Решение простых логарифмических неравенств. Решение логарифмических неравенств




Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

ЛОГАРИФМИЧЕСКИЕ НЕРАВЕНСТВА В ЕГЭ

Сечин Михаил Александрович

Малая академия наук учащейся молодежи РК «Искатель»

МБОУ « Советская СШ №1», 11 класс, пгт. Советский Советского района

Гунько Людмила Дмитриевна, учитель МБОУ « Советская СШ №1»

Советского района

Цель работы: исследование механизма решения логарифмических неравенств С3 при помощи нестандартных методов, выявление интересных фактов логарифма.

Предмет исследования:

3)Научиться решать конкретные логарифмические неравенства С3 с помощью нестандартных методов.

Результаты:

Содержание

Введение………………………………………………………………………….4

Глава 1. История вопроса……………………………………………………...5

Глава 2. Сборник логарифмических неравенств ………………………… 7

2.1. Равносильные переходы и обобщенный метод интервалов…………… 7

2.2. Метод рационализации ………………………………………………… 15

2.3. Нестандартная подстановка………………............................................... 22

2.4. Задания с ловушками…………………………………………………… 27

Заключение…………………………………………………………………… 30

Литература……………………………………………………………………. 31

Введение

Я учусь в 11 классе и планирую поступить в ВУЗ, где профильным предметом является математика. А поэтому много работаю с задачами части С. В задании С3 нужно решить нестандартное неравенство или систему неравенств, как правило, связанное с логарифмами. При подготовке к экзамену я столкнулся с проблемой дефицита методов и приёмов решения экзаменационных логарифмических неравенств, предлагаемых в С3. Методы, которые изучаются в школьной программе по этой теме, не дают базу для решения заданий С3. Учитель по математике предложила мне поработать с заданиями С3 самостоятельно под её руководством. Кроме этого, меня заинтересовал вопрос: а в жизни нашей встречаются логарифмы?

С учетом этого и была выбрана тема:

«Логарифмические неравенства в ЕГЭ»

Цель работы: исследование механизма решения задач С3 при помощи нестандартных методов, выявление интересных фактов логарифма.

Предмет исследования:

1)Найти необходимые сведения о нестандартных методах решения логарифмических неравенств.

2)Найти дополнительные сведения о логарифмах.

3)Научиться решать конкретные задачи С3 с помощью нестандартных методов.

Результаты:

Практическая значимость заключается в расширении аппарата для решения задач С3. Данный материал можно будет использовать на некоторых уроках, для проведения кружков, факультативных занятий по математике.

Проектным продуктом станет сборник «Логарифмические неравенства С3 с решениями».

Глава 1. История вопроса

На протяжении 16 века быстро возрастало количество приближённых вычислений, прежде всего, в астрономии. Совершенствование инструментов, исследование планетных движений и другие работы потребовали колоссальных, иногда многолетних, расчетов. Астрономии грозила реальная опасность утонуть в невыполненных расчётах. Трудности возникали и в других областях, например, в страховом деле нужны были таблицы сложных процентов для различных значений процента. Главную трудность представляли умножение, деление многозначных чисел, особенно тригонометрических величин.

Открытие логарифмов опиралось на хорошо известные к концу 16 века свойства прогрессий. О связи между членами геометрической прогрессии q, q2, q3, ... и арифметической прогрессией их показателей 1, 2, 3,... говорил еще в "Псалмите" Архимед. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели. Многие авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической - в том же порядке - сложение, вычитание, умножение и деление.

Здесь скрывалась идея логарифма как показателя степени.

В истории развития учения о логарифмах прошло несколько этапов.

1 этап

Логарифмы были изобретены не позднее 1594 года независимо друг от друга шотландским бароном Непером (1550-1617) и через десять лет швейцарским механиком Бюрги (1552-1632). Оба хотели дать новое удобное средство арифметических вычислений, хотя подошли они к этой задаче по-разному. Непер кинематически выразил логарифмическую функцию и, тем самым, вступил в новую область теории функции. Бюрги остался на почве рассмотрения дискретных прогрессий. Впрочем, определение логарифма у обоих не похоже на современное. Термин "логарифм" (logarithmus) принадлежит Неперу. Он возник из сочетания греческих слов: logos - "отношение" и ariqmo - "число", которое означало "число отношений". Первоначально Непер пользовался другим термином: numeri artificiales- "искусственные числа", в противоположность numeri naturalts -"числам естественным".

В 1615 году в беседе с профессором математики Грешем Колледжа в Лондоне Генри Бригсом (1561-1631) Непер предложил принять за логарифм единицы нуль, а за логарифм десяти - 100, или, что сводится к тому же, просто 1. Так появились десятичные логарифмы и были напечатаны первые логарифмические таблицы. Позже таблицы Бригса дополнил голландский книготорговец и любитель математики Андриан Флакк (1600-1667). Непер и Бригс, хотя пришли к логарифмам раньше всех, опубликовали свои таблицы позже других - в 1620 году. Знаки log и Log были введены в 1624 году И. Кеплером. Термин "натуральный логарифм" ввели Менголи в 1659 г. и вслед за ним Н. Меркатор в 1668 г., а издал таблицы натуральных логарифмов чисел от 1 до 1000 под названием "Новые логарифмы" лондонский учитель Джон Спейдел.

На русском языке первые логарифмические таблицы были изданы в 1703 году. Но во всех логарифмических таблицах были допущены ошибки при вычислении. Первые безошибочные таблицы вышли в 1857 году в Берлине в обработке немецкого математика К. Бремикера (1804-1877).

2 этап

Дальнейшее развитие теории логарифмов связано с более широким применением аналитической геометрии и исчисления бесконечно малых. К тому времени относится установление связи между квадратурой равносторонней гиперболы и натуральным логарифмом. Теория логарифмов этого периода связана с именами целого ряда математиков.

Немецкий математик, астроном и инженер Николаус Меркатор в сочинении

"Логарифмотехника" (1668) приводит ряд, дающий разложение ln(x+1) по

степеням х:

Это выражение в точности соответствует ходу его мысли, хотя он, конечно, пользовался не знаками d, ... , а более громоздкой символикой. С открытием логарифмического ряда изменилась техника вычисления логарифмов: они стали определяться с помощью бесконечных рядов. В своих лекциях "Элементарная математика с высшей точки зрения", прочитанных в 1907-1908 годах, Ф. Клейн предложил использовать формулу в качестве исходного пункта построения теории логарифмов.

3 этап

Определение логарифмической функции как функции обратной

показательной, логарифма как показателя степени данного основания

было сформулировано не сразу. Сочинение Леонарда Эйлера (1707-1783)

"Введение в анализ бесконечно малых" (1748 г.) послужило дальнейшему

развитию теории логарифмической функции. Таким образом,

прошло 134 года с тех пор, как логарифмы впервые были введены

(считая с 1614 г.), прежде чем математики пришли к определению

понятия логарифма, которое положено теперь в основу школьного курса.

Глава 2. Сборник логарифмических неравенств

2.1. Равносильные переходы и обобщенный метод интервалов.

Равносильные переходы

, если а > 1

, если 0 < а < 1

Обобщённый метод интервалов

Данный способ наиболее универсален при решении неравенств практически любого типа. Схема решения выглядит следующим образом:

1. Привести неравенство к такому виду, где в левой части находится функция
, а в правой 0.

2. Найти область определения функции
.

3. Найти нули функции
, то есть – решить уравнение
(а решать уравнение обычно проще, чем решать неравенство).

4. Изобразить на числовой прямой область определения и нули функции.

5. Определить знаки функции
на полученных интервалах.

6. Выбрать интервалы, где функция принимает необходимые значения, и записать ответ.

Пример 1.

Решение:

Применим метод интервалов

откуда

При этих значениях все выражения, стоящие под знаками логарифмов, положительны.

Ответ:

Пример 2.

Решение:

1-й способ . ОДЗ определяется неравенством x > 3. Логарифмируя при таких x по основанию 10, получаем

Последнее неравенство можно было бы решать, применяя правила разложения, т.е. сравнивая с нулём сомножители. Однако в данном случае легко определить интервалы знакопостоянства функции

поэтому можно применить метод интервалов.

Функция f (x ) = 2x (x - 3,5)lgǀ x - 3ǀ непрерывна при x > 3 и обращается в ноль в точках x 1 = 0, x 2 = 3,5, x 3 = 2, x 4 = 4. Таким образом, определяем интервалы знакопостоянства функции f (x ):

Ответ:

2-й способ . Применим непосредственно к исходному неравенству идеи метода интервалов.

Для этого напомним, что выражения a b - a c и (a - 1)(b - 1) имеют один знак. Тогда наше неравенство при x > 3 равносильно неравенству

или

Поcледнее неравенство решается методом интервалов

Ответ:

Пример 3.

Решение:

Применим метод интервалов

Ответ:

Пример 4.

Решение:

Так как 2x 2 - 3x + 3 > 0 при всех действительных x , то

Для решения второго неравенства воспользуемся методом интервалов

В первом неравенстве сделаем замену

тогда приходим к неравенству 2y 2 - y - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те y , которые удовлетворяют неравенству -0,5 < y < 1.

Откуда, так как

получаем неравенство

которое выполняется при тех x , для которых 2x 2 - 3x - 5 < 0. Вновь применим метод интервалов

Теперь с учетом решения второго неравенства системы окончательно получаем

Ответ:

Пример 5.

Решение:

Неравенство равносильно совокупности систем

или

Применим метод интервалов или

Ответ :

Пример 6.

Решение:

Неравенство равносильно системе

Пусть

тогда y > 0,

и первое неравенство

системы принимает вид

или, раскладывая

квадратный трехчлен на множители,

Применяя к последнему неравенству метод интервалов,

видим, что его решениями, удовлетворяющими условию y > 0 будут все y > 4.

Таким образом исходное неравенство эквивалентно системе:

Итак, решениями неравенства являются все

2.2. Метод рационализации.

Раньше методом рационализации неравенства не решали, его не знали. Это "новый современный эффективный метод решения показательных и логарифмических неравенств" (цитата из книжки Колесниковой С.И.)
И даже, если педагог его знал, была опаска - а знает ли его эксперт ЕГЭ, а почему в школе его не дают? Были ситуации, когда учитель говорил ученику: "Где взял? Садись - 2."
Сейчас метод повсеместно продвигается. И для экспертов есть методические указания, связанные с этим методом, и в "Самых полных изданиях типовых вариантов..." в решении С3 используется этот метод.
МЕТОД ЧУДЕСНЫЙ!

«Волшебная таблица»


В других источниках

если a >1 и b >1, то log a b >0 и (a -1)(b -1)>0;

если a >1 и 0

если 0<a <1 и b >1, то log a b <0 и (a -1)(b -1)<0;

если 0<a <1 и 00 и (a -1)(b -1)>0.

Проведенные рассуждения несложные, но заметно упрощающие решение логарифмических неравенств.

Пример 4.

log x (x 2 -3)<0

Решение:

Пример 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Решение:

Ответ . (0; 0,5)U .

Пример 6.

Для решения этого неравенства вместо знаменателя запишем (х-1-1)(х-1), а вместо числителя - произведение (х-1)(х-3-9+х).


Ответ: (3;6)

Пример 7.

Пример 8.

2.3. Нестандартная подстановка.

Пример 1.

Пример 2.

Пример 3.

Пример 4.

Пример 5.

Пример 6.

Пример 7.

log 4 (3 x -1)log 0,25

Сделаем замену у=3 х -1; тогда данное неравенство примет вид

Log 4 log 0,25
.

Так как log 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y , то перепишем последнее неравенство в виде 2log 4 y -log 4 2 y ≤.

Сделаем замену t =log 4 y и получим неравенство t 2 -2t +≥0, решением которого являются промежутки -.

Таким образом, для нахождения значений у имеем совокупность двух простейших неравенств
Решение этой совокупности есть промежутки 0<у≤2 и 8≤у<+.

Следовательно, исходное неравенство равносильно совокупности двух показательных неравенств,
то есть совокупности

Решением первого неравенства этой совокупности является промежуток 0<х≤1, решением второго – промежуток 2≤х<+. Таким образом, исходное неравенство выполняется для всех значений х из промежутков 0<х≤1 и 2≤х<+.

Пример 8.

Решение:

Неравенство равносильно системе

Решением второго неравенства, определяющего ОДЗ, будет множество тех x ,

для которых x > 0.

Для решения первого неравенства сделаем замену

Тогда получаем неравенство

или

Множество решений последнего неравенства находится методом

интервалов: -1 < t < 2. Откуда, возвращаясь к переменной x , получаем

или

Множество тех x , которые удовлетворяют последнему неравенству

принадлежит ОДЗ (x > 0), следовательно, является решением системы,

а значит, и исходного неравенства.

Ответ:

2.4. Задания с ловушками.

Пример 1.

.

Решение. ОДЗ неравенства есть все х, удовлетворяющие условию 0. Следовательно, все х из промежутка 0

Пример 2.

log 2 (2 x +1-x 2)>log 2 (2 x-1 +1-x)+1. . ? Дело в том, что второе число с очевидностью больше чем

Заключение

Было не просто найти из большого обилия разных учебных источников особые методы решения задач С3. В ходе проделанной работы мне удалось изучить нестандартные методы решения сложных логарифмических неравенств. Это: равносильные переходы и обобщённый метод интервалов, метод рационализации, нестандартная подстановка, задания с ловушками на ОДЗ. В школьной программе эти методы отсутствуют.

Разными методами я решил 27 неравенств, предлагаемых на ЕГЭ в части С, а именно С3. Эти неравенства с решениями по методам легли в основу сборника «Логарифмические неравенства С3 с решениями», который стал проектным продуктом моей деятельности. Гипотеза, поставленная мною вначале проекта, подтвердилась: задачи С3 можно эффективно решать, зная эти методы.

Кроме этого, я выявил интересные факты логарифмов. Мне это было интересно делать. Мои проектные продукты будут полезны как для учащихся, так и для учителей.

Выводы:

Таким образом, поставленная цель проекта достигнута, проблема решена. А я получил наиболее полный и разносторонний опыт проектной деятельности на всех этапах работы. В ходе работы над проектом у меня основное развивающее воздействие было оказано на мыслительную компетентность, деятельность, связанную с логическими мыслительными операциями, развитие творческой компетентности, личной инициативы, ответственности, настойчивости, активности.

Гарантией успеха при создании исследовательского проекта для меня стали: значительный школьный опыт, умение добывать информацию из различных источников, проверять ее достоверность, ранжировать ее по значимости.

Кроме непосредственно предметных знаний по математике, расширил свои практические навыки в области информатики, получил новые знания и опыт в области психологии, наладил контакты с одноклассниками, научился сотрудничать с взрослыми людьми. В ходе проектной деятельности развивались организационные, интеллектуальные и коммуникативные общеучебные умения и навыки.

Литература

1. Корянов А. Г. ,Прокофьев А. А. Системы неравенств с одной переменной (типовые задания С3).

2. Малкова А. Г. Подготовка к ЕГЭ по математике.

3. Самарова С. С. Решение логарифмических неравенств.

4. Математика. Сборник тренировочных работ под редакцией А.Л. Семёнова и И.В. Ященко. -М.: МЦНМО, 2009. - 72 с.-

До сдачи ЕГЭ по математике остается все меньше времени. Обстановка накаляется, нервы у школьников, родителей, учителей и репетиторов натягиваются все сильнее. Снять нервное напряжение вам помогут ежедневные углубленные занятия по математике. Ведь ничто, как известно, так не заряжает позитивом и не помогает при сдаче экзаменов, как уверенность в своих силах и знаниях. Сегодня репетитор по математике расскажет вам о решении систем логарифмических и показательных неравенств, заданий, традиционно вызывающих трудности у многих современных старшеклассников.

Для того, чтобы научиться решать задачи C3 из ЕГЭ по математике как репетитор по математике рекомендую вам обратить внимание на следующие важные моменты.

1. Прежде чем приступить к решению систем логарифмических и показательных неравенств, необходимо научиться решать каждый из этих типов неравенств в отдельности. В частности, разобраться с тем, как находится область допустимых значений, проводятся равносильные преобразования логарифмических и показательных выражений. Некоторые связанные с этим тайны вы сможете постичь, изучив статьи « » и « ».

2. При этом необходимо осознавать, что решение системы неравенств не всегда сводится к решению отдельно каждого неравенства и пересечению полученных промежутков. Иногда, зная решение одного неравенства системы, решение второго значительно упрощается. Как репетитор по математике, занимающийся подготовкой школьников к сдаче выпускных экзаменов в формате ЕГЭ, раскрою в этой статье парочку связанных с этим секретов.

3. Необходимо четко уяснить для себя разницу между пересечением и объединением множеств. Это одно из важнейших математических знаний, которое опытный профессиональный репетитор старается дать своему ученику уже с первых занятий. Наглядное представление о пересечении и объединении множеств дают так называемые «круги Эйлера».

Пересечением множеств называется множество, которому принадлежат только те элементы, которые есть у каждого из этих множеств.

пересечением

Изображение пересечения множеств с помощью «кругов Эйлера»

Объяснение на пальцах. У Дианы в сумочке находится «множество», состоящее из {ручки , карандаша , линейки , тетрадки , расчески }. У Алисы в сумочке находится «множество», состоящее из {записной книжки , карандаша , зеркальца , тетрадки , котлеты по-киевски }. Пересечением этих двух «множеств» будет «множество», состоящее из {карандаша , тетрадки }, поскольку оба этих «элемента» есть и у Дианы, и у Алисы.

Важно запомнить! Если решением неравенства является промежуток а решением неравенства является промежуток то решением систем:

является промежуток то есть пересечение исходных промежутков. Здесь и далее под подразумевается любой из знаков title="Rendered by QuickLaTeX.com" height="17" width="93" style="vertical-align: -4px;">а под — ему противоположный знак.

Объединением множеств называется множество, которое состоит из всех элементов исходных множеств.

Другими словами, если даны два множества и то их объединением будет являться множество следующего вида:

Изображение объединения множеств с помощью «кругов Эйлера»

Объяснение на пальцах. Объединением «множеств», взятых в предыдущем примере будет «множество», состоящее из {ручки , карандаша , линейки , тетрадки , расчески , записной книжки , зеркальца , котлеты по-киевски }, поскольку оно состоит из всех элементов исходных «множеств». Одно уточнение, которое может оказаться не лишним. Множество не может содержать в себе одинаковых элементов.

Важно запомнить! Если решением неравенства является промежуток а решением неравенства является промежуток то решением совокупности:

является промежуток то есть объединение исходных промежутков.

Перейдем непосредственно к примерам.

Пример 1. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенств. Используя замену переходим к неравенству:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется неравенством:

Title="Rendered by QuickLaTeX.com">

В области допустимых значений с учетом того, что основание логарифма title="Rendered by QuickLaTeX.com" height="18" width="52" style="vertical-align: -4px;"> переходим к равносильному неравенству:

Исключая решения, не входящие в область допустимых значений, получаем промежуток

3. Ответом к системе неравенств будет пересечение

Полученные промежутки на числовой прямой. Решение — их пересечение

Пример 2. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенство. Умножаем обе части на title="Rendered by QuickLaTeX.com" height="14" width="55" style="vertical-align: 0px;"> и делаем замену в результате чего приходим к неравенству:

Переходим к обратной подстановке:

2.

Title="Rendered by QuickLaTeX.com">

Графическое изображение полученных промежуток. Решение системы — их пересечение

Пример 3. Решите систему неравенств:

Решение задачи C3.

1. Решаем сперва первое неравенство. Умножаем обе его части на title="Rendered by QuickLaTeX.com" height="18" width="61" style="vertical-align: -4px;"> после чего получаем неравенство:

Используя подстановку переходим к следующему неравенству:

Переходим к обратной подстановке:

2. Решаем теперь второе неравенство. Определим сначала область допустимых значений этого неравенства:

ql-right-eqno">

Обращаем внимание, что

Тогда с учетом области допустимых значений получаем:

3. Находим общее решения неравенств. Сравнение полученных иррациональных значений узловых точек — задача в данном примере отнюдь не тривиальная. Сделать это можно следующим образом. Так как

Title="Rendered by QuickLaTeX.com">

то и окончательный ответ к системе имеет вид:

Пример 4. Решите систему неравенств:

Решение задачи С3.

1. Решим сперва второе неравенство:

2. Первое неравенство исходной системы представляет собой логарифмическое неравенство с переменным основанием. Удобный способ решения подобных неравенств описан в статье «Сложные логарифмические неравенства », в его основе лежит простая формула:

Вместо знака может быть подставлен любой знак неравенства, главное, чтобы он был один и тот же в обоих случаях. Использование данной формулы существенно упрощает решение неравенства:

Определим теперь область допустимых значений данного неравенства. Она задается следующей системой:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Легко видеть, что одновременно этот промежуток будет являться и решением нашего неравенства.

3. Окончательным ответом исходной системы неравенств будет пересечение полученных промежутков, то есть

Пример 5. Решите систему неравенств:

Решение задания C3.

1. Решаем сперва первое неравенство. Используем подстановку Переходим к следующему квадратному неравенству:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется системой:

Title="Rendered by QuickLaTeX.com">

Данное неравенство равносильно следующей смешанной системе:

В области допустимых значений, то есть при title="Rendered by QuickLaTeX.com" height="18" width="53" style="vertical-align: -4px;"> используя равносильные преобразования переходим к следующей смешанной системе:

С учетом области допустимых значений получаем:

3. Окончательным решением исходной системы является

Решение задачи C3.

1. Решаем сперва первое неравенство. Равносильными преобразованиями приводим его к виду:

2. Решаем теперь второе неравенство. Область его допустимых значений определяется промежутком: title="Rendered by QuickLaTeX.com" height="14" width="68" style="vertical-align: 0px;"> Используя замену переменной переходим к следующему квадратичному неравенству:

Этот ответ целиком принадлежит области допустимых значений неравенства.

3. Пересечением полученных в предыдущих пунктах промежутков получаем окончательный ответ к системе неравенств:

Сегодня мы с вами решали системы логарифмических и показательных неравенств. Задания подобного рода предлагались в пробных вариантах ЕГЭ по математике в течение всего ныне идущего учебного года. Однако, как репетитор по математике, имеющий опыт подготовки к ЕГЭ, могу сказать, что это вовсе не означает, что аналогичные задания будут в реальных вариантах ЕГЭ по математике в июне.

Позволю себе высказать одно предостережение, адресованное в первую очередь репетиторам и школьным учителям, занимающимся подготовкой старшеклассников к сдаче ЕГЭ по математике. Весьма опасно готовить школьников к экзамену строго по заданным темам, ведь в этом случае возникает риск полностью «завалить» его даже при незначительном изменении ранее заявленного формата заданий. Математическое образование должно быть полным. Уважаемые коллеги, пожалуйста, не уподобляйте роботам своих учеников так называемым «натаскиванием» на решение определенного типа задач. Ведь нет ничего хуже формализации мышления человека.

Всем удачи и творческих успехов!


Сергей Валерьевич

Если пробовать, то есть два варианта: получится или не получится. Если не пробовать — всего один.
© Народная мудрость

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) · (k (x ) − 1) ∨ 0

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить - см. «Что такое логарифм ».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

f (x ) > 0; g (x ) > 0; k (x ) > 0; k (x ) ≠ 1.

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Задача. Решите неравенство:

Для начала выпишем ОДЗ логарифма:

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞ 0)∪(0; +∞). Теперь решаем основное неравенство:

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

(10 − (x 2 + 1)) · (x 2 + 1 − 1) < 0;
(9 − x 2) · x 2 < 0;
(3 − x ) · (3 + x ) · x 2 < 0.

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 - корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

Получаем x ∈ (−∞ −3)∪(3; +∞). Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами - см. «Основные свойства логарифмов ». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

Задача. Решите неравенство:

Найдем область определения (ОДЗ) первого логарифма:

Решаем методом интервалов. Находим нули числителя:

3x − 2 = 0;
x = 2/3.

Затем - нули знаменателя:

x − 1 = 0;
x = 1.

Отмечаем нули и знаки на координатной стреле:

Получаем x ∈ (−∞ 2/3)∪(1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

log 2 (x − 1) 2 < 2;
log 2 (x − 1) 2 < log 2 2 2 .

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

(f (x ) − g (x )) · (k (x ) − 1) < 0;
((x − 1) 2 − 2 2)(2 − 1) < 0;
x 2 − 2x + 1 − 4 < 0;
x 2 − 2x − 3 < 0;
(x − 3)(x + 1) < 0;
x ∈ (−1; 3).

Получили два множества:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат на ответ: x ∈ (−1; 3).

Осталось пересечь эти множества - получим настоящий ответ:

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем x ∈ (−1; 2/3)∪(1; 3) - все точки выколоты.