увеличения суммы n + l ; при одинаковой сумме сначала заполняется уровень с меньшим n и большим l . Энергия атомных орбиталей возрастает согласно ряду

1s s p s p s ≈ 3d p s ≈ 4d p s ≈ 4f ≈ 5d p s ≈ 5f ≈ 6d p.

Итак, четыре квантовых числа описывают состояние электрона в атоме и характеризуют энергию электрона, его спин, форму электронного облака и его ориентацию в пространстве. При переходе атома из одного состояния в другое происходит перестройка электронного облака, то есть изменяются значения квантовых чисел, что сопровождается поглощением или испусканием атомом квантов энергии.

Введение

Целые или дробные числа, которые определяют возможные значения физических величин, характеризующих квантовые системы (атомное ядро, атом, молекулу и др.), отд. элем. частицы, гипотетические частицы кварки и глюоны.

К. ч. были впервые введены в физику для описания найденных эмпирически закономерностей ат. спектров, однако смысл К. ч. и связанной с ними дискретности некоторых физических величин, характеризующих поведение микрочастиц, был раскрыт лишь квантовой механикой. Согласно квантовой механике, возможные значения физических. величин определяются собств. значениями соответствующих операторов -- непрерывными или дискретными; в последнем случае и возникают некоторые К. ч. (В несколько ином смысле К. ч. иногда называют величины, сохраняющиеся в процессе движения, но не обязательно принадлежащие дискр. спектру возможных значений, напр. импульс или энергию свободно движущейся частицы.)

квантовый излучение магнитный

Квантовые числа

Квантовая электродинамика

Квантовые числа - это энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится. Квантовые числа необходимы для описания состояния каждого электрона в атоме. Всего 4-ре квантовых числа. Это: главное квантовое число - n, орбитальное квантовое число - l, магнитное квантовое число - ml и спиновое квантовое число - ms. Главное квантовое число - n.

Главное квантовое число - n - определяет энергетический уровень электрона, удалённость энергетического уровня от ядра и размер электронного облака. Главное квантовое число принимает любые целочисленные значения, начиная с n=1 (n=1,2,3,…) и соответствует номеру периода.

Орбитальное квантовое число - l. Орбитальное квантовое число - l - определяет геометрическую форму атомной орбитали. Орбитальное квантовое число принимает любые целочисленные значения, начиная с l=0 (l=0,1,2,3,…n-1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. “Набор” таких орбиталей с одинаковыми значениями главного квантового числа называется энергетическим уровнем. Каждому значению орбитального квантового числа соответствует орбиталь особой формы. Значению орбитального квантового числа l=0 соответствует s-орбиталь (1-ин тип). Значению орбитального квантового числа l=1 соответствуют p-орбитали (3-ри типа). Значению орбитального квантового числа l=2 соответствуют d-орбитали (5-ть типов). Значению орбитального квантового числа l=3 соответствуют f-орбитали (7-мь типов).

Таблица 1

f-орбитали имеют ещё более сложную форму. Каждый тип орбитали - это объём пространства, в котором вероятность нахождения электрона - максимальна.

Магнитное квантовое число - ml.

Магнитное квантовое число - ml - определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Магнитное квантовое число принимает любые целочисленные значения от -l до +l, включая 0. Это означает, что для каждой формы орбитали существует 2l+1 энергетически равноценных ориентаций в пространстве-орбиталей.

Для s-орбитали:

l=0, m=0 - одна равноценная ориентация в пространстве (одна орбиталь).

Для p-орбитали:

l=1, m=-1,0,+1 - три равноценные ориентации в пространстве (три орбитали).

Для d-орбитали:

l=2, m=-2,-1,0,1,2 - пять равноценных ориентаций в пространстве (пять орбиталей).

Для f-орбитали:

l=3, m=-3,-2,-1,0,1,2,3 - семь равноценных ориентаций в пространстве (семь орбиталей).

Спиновое квантовое число - ms.

Спиновое квантовое число - ms - определяет магнитный момент, возникающий при вращении электрона вокруг своей оси. Спиновое квантовое число может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона - спинам.

Квантовая Электродинамика

(КЭД), квантовая теория взаимодействующих электронно-магнитных полей и заряженных частиц. Часто КЭД называют ту часть квант. теории поля, в которой рассматривается взаимодействие электронно-магнитных и электронно-позитронного полей. Электронно-магнитное поле в такой теории появляется как калибровочное поле. Квантом этого поля является фотон -- частица с нулевой массой покоя и спином 1, а взаимодействие двух элементов есть результат обмена между ними виртуальными фотонами. Безразмерной константой, характеризующей интенсивность взаимодействия, является постоянная тонкой структуры a=e2/ћc»I/137 (точнее, a-1=137,035987(29)). Благодаря малой величине а основным расчётным методом в КЭД является возмущений теория, наглядное графическое изображение которой дают Фейнмана диаграммы.

Правильность КЭД подтверждена громадным числом экспериментов во всём доступном интервале расстояний (энергий), начиная от космических -- 1020 см и вплоть до внутри-частичных -- 10-16 см. КЭД описывает такие процессы, как тепловое излучение тел, Комптона эффект, тормозное излучение и др. Однако наиболее характерными для КЭД являются процессы, связанные с поляризацией вакуума.

Первый наблюдённый эффект КЭД - лэмбовский сдвиг уровней анергии. С рекордной точностью вычисляется и т. н. аномальный магн. момент эл-на. Магн. момент-величина, обусловливающая взаимодействие покоящейся частицы с внеш. магн. полем. Из квант. теории эл-на Дирака следует, что эл-н должен обладать магнитным моментом, равным магнетону Бора: mБ= ећ/2mc (где m -- масса эл-на). В КЭД поправки, появляющиеся в выражении для энергии такого взаимодействия, естественно интерпретировать как результат появления «вакуумных» добавок к магнитному моменту. Эти добавки, впервые теоретически исследованные американским физиком Ю. Швингером, и названы аномальным магнитном моментом.

Вычисленное значение магнитного момента эл-на m

теор=mБ (1+a/2p- 0,328478(a/p)2+1,184175(a/p)3=1,00115965236(28)mБ

находится в прекрасном согласии с экспериментальным значением: mэксп=1,00115965241(21)mБ

Характерным эффектом КЭД является рассеяние света на свете. В классической электродинамике этот эффект отсутствует: электромагнитные волны рассматриваются в ней как невзаимодействующие. В КЭД эффект становится возможным благодаря воздействию с флуктуациями электрон-позитронного вакуума.

В начальной состояния -- два фотона (волнистые линии); один из них в точке 1 исчезает, породив виртуальную электрон-позитронную пару (сплошные линии); второй фотон в точке 2 поглощается одной из частиц этой пары (на приведённой диаграмме -- позитроном). Затем появляются конечные фотоны: один рождается в точке 4 виртуальным эл-ном, другой возникает в результате аннигиляции виртуальной пары электрон-позитрон в точке 3. Благодаря виртуальным электрон-позитронным парам появляется взаимодействие между фотонами, т. е. принцип суперпозиции электромагнитных волн нарушается. Это должно проявляться в таких процессах, как рассеяние света на свете. Экспериментально наблюдался имеющий несколько большую вероятность процесс рассеяния фотонов на внешнее электростатическое поле тяжёлого ядра, т. е. на виртуальных фотонах (дельбрюковское рассеяние). «Высшие» (радиационные) поправки, вычисляемые по методу возмущений, появляются также в процессах рассеяния заряженных частиц и в некоторых других явлениях.

Ещё один класс «вакуумных» эффектов, предсказываемых теорией,-- рождение парчастиц-античастиц в очень сильных (как статических, так и переменных) электромагнитных и гравитацонных полях. Последние обсуждаются, в частности, в связи с космологическими проблемами, связанными с ранними фазами эволюции Вселенной (рождение пар в гравитационном поле чёрных дыр).

Этот процесс -- пример тесного переплетения физики лептонов и адронов. Важность анализа такого рода процессов особенно возросла после появления экспериментов на встречных электрон-позитронных пучках.

(КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы -- электромагнитное поле, для полного описания которого любой момент времени требуется задание напряжённостей электрических и магнитных полей в каждой точке пр-ва, т. е. задание бесконечного числа величин. В отличие от этого, положение частицы в каждый момент времени определяется заданием трёх её координат.

До сих пор рассматривались свободные невзаимодействующие частицы, число которых оставалось неизменным; как нетрудно показать с помощью соотношений (6), оператор числа частиц N^(n)=a+na-n коммутирует с оператором энергии?^=S?(p)N^(p), поэтому число частиц должно быть постоянным, т. е. процессы появления дополнительных частиц, их исчезновение и взаимопревращения отсутствовали. Учёт этих процессов требует включения взаимодействия частиц.

Взаимодействие в КТП.

В классической электродинамике взаимодействие между заряженными частицами осуществляется через поле: заряд создаёт поле, которое действует на др. заряды. В квантовой теории взаимодействие электромагнитного поля и заряженной частицы выглядит как испускание и поглощение частей фотонов, а взаимодействие между заряженными частицами является результатом их обмена фотонами: каждый из электронов испускает фотоны (кванты переносящего взаимодействие электромагнитного поля), которые затем поглощаются др. эл-намн. Подобная картина взаимодействия возникает благодаря особому свойству электродинамики-т. н. калибровочной симметрии. Аналогичный механизм взаимодействия находит всё большее подтверждение и для др. физ. полей. Однако свободная частица ни испустить, ни поглотить кванта не может. Напр., в системе, где частица покоится, излучение кванта требует затраты энергии и уменьшения массы частицы (в силу эквивалентности энергии и массы), что невозможно. Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы-- квант. объекты, для которых существенно неопределённостей соотношение D?Dt?ћ, допускающее изменение энергии частицы на величину D? и, следовательно, излучение или поглощение квантов ноля при условии, что эти кванты существуют в течение промежутка времени Dt?ћ/D?. (На основе подобных рассуждений и факта короткодействия ядерных сил японский физик X. Юкава предсказал существование частицы -- переносчика ядерного воздействия с массой прибл. в 200--300 электронных масс, которая впоследствии была обнаружена экспериментально и названа p-мезоном.) генераторы и усилители электромагнитных волн, основанные на явлении вынужденного (индуцированного) излучения. Принцип действия квантового генератора СВЧ-диапазона, названного мазером (аббревиатура от английских слов Microwave Amplification by Stimulated Emission of Radiation, означающих "микроволновое усиление за счет вынужденного излучения"), был предложен в 1954 Ч.Таунсом. (Этот же принцип лежит в основе оптических квантовых усилителей и лазеров-генераторов.) Поскольку частота излучения на выходе квантового генератора определяется строго фиксированными, дискретными энергетическими уровнями атомов или молекул активной среды, используемой в таком генераторе, она имеет точно определенное и постоянное значение.

Спонтанное и вынужденное излучение.

Энергия электромагнитного излучения выделяется или поглощается в виде отдельных "порций", называемых квантами или фотонами, причем энергия одного кванта равна hn, где h - постоянная Планка, а n - частота излучения. Когда атом поглощает квант энергии, он переходит на более высокий энергетический уровень, т.е. один из его электронов перескакивает на орбиту, более удаленную от ядра. Принято говорить, что атом при этом переходит в возбужденное состояние. Оказавшийся в возбужденном состоянии атом может отдать запасенную энергию разными путями. Один возможный путь - спонтанно испустить квант с той же самой частотой, после чего он возвращается в исходное состояние.

Это - процесс спонтанного излучения (испускания), схематически изображенный на рис. 3 На высоких частотах, т.е. при малых длинах волн, соответствующих видимому свету, спонтанное излучение происходит очень быстро.

Возбужденный атом, поглотив фотон видимого света, обычно теряет приобретенную энергию в результате спонтанного излучения менее чем через одну миллионную секунды.

Процесс спонтанного излучения на меньших частотах задерживается.

Кроме того, атом может перейти в некое промежуточное состояние, потеряв лишь часть своей энергии в виде испущенного им фотона меньшей энергии.


В атоме водорода только один электрон и его спектр испускания относительно прост. В спектрах испускания атомов других элементов число линий больше. Еще до появления модели Бора физики научились различать в таких спектрах близко расположенные линии, отличающиеся по внешнему виду. Одни из них (очень узкие) получили название "резких" (от англ. sharp). Наиболее яркие линии назвали "главными" (от англ. principle). Наблюдались более широкие линии - их назвали "размытыми" (diffuse). Еще один сорт линий имеет название "фундаментальных" (от англ. fundamental). По первым буквам английских названий говорили о наличии в спектрах испускания s-, p-, d- и f-линий. Применительно к модели Бора это означает, что в спектрах атомов более сложных, чем водород, постоянные электронные уровни могут состоять из нескольких близко расположенных подуровней:

s-подуровень назван по "резкой" (sharp) линии,

p-подуровень назван по "главной" (principal) линии,

d-подуровень назван по "диффузной", “размытой” (diffuse) линии, f-подуровень назван по "фундаментальной" (fundamental) линии.

Сложное устройство уровней показано на рис.4 который мы здесь воспроизводим еще раз:


Электронные подуровни атомов более сложных, чем водород. Наличие подуровней объясняет происхождение в спектрах "резких" (sharp), "главных" (principle) и "размытых" (diffuse) линий. Более высокие уровни на рисунке не показаны.

С помощью спектров выяснилось, что первый уровень (n = 1) не содержит каких-либо подуровней, кроме s. Второй уровень состоит из двух подуровней (s и p), 3-й уровень - из трех подуровней (s, p, и d) и т.д. Как мы видим, подуровни обозначаются по первым буквам английских названий соответствующих линий в спектрах. В дальнейшем более высокие подуровни стали обозначать, просто продолжая латинский алфавит: g-подуровень, h-подуровень и т.д.

На рис.5 показана диаграмма части энергетических переходов электронов в атоме лития, полученная из спектра испускания раскаленных паров этого металла.


Диаграмма части энергетических уровней и подуровней атома лития. Уровень 1s находится намного ниже уровня 2s и не поместился в масштаб изображения (рисунок из книги Дж. Кемпбела "Современная общая химия", М.: Мир, 1975, т. 1, с. 109).

Можно заметить, что на рис.5 некоторые подуровни изображены состоящими из нескольких одинаковых по энергии "полочек". Например, p-подуровни состоят из трех одинаковых по энергии частей, d-подуровни - из пяти, f-подуровни - из семи. Откуда это стало известно? Еще в 1896 году немецкий физик П. Зееман поместил в сильное магнитное поле устройство, аналогичное водородной лампе, но наполненное парами раскаленного натрия. Обнаружилось, что в магнитном поле число линий в спектрах испускания возрастает (эффект Зеемана). Аналогичное явление наблюдается и в сильном электрическом поле. Пока на электроны действуют только внутренние силы ядра, часть из них может находиться в состоянии с одинаковой энергией. Но когда появляется дополнительное, внешнее поле, эта энергия уже не может оставаться одинаковой. Анализ спектров Зеемана значительно позже привел физика-теоретика Вольфганга Паули к мысли о том, что на одной энергетической "полочке" может помещаться не больше двух электронов. А чтобы противостоять мощным силам отталкивания, такие электроны должны обладать разным спином (к этому свойству мы вернемся чуть позже). Получается, что в атоме не может быть двух электронов в одинаковом состоянии. Этот вывод известен как принцип (или запрет) Паули.

Физические эксперименты позволяют определить заселенность электронами уровней и подуровней. Для этого надо измерять энергию ионизации атомов, т.е. энергию отрыва от него электронов. Сначала измерить энергию, необходимую для удаления из атома первого электрона, затем 2-го, 3-го и т.д. Оказалось, что во всех атомах есть электроны, для которых энергии ионизации близки. Например, для аргона (в его электронной оболочке 18 электронов) обнаруживаются пять таких групп с близкими энергиями ионизации. В них 2, 2, 6, 2 и 6 электронов. Но 5 самых нижних энергетических уровней атома соответствуют подуровням 1s, 2s, 2p, 3s и 3p (это известно из спектров испускания). В таком случае s-подуровень должен состоять только из одной орбитали (на ней 2 электрона), p-подуровень - из трех орбиталей (там 6 электронов - по два на каждую орбиталь). Можно показать, что d-подуровень в обычных условиях (без внешнего поля) состоит из пяти орбиталей с одинаковой энергией, а f-подуровень - из семи.

Модель Бора постепенно уточнялась. Ученых она привлекала тем, что с её помощью можно было делать довольно точные расчеты. Например, можно было вычислить энергию атома водорода в основном и возбужденном состояниях, определить его радиус, вычислить энергию ионизации и т.д. Для этих целей модель была снабжена ясным и понятным для многих исследователей математическим аппаратом, который разработали в основном сам Н. Бор и его последователь А. Зоммерфельд. Для проведения расчетов требовалось описывать состояние электрона в атоме, т.е. указывать его точный "адрес" в электронной оболочке (точнее - в модели электронной оболочки) с помощью, так называемых квантовых чисел. Мы уже знаем, что каждый электрон существует на каком-либо уровне (1, 2, 3, и т.д.). Этот уровень обозначается числом n, которое получило название главного квантового числа. Понятно, что число n может принимать только целые значения.

Поскольку уровням уже присвоено главное квантовое число n, для подуровней было введено вспомогательное квантовое число l. Если главное квантовое число n - это “адрес” уровня, то число l - “адрес” подуровня:

l = 0 - это s-подуровень, l = 1 - это p-подуровень, l = 2 - это d-подуровень, l = 3 - это f-подуровень.

Квантовые числа электронов

Основные понятия и законы химии. Современные представления о строении атома.

Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

Химические явления : одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

Физические явления : меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Строение атома.

1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов. Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек.

Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением.

Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Атомное ядро - центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Химическая формула - это условная запись состава вещества с помощью химических знаков (предложены в 1814 г. Й. Берцелиусом) и индексов (индекс - цифра, стоящая справа внизу от символа. Обозначает число атомов в молекуле). Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Аллотропи я - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества- молекулы, состоят из атомов одного и того же элемента.

Cложные вещества - молекулы, состоят из атомов различных химических элементов.

Международная единица атомных масс равна 1 / 12 массы изотопа 12 C - основного изотопа природного углерода.

1 а.е.м = 1 / 12 m (12 C) = 1,66057 10 -24 г

Относительная атомная масса (A r) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 / 12 массы атома 12 C.

Средняя абсолютная масса атома (m) равна относительной атомной массе, умноженной на а.е.м.

A r(Mg) = 24,312

m (Mg) = 24,312 1,66057 10 -24 = 4,037 10 -23 г

Относительная молекулярная масса (M r) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 / 12 массы атома углерода 12 C.

M г = m г / (1 / 12 m а (12 C))

m r - масса молекулы данного вещества;

m а (12 C) - масса атома углерода 12 C.

M г = S A г (э). Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Пример .

Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5).

Орбитальное квантовое число (l ) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, cодинаковыми n и l - подуровнем.

l=0 s- подуровень, s- орбиталь – орбиталь сфера

l=1 p- подуровень, p- орбиталь – орбиталь гантель

l=2 d- подуровень, d- орбиталь – орбиталь сложной формы

f-подуровень, f-орбиталь – орбиталь еще более сложной формы

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня - 3s, 3p и 3d.

Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.

Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.

Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.

Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.

Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.

Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.

Квантовые числа – это энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится. Квантовые числа необходимы для описания состояния каждого электрона в атоме. Всего 4-ре квантовых числа. Это: главное квантовое число – n , l , магнитное квантовое число – m l и спиновое квантовое число – m s .

Главное квантовое число – n .

Главное квантовое число – n – определяет энергетический уровень электрона, удалённость энергетического уровня от ядра и размер электронного облака. Главное квантовое число принимает любые целочисленные значения, начиная с n =1 ( n =1,2,3,…) и соответствует номеру периода.

Орбитальное квантовое число – l .

Орбитальное квантовое число – l – определяет геометрическую форму атомной орбитали. Орбитальное квантовое число принимает любые целочисленные значения, начиная с l =0 ( l =0,1,2,3,… n -1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. “Набор” таких орбиталей с одинаковыми значениями главного квантового числа называется энергетическим уровнем. Каждому значению орбитального квантового числа соответствует орбиталь особой формы. Значению орбитального квантового числа l =0 соответствует s -орбиталь (1-ин тип). Значению орбитального квантового числа l =1 соответствуют p -орбитали (3-ри типа). Значению орбитального квантового числа l =2 соответствуют d -орбитали (5-ть типов). Значению орбитального квантового числа l =3 соответствуют f -орбитали (7-мь типов).




f-орбитали имеют ещё более сложную форму. Каждый тип орбитали – это объём пространства, в котором вероятность нахождения электрона – максимальна.

Магнитное квантовое число – m l .

Магнитное квантовое число – m l – определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Магнитное квантовое число принимает любые целочисленные значения от –l до +l, включая 0. Это означает, что для каждой формы орбитали существует 2l+1 энергетически равноценных ориентаций в пространстве – орбиталей.

Для s-орбитали:

l=0, m=0 – одна равноценная ориентация в пространстве (одна орбиталь).

Для p-орбитали:

l=1, m=-1,0,+1 – три равноценные ориентации в пространстве (три орбитали).

Для d-орбитали:

l=2, m=-2,-1,0,1,2 – пять равноценных ориентаций в пространстве (пять орбиталей).

Для f-орбитали:

l=3, m=-3,-2,-1,0,1,2,3 – семь равноценных ориентаций в пространстве (семь орбиталей).

Спиновое квантовое число – m s .

Спиновое квантовое число – m s – определяет магнитный момент, возникающий при вращении электрона вокруг своей оси. Спиновое квантовое число может принимать лишь два возможных значения +1/2 и –1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона – спинам. Для обозначения электронов с различными спинами используются символы: 5 и 6 .