Характерные химические свойства алюминия. Характеристика алюминия




Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий -- мягкий легкий серебристо-белый металл.

Свойства

Алюминий -- типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10-5 К-1 Стандартный электродный потенциал Al 3+/ Al -- 1,663В.

Химически алюминий -- довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl 3 + 3H 2 ,

3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .

Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:

Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.

Затем протекают реакции:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,

NaOH + Al(OH) 3 = Na,

или суммарно:

2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,

и в результате образуются алюминаты: Na -- алюминат натрия (Na) (тетрагидроксоалюминат натрия), К -- алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:

Na и К.

При нагревании алюминий реагирует с галогенами:

2Al + 3Cl 2 = 2AlCl 3 ,

2Al + 3 Br 2 = 2AlBr 3 .

Интересно, что реакция между порошками алюминия и иода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I 2 = 2AlI 3 .

Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al 2 S 3 ,

который легко разлагается водой:

Al 2 S 3 + 6Н 2 О = 2Al(ОН) 3 + 3Н 2 S.

С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН 3) х -- сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al 2 О 3 .

Высокая прочность связи в Al 2 О 3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:

3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe и даже

3СаО + 2Al = Al 2 О 3 + 3Са.

Такой способ получения металлов называют алюминотермией.

Амфотерному оксиду Al 2 О 3 соответствует амфотерный гидроксид -- аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl 2 O 3 ·yH 2 O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH) 3 .

В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:

Al 2 (SO 4) 3 + 6NaOH = 2Al(OH) 3 + 3Na 2 SO 4 ,

или за счет добавления соды к раствору соли алюминия:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 + 6NaCl + 3CO 2 ,

а также добавлением раствора аммиака к раствору соли алюминия:

AlCl 3 + 3NH 3 ·H2O = Al(OH) 3 + 3H 2 O + 3NH 4 Cl.

Название и история открытия: латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO 4) 2 ·12H 2 O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному -- оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) со ртутью (Hg)) хлорид алюминия AlCl 3 , который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.

Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности. Самые известные месторождения - в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.

Добыча Al

В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, - это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком. Для промышленного назначения важно еще одно физическое свойство вещества алюминия - это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии. При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Внутреннее строение алюминия

Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба.

Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.

Легирование алюминия

Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.

Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках.

Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl 2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl 2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты - соли, в составе которых имеются ионы алюминия. Например:

Al 2 O 3 +3H2O+2NaOH=2Na

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

2AL+6H 2 O= 2 AL (OH) 3 +3Н 2

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH) 3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH) 2 +NaOH=2Na

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Al(OH) 3 +2NaOH+6H 2 O=2Na +3H 2

Горение алюминия

Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al 2 O 3.

Глинозем

Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда - твердых прозрачных кристаллов. Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9. Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.

Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.

Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.

Гидроксид алюминия

Al 2 (OH) 3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде.

В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al 2 (OH) 3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии - уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

Тип урока . Комбинированный.

Задачи:

Образовательные:

1. Актуализировать знания учащихся о строении атома, физических смыслах порядкового номера, номера группы, номера периода на примере алюминия.

2. Сформировать у учащихся знания о том, что алюминию в свободном состоянии присущи особые, характерные физические и химические свойства.

Развивающие:

1. Возбудить интерес к изучению науки путем предоставления кратких исторических и научных сообщений о прошлом, настоящем и будущем алюминия.

2. Продолжить формирование исследовательских навыков учащихся при работе с литературой, выполнением лабораторной работы.

3. Расширить понятие амфотерности раскрытием электронного строения алюминия, химических свойств его соединений.

Воспитательные:

1. Воспитывать бережное отношение к окружающей среде, предоставляя сведения о возможном использовании алюминия вчера, сегодня, завтра.

2. Формировать умения работать коллективом у каждого учащегося, считаться с мнением всей группы и отстаивать свое корректно, выполняя лабораторную работу.

3. Знакомить учащихся с научной этикой, честностью и порядочностью естествоиспытателей прошлого, предоставляя сведения о борьбе за право быть первооткрывателем алюминия.

ПОВТОРЕНИЕ ПРОЙДЕННОГО МАТЕРИАЛЛА по темам щелочные и щелочноземельные М (ПОВТОРЕНИЕ):

    Какое количество электронов на внешнем энергетическом уровне щелочных и щелочноземельных М?

    Какие продукты образуются при взаимодействии с кислородом натрия или калия? (пероксид), способен ли литий в реакции с кислородом давать пероксид? (нет, в результате реакции образуется оксид лития.)

    Как получают оксиды натрия и калия? (прокаливанием пероксидов с соответствующими Ме, Пр: 2Na+Na 2 O 2 =2Na 2 O).

    Проявляют ли щелочные и щелочноземельные металлы отрицательные степени окисления? (нет, не имеют, так как являются сильными восстановителями.).

    Как изменяется радиус атома в главных подгруппах (сверху вниз) Переодической системы? (увеличивается), с чем это связано? (с увеличением числа энергетических уровней).

    Какие из изученных нами групп металлов легче воды? (у щелочных).

    При каких условиях идет образование гидридов у щелочноземельных металлов? (при высоких температурах).

    Какое вещество кальций или магний активнее реагирует с водой? (более активно реагирует кальций. Магний активно реагирует с водой только при нагревании ее до 100 0 С).

    Как изменяется растворимость гидроксидов щелочноземельных металлов в воде, в ряду от кальция до бария? (растворимость в воде увеличивается).

    Расскажите про особенности хранения щелочных и щелочноземельных металлов, почему их хранят именно так? (т.к. данные металлы очень реакциоспособны, то их хранят в таре под слоем керосина).

КОНТРОЛЬНАЯ РАБОТА по темам щелочные и щелочноземельные М:

КОНСПЕКТ УРОКА (ИЗУЧЕНЕ НОВОГО МАТЕРИАЛА):

Учитель: Здравствуйте ребята, сегодня мы с вами переходим к изучению IIIА подгруппы. Перечислите элементы расположенные в IIIА подгруппе?

Обучаемые: Она включает в себя такие элементы как бор, алюминий, галлий, индий и таллий.

Учитель: Какое число электронов они содержат на внешнем энергетическом уровне, степени окисления?

Обучаемые: Три электрона, степень окисления +3, хотя для таллия более устойчивой является степень окисления +1.

Учитель: Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Бор является неМ. В дальнейшем внутри подгруппы с возрастанием заряда ядра М свойства усиливаются. А l – уже М, но не типичный. Его гидроксид обладает амфотерными свойствами.

Из М главной подгруппы III группы наибольшее значение имеет алюминий, свойства которого мы изучим подробно. Он интересен нам потому, что является переходным элементом.

ОПРЕДЕЛЕНИЕ

Алюминий расположен в третьем периоде, III группе главной (A) подгруппе Периодической таблицы. Это первый p-элемент 3-го периода.

Металл. Обозначение - Al. Порядковый номер - 13. Относительная атомная масса - 26,981 а.е.м.

Электронное строение атома алюминия

Атом алюминия состоит из положительно заряженного ядра (+13), внутри которого находится 13 протонов и 14 нейтронов. Ядро окружено тремя оболочками, по которым движутся 13 электронов.

Рис. 1. Схематическое изображение строения атома алюминия.

Распределение электронов по орбиталям выглядит следующим образом:

13Al) 2) 8) 3 ;

1s 2 2s 2 2p 6 3s 2 3p 1 .

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Энергетическая диаграмма принимает следующий вид:

Теоретически возможно возбужденное состояние для атома алюминия за счет наличия вакантной 3d -орбитали. Однако распаривания электронов 3s -подуровня на деле не происходит.

Примеры решения задач

ПРИМЕР 1

>> Химия: Алюминий

Строение и свойства атомов. Алюминий Аl - элемент главной подгруппы III группы Периодической системы Д. И. Менделеева. Атом алюминия содержит на внешнем энергетическом уровне три электрона, которые он легко отдает при химических взаимодействиях. У родоначальника подгруппы и верхнего соседа алюминия - бора радиус атома меньше (у бора он равен 0,080 нм, у алюминия - 0,143 нм). Кроме того, у атома алюминия появляется один промежуточный восьмиэлектрон-ный слой (2е-; 8е-; Зе-), который препятствует притяжению внешних электронов к ядру. Поэтому у атомов алюминия восстановительные свойства выражены гораздо сильнее, чем у атомов бора, который проявляет неметаллические свойства.

Почти во всех своих соединениях алюминий имеет степень окисления +3.

Алюминий - простое вещество. Серебристо-белый легкий металл. Плавится при 660 °С. Очень пластичен, легко вытягивается в проволоку и прокатывается в фольгу толщиной 0,01 мм. Обладает очень большой электрической проводимостью и теплопроводностью. Образует с другими металлами легкие и прочные сплавы.

Какую химическую реакцию положил в основу рассказа «Бенгальские огни» его автор Н. Носов?

На каких физических и химических свойствах основано применение в технике алюминия и его сплавов?

Напишите в ионном виде уравнения реакций между растворами сульфата алюминия и гидроксида калия при недостатке и избытке последнего.

Напишите уравнения реакций следующих превращений: Аl -> АlСl3 -> Аl(0Н)3 -> Аl2O3 -> NаАl02 -> Аl2(SO4)3 -> Аl(ОН)3 ->АlСl3 ->NаАlO2

Реакции, идущие с участием электролитов, запишите в ионной форме. Первую реакцию рассмотрите как окислительно-восстановительный процесс.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки