Активный центр белка и его взаимодействие с лигандом. Активный центр белков и избирательность связывания его с лигандом




), а также в химии комплексных соединений , обозначая там присоединенные к одному или нескольким центральным (комплексообразующим) атомам металла частицы.

В неорганической химии

Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи , где лиганды выступают в роли основания Льюиса , то есть являются донорами электронной пары . При присоединении лигандов к центральному атому химические свойства комплексообразователя и самих лигандов часто претерпевают значительные изменения.

Номенклатура лигандов

  1. первым в названии соединения в именительном падеже называется анион, а затем в родительном - катион
  2. в названии комплексного иона сначала перечисляются лиганды в алфавитном порядке, а затем центральный атом
  3. центральный атом в нейтральных катионных комплексах называются русским названием, а в анионах корнем латинского названия с суффиксом «ат». После названия центрального атома указывается степень окисления.
  4. число лигандов, присоединенных к центральному атому, указывается приставками «моно», «ди», «три», «тетра», «пента», и т. д.

Характеристики лигандов

Электронное строение

Собственно, важнейшая характеристика лиганда, позволяющая оценить и спрогнозировать его способности к комплексообразованию и саморазрушению D-орбитали - разрушения соединения в целом. В первом приближении включает в себя количество электронных пар, которые лиганд способен выделить на создание координационных связей и электроотрицательность донирующего атома или функциональной группы .

Дентатность

Число занимаемых лигандом координационных мест центрального атома (или атомов), называется дентатностью (от лат. dens, dent- - зуб ). Лиганды, занимающие одно координационное место, называются моно дентатными (например, N H 3), два - би дентатными (оксалат-анион [O -C(=O)-C(=O)-O ] 2−). Лиганды, способные занять большее количество мест, обычно обозначают как поли дентатные. Например, этилендиаминтетрауксусная кислота (EDTA), способная занять шесть координационных мест.

Кроме дентатности, существует характеристика, отражающая количество атомов лиганда, связанных с одним координационным местом центрального атома. В английской литературе обозначается словом hapticity и имеет номенклатурное обозначение с соответствующим надстрочным индексом. Хотя устоявшегося термина в русском языке она, по-видимому, не имеет, в некоторых источниках можно встретить кальку «гаптность» . Как пример, можно привести циклопентадиенильный лиганд в металлоцентровых комплексах, занимающий одно координационное место (то есть, являющийся монодентатным) и связанный через все пять атомов углерода: η 5 - − .

Способы координации

Лиганды с дентатностью больше двух способны образовывать хелатные комплексы (греч. χηλή - клешня) - комплексы, где центральный атом включен в один или более циклов с молекулой лиганда. Такие лиганды называются хелатирующими . Как пример можно привести комплексы тетрааниона той же EDTA, обратив внимание, что несколько из четырёх связей M-O в нём могут формально являться ионными .

При образовани хелатных комплексов часто наблюдается хелатный эффект - большая их стабильность по сравнению с аналогичными комплексами не-хелатирующих лигандов. Он достигается за счет большего экранирования центрального атома от замещающих воздействий и энтропийного эффекта. Например, константа диссоциации аммиачного комплекса кадмия 2+ почти в 1500 раз меньше, чем комплекса с этилендиамином 2+ . Причина этого заключается в том, что при взаимодействии гидратированного иона кадмия(II) с этилендиамином две молекулы лиганда вытесняют четыре молекулы воды. При этом число свободных частиц в системе значительно возрастает, и энтропия системы возрастает (а внутренняя упорядоченность комплекса соответственно растёт). То есть причина хелатного эффекта - увеличение энтропии системы при замещении монодентатных лигандов полидентатнымии и, как следствие, снижение энергии Гиббса .

Среди хелатирующих лигандов можно выделить класс макроциклических лигандов - молекул с достаточным для помещения атома комплексообразователя размером внутрициклического пространства. Примером таких соединений могут служить порфириновые основания - основы важнейших биохимических комплексов, таких, как гемоглобин , хлорофилл и бактериохлорофилл . Также в качестве макроциклических лигандов могут выступать краун-эфиры , каликсарены и др.

Лиганды также могут являться мостиковыми, образуя связи между различными центральными атомами в би- или полиядерных комплексах. Мостиковые лиганды обозначаются греческой буквой μ (мю ).

Напишите отзыв о статье "Лиганд"

Примечания

Отрывок, характеризующий Лиганд

– Ежели бы все воевали только по своим убеждениям, войны бы не было, – сказал он.
– Это то и было бы прекрасно, – сказал Пьер.
Князь Андрей усмехнулся.
– Очень может быть, что это было бы прекрасно, но этого никогда не будет…
– Ну, для чего вы идете на войну? – спросил Пьер.
– Для чего? я не знаю. Так надо. Кроме того я иду… – Oн остановился. – Я иду потому, что эта жизнь, которую я веду здесь, эта жизнь – не по мне!

В соседней комнате зашумело женское платье. Как будто очнувшись, князь Андрей встряхнулся, и лицо его приняло то же выражение, какое оно имело в гостиной Анны Павловны. Пьер спустил ноги с дивана. Вошла княгиня. Она была уже в другом, домашнем, но столь же элегантном и свежем платье. Князь Андрей встал, учтиво подвигая ей кресло.
– Отчего, я часто думаю, – заговорила она, как всегда, по французски, поспешно и хлопотливо усаживаясь в кресло, – отчего Анет не вышла замуж? Как вы все глупы, messurs, что на ней не женились. Вы меня извините, но вы ничего не понимаете в женщинах толку. Какой вы спорщик, мсье Пьер.
– Я и с мужем вашим всё спорю; не понимаю, зачем он хочет итти на войну, – сказал Пьер, без всякого стеснения (столь обыкновенного в отношениях молодого мужчины к молодой женщине) обращаясь к княгине.
Княгиня встрепенулась. Видимо, слова Пьера затронули ее за живое.
– Ах, вот я то же говорю! – сказала она. – Я не понимаю, решительно не понимаю, отчего мужчины не могут жить без войны? Отчего мы, женщины, ничего не хотим, ничего нам не нужно? Ну, вот вы будьте судьею. Я ему всё говорю: здесь он адъютант у дяди, самое блестящее положение. Все его так знают, так ценят. На днях у Апраксиных я слышала, как одна дама спрашивает: «c"est ca le fameux prince Andre?» Ma parole d"honneur! [Это знаменитый князь Андрей? Честное слово!] – Она засмеялась. – Он так везде принят. Он очень легко может быть и флигель адъютантом. Вы знаете, государь очень милостиво говорил с ним. Мы с Анет говорили, это очень легко было бы устроить. Как вы думаете?
Пьер посмотрел на князя Андрея и, заметив, что разговор этот не нравился его другу, ничего не отвечал.
– Когда вы едете? – спросил он.
– Ah! ne me parlez pas de ce depart, ne m"en parlez pas. Je ne veux pas en entendre parler, [Ах, не говорите мне про этот отъезд! Я не хочу про него слышать,] – заговорила княгиня таким капризно игривым тоном, каким она говорила с Ипполитом в гостиной, и который так, очевидно, не шел к семейному кружку, где Пьер был как бы членом. – Сегодня, когда я подумала, что надо прервать все эти дорогие отношения… И потом, ты знаешь, Andre? – Она значительно мигнула мужу. – J"ai peur, j"ai peur! [Мне страшно, мне страшно!] – прошептала она, содрогаясь спиною.
Муж посмотрел на нее с таким видом, как будто он был удивлен, заметив, что кто то еще, кроме его и Пьера, находился в комнате; и он с холодною учтивостью вопросительно обратился к жене:
– Чего ты боишься, Лиза? Я не могу понять, – сказал он.
– Вот как все мужчины эгоисты; все, все эгоисты! Сам из за своих прихотей, Бог знает зачем, бросает меня, запирает в деревню одну.
– С отцом и сестрой, не забудь, – тихо сказал князь Андрей.
– Всё равно одна, без моих друзей… И хочет, чтобы я не боялась.
Тон ее уже был ворчливый, губка поднялась, придавая лицу не радостное, а зверское, беличье выраженье. Она замолчала, как будто находя неприличным говорить при Пьере про свою беременность, тогда как в этом и состояла сущность дела.
– Всё таки я не понял, de quoi vous avez peur, [Чего ты боишься,] – медлительно проговорил князь Андрей, не спуская глаз с жены.
Княгиня покраснела и отчаянно взмахнула руками.
– Non, Andre, je dis que vous avez tellement, tellement change… [Нет, Андрей, я говорю: ты так, так переменился…]
– Твой доктор велит тебе раньше ложиться, – сказал князь Андрей. – Ты бы шла спать.
Княгиня ничего не сказала, и вдруг короткая с усиками губка задрожала; князь Андрей, встав и пожав плечами, прошел по комнате.
Пьер удивленно и наивно смотрел через очки то на него, то на княгиню и зашевелился, как будто он тоже хотел встать, но опять раздумывал.
– Что мне за дело, что тут мсье Пьер, – вдруг сказала маленькая княгиня, и хорошенькое лицо ее вдруг распустилось в слезливую гримасу. – Я тебе давно хотела сказать, Andre: за что ты ко мне так переменился? Что я тебе сделала? Ты едешь в армию, ты меня не жалеешь. За что?
– Lise! – только сказал князь Андрей; но в этом слове были и просьба, и угроза, и, главное, уверение в том, что она сама раскается в своих словах; но она торопливо продолжала:
– Ты обращаешься со мной, как с больною или с ребенком. Я всё вижу. Разве ты такой был полгода назад?
– Lise, я прошу вас перестать, – сказал князь Андрей еще выразительнее.
Пьер, всё более и более приходивший в волнение во время этого разговора, встал и подошел к княгине. Он, казалось, не мог переносить вида слез и сам готов был заплакать.
– Успокойтесь, княгиня. Вам это так кажется, потому что я вас уверяю, я сам испытал… отчего… потому что… Нет, извините, чужой тут лишний… Нет, успокойтесь… Прощайте…
Князь Андрей остановил его за руку.
– Нет, постой, Пьер. Княгиня так добра, что не захочет лишить меня удовольствия провести с тобою вечер.
– Нет, он только о себе думает, – проговорила княгиня, не удерживая сердитых слез.
– Lise, – сказал сухо князь Андрей, поднимая тон на ту степень, которая показывает, что терпение истощено.
Вдруг сердитое беличье выражение красивого личика княгини заменилось привлекательным и возбуждающим сострадание выражением страха; она исподлобья взглянула своими прекрасными глазками на мужа, и на лице ее показалось то робкое и признающееся выражение, какое бывает у собаки, быстро, но слабо помахивающей опущенным хвостом.

  • 1. Методы разрушения тканей и экстракции белков
  • 2. Методы очистки белков
  • 3. Очистка белков от низкомолекулярных примесей
  • 11.Конформационная лабильность белков. Денатурация, признаки и факторы ее вызывающие. Защита от денатурации специализированными белками теплового шока (шаперонами).
  • 12. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 13. Иммуноглобулины, классы иммуноглобулинов, особенности строения и функционирования.
  • 14. Ферменты, определение. Особенности ферментативного катализа. Специфичность действия ферментов, виды. Классификация и номенклатура ферментов, примеры.
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • V. Механизм действия ферментов
  • 1. Формирование фермент-субстратного комплекса
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 16. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 17. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 18. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 20. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 21. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 22. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 23. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 24. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 25. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 28. Первичная структура нуклеиновых кислот. Днк и рнк–черты сходства и различия состава, локализации в клетке, функции.
  • 29. Вторичная структура днк (модель Уотсона и Крика). Связи, стабилизирующие вторичную структуру днк. Комплементарность. Правило Чаргаффа. Полярность. Антипараллельность.
  • 30. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 32. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 33. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 34. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 35. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 36. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 37. Регуляция транскрипции у прокариот. Теория оперона, регуляция по типу индукции и репрессии (примеры).
  • 1. Теория оперона
  • 2. Индукция синтеза белков. Lac-оперон
  • 3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
  • 39. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 41. Фолдинг белков. Ферменты. Роль шаперонов в фолдинге белка. Фолдинг белковой молекулы с помощью шаперониновой системы. Болезни, связанные с нарушением фолдинга белка – прионовые болезни.
  • 42. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 43. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 44. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 45. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 47. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 48. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 51. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 56. Образование активных форм кислорода (синглетный кислород, пероксид водо-рода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 57. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 59. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 60. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 61. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 63. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 64. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 66. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 68. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 72. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 73. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 74. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 76. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 81. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда

    Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

    1. Характеристика активного центра

    Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

    Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

    Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

    Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

    В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О 2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О 2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

    Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

    2. Многообразие лигандов

      Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

      существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

      существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

    В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют "простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо.

    Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

    Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са 2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность.

    8.Четвертичная структура белков. Особенности строенияи функционирования олигомерных белков на примере гемоглобина. Кооперативные изменения конформации протомеров. Возможность регуляции биологической функции олигомерных белков аллостерическими лигандами.

    Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не ковалентными связями, а неко-валентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами – от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых α- и двух β-полипептидных цепей, т.е. представляет собой тетрамер.

    Кооперативные изменения конформации протомеров.

    Изменение конформации, а следовательно и функциональных свойств всех протомеров олигомерного белка при присоединение лиганда только к одному из них носит название-кооперативные изменения конформации протомеров.

    Аллостерическая регуляция . Фермент изменяет активность с помощью нековалентно связанного с ним эффектора. Связывание происходит в участке, пространственно удаленном от активного (каталитического) центра. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению определенной геометрии каталитического центра. Активность может увеличиться - это активация фермента, или уменьшиться - это ингибирование «Сообщение» о присоединении аллостерического активатора передается посредством конформационных изменений каталитической субъединице, которая становится комплементарной субстрату, и фермент «включается». При удалении активатора фермент вновь переходит в неактивную форму и «выключается». Аллостерическая регуляция является основным способом регуляции метаболических путей.

  • Водородные связи, силы Ван дер Ваальса. Связывание или ассоциация лиганда с рецептором (так называемый «докинг» лиганда в специфическую «нишу» в рецепторе) обычно обратима и кратковременна. Обратный процесс называется диссоциацией лиганда из связи с рецептором. Необратимое ковалентное связывание лиганда с рецептором или другой молекулярной мишенью для данного лиганда является редкостью в биологических системах, по крайней мере в физиологических условиях. Однако искусственные, экзогенные лиганды, необратимо ковалентно связывающиеся с молекулами-мишенями, конечно, существуют, и даже имеют важное значение в медицине, как, например, необратимо алкилирующие ДНК противоопухолевые препараты алкилирующего типа или необратимо инактивирующие МАО антидепрессанты группы ИМАО, или необратимо инактивирующий α-адренорецепторы феноксибензамин. В отличие от принятого определения лиганда в металлоорганической и неорганической химии, для процесса взаимодействия лиганда с биомолекулами-мишенями совершенно неважно (и не требуется), чтобы лиганд взаимодействовал именно с металлом-кофактором в составе биологической молекулы (тем более что не все биологические молекулы содержат металлы в качестве кофакторов). Связывание лиганда именно с металлосодержащим сайтом биологической молекулы, тем не менее, в биологических системах часто встречается и имеет важное биологическое значение и для транспортных белков, таких, как гемоглобин (транспортирующий кислород , углекислый газ и способный транспортировать также другие эндогенные газы, в частности эндогенный угарный газ , эндогенный сероводород и эндогенный оксид серы (IV)), и для каталитических ферментов , многие из которых являются металлоферментами (содержат в составе активного каталитического центра ион того или иного металла в координационном комплексе с белком).

    Лиганды, которые связываются с рецепторами, однако не могут или почти не могут активировать рецептор (вернее делают это с пренебрежимо малой вероятностью) и соответственно сами по себе не могут вызывать и не вызывают физиологического ответа рецепторной системы, а лишь предотвращают связывание как агонистов, так и обратных агонистов, и физиологический ответ на них, называются антагонистами .

    В примере, показанном слева, кривые зависимости «доза-эффект» показаны для двух лигандов с разной степенью сродства к рецептору (разной аффинностью к нему). Связывание лиганда с рецептором часто характеризуют в терминах того, какая концентрация лиганда требуется для того, чтобы занять 50 % от всех доступных участков связывания рецепторов - так называемая IC 50 . Величина IC 50 связана с константой диссоциации K i , но отличается от неё. Она отличается также и от величины EC 50 , поскольку занятие 50 % доступных рецепторов вовсе не обязательно приводит к продуцированию 50 % от максимального физиологического ответа для данного агониста, или 50 % от максимального физиологического ответа «вообще» (IC 50 может быть как больше, так и меньше EC 50 , в зависимости от особенностей регуляции конкретной физиологической рецепторной системы - существуют как рецепторные системы, в которых занятие относительно малого количества рецепторов производит большой физиологический эффект, так и, наоборот, системы, в которых для создания значительного физиологического эффекта нужно занять большой процент доступных рецепторов, причём зависимость величины физиологического эффекта от процента занятости рецепторов, так же как и от дозы агониста, вовсе не обязана быть линейной). Лиганд, кривая зависимости «доза-эффект» для которого изображена красной линией, имеет более высокую степень сродства к рецептору (большую аффинность связывания), чем лиганд, кривая для которого изображена зелёной линией. Если оба лиганда присутствуют одновременно, то больший процент высокоаффинного (имеющего более высокое сродство к рецептору) лиганда будет связано с доступными сайтами связывания рецептора, по сравнению с менее аффинным лигандом. Этот механизм объясняет, в частности, то, почему оксид углерода (II) даже в низких концентрациях может конкурировать с кислородом за связывание с гемоглобином , являясь более высокоаффинным (имеющим большее сродство к гемоглобину) «агонистом» этого транспортного белка, и почему это часто приводит к отравлению угарным газом.

    Аффинность связывания лиганда с рецептором (степень сродства лиганда к рецептору) чаще всего определяют с использованием метода вытеснения меченого радиоактивного лиганда (называемого «горячим лигандом») исследуемым лигандом (называемым «холодным», или «тестовым» лигандом). Эксперименты по гомологичному конкурентному связыванию лиганда с рецептором представляют собой эксперименты, в которых «горячий» (меченый радиоактивной меткой) и «холодный» (не помеченный) лиганд - это одно и то же химическое вещество, и они конкурируют между собой за доступные участки связывания с рецептором. Существуют также методы без использования радиоактивной метки, такие, как поверхностный плазмонный резонанс, двойная поляризационная интерферометрия. Эти методы позволяют определить не только аффинность (степень сродства) агониста к рецептору, но и кинетику его ассоциации и диссоциации из связи с рецептором, а в случае двойной поляризационной интерферометрии - ещё и конфигурационные изменения рецептора, вызванные связыванием с ним агониста. В последнее время был разработан также метод микротермофореза. Этот метод позволяет определять аффинность связывания, не накладывая никаких ограничений на молекулярную массу лиганда.

    Для анализа полученных данных о кинетике связывания лиганда с рецептором и об его аффинности используются методы статистической механики, в частности вычисление т. н. «конфигурационного интеграла». .

    Сродство к рецепторам (аффинность) и молярная активность («потентность») лиганда

    Степень сродства лиганда к рецепторам, или так называемая «аффинность» лиганда к рецепторам само по себе ещё не определяет молярную активность (общую «потентность») того или иного лиганда. Молярная активность (потентность) вещества является результатом сложного взаимодействия между его степенью сродства к рецепторам и его внутренней агонистической активностью (иначе говоря, его рецепторной эффективностью). Внутренняя агонистическая активность (рецепторная эффективность) - это количественная характеристика способности данного лиганда вызывать тот или иной биологический ответ после связывания с рецептором, и мера величины вызываемого им биологического ответа, в процентах от максимально возможного биологического ответа, за который принимается максимальная стимуляция эндогенным агонистом (100 %). В зависимости от природы, характера, знака и величины по модулю вызываемого лигандом биологического ответа, он классифицируется либо как агонист или даже суперагонист , либо как частичный агонист , либо как нейтральный антагонист , либо как обратный агонист .

    Селективные и неселективные лиганды

    Селективные лиганды имеют тенденцию в клинически/физиологически релевантных (как правило, наномолярных) концентрациях клинически/физиологически значимо связываться только с достаточно ограниченным набором подтипов рецепторов (не обязательно все эти подтипы будут рецепторами к одному и тому же эндогенному лиганду). В то же время неселективные лиганды имеют тенденцию в релевантных концентрациях значимо связываться с достаточно широким набором подтипов рецепторов (часто - к разным эндогенным лигандам) и, тем самым, производить более широкий спектр клинических, биохимических и физиологических эффектов, как желательных, так и, нередко, нежелательных побочных эффектов.

    Селективность лиганда является понятием достаточно условным и относительным, поскольку существует очень мало истинно селективных лигандов, которые связываются только с одним подтипом рецепторов во всём диапазоне «разумных», клинически достижимых у человека концентраций, и ещё меньше лигандов, способных сохранять 100 % селективность в тех концентрациях, которые можно создать в экспериментах на животных и тем более «в пробирке» (in vitro ). Часто кажущаяся относительная селективность того или иного лиганда теряется при повышении дозы или концентрации (то есть в более высоких концентрациях или дозах он начинает взаимодействовать и с другими подтипами рецепторов), и это имеет важное клиническое значение (так, высокие дозы селективного агониста опиоидных рецепторов бупренорфина способны значимо угнетать дыхание и вызывать эйфорию, так как селективность по сравнению с морфином утрачивается; аналогичным образом высокие дозы селективных β-адреноблокаторов способны вызывать бронхоспазм , так как утрачивается селективность к подтипу β 1 , а высокие дозы β 2 -адреностимуляторов помимо устранения бронхоспазма способны также вызывать тахикардию ; высокие дозы атипичных антипсихотиков наподобие рисперидона и оланзапина способны вызывать экстрапирамидные побочные явления, подобно типичным антипсихотикам).

    Разработка новых, более селективных, лигандов является важной задачей современной экспериментальной и клинической фармакологии, поскольку селективные лиганды, избирательно активируя или блокируя только один «нужный» подтип рецепторов или несколько их подтипов, имеют тенденцию проявлять меньше побочных эффектов, в то время как неселективные лиганды, связываясь с широким кругом рецепторов, производят как желательные, так и нежелательные побочные эффекты. Хорошим примером является сравнение относительно неселективного хлорпромазина с более селективным галоперидолом : хлорпромазин, за счёт своей низкой селективности, производит множество побочных эффектов в дополнение к полезному антипсихотическому эффекту (так, α 1 -адреноблокада приводит к гипотензии и тахикардии, H 1 -гистаминовая блокада к сонливости , седации , повышению аппетита и прибавке массы тела, М-холиноблокада - к сухости рта и запорам и т. п., в то время как галоперидол эти явления вызывает в значительно меньшей мере и в клинически применяемых дозах вызывает в основном экстрапирамидные побочные явления, непосредственно связанные с его основным D 2 -блокирующим действием).

    Мерой относительной селективности того или иного лиганда является величина соотношения его сродства (аффинности) к «желаемому», «основному» подтипу рецепторов (например, к D 2 , в случае антипсихотиков), и к ближайшему следующему по порядку величины показателя сродства (аффинности) подтипу рецепторов - то есть значение соотношения K i(1) / K i(2) . Более высокоаффинные к «желаемому» типу рецепторов, более высокоактивные («более высокопотентные») соединения часто, хотя и не всегда, являются также и более селективными, по крайней мере в малых концентрациях (применение которых, опять-таки, становится возможным именно благодаря более высокой аффинности соединения по отношению к рецептору и большей активности соединения). Таким образом, важной задачей экспериментальной и клинической фармакологии является разработка новых, более высокоаффинных (обладающих более высоким сродством к рецептору) и более активных («более высокопотентных») по отношению к тем или иным типам рецепторов, соединений.

    Бивалентные лиганды

    Бивалентные лиганды состоят из двух соединённых молекул, каждая из которых является лигандом для определённого подтипа рецепторов (одного и того же или разных), причём в силу особенностей пространственного строения обе части молекулы способны одновременно связываться с двумя частями «составного» гомо- или гетеродимерного рецепторного комплекса. Бивалентные лиганды используются в научных исследованиях с целью обнаружения и исследования рецепторных гомо- и гетеродимерных комплексов и изучения их свойств. Бивалентные лиганды обычно являются крупными молекулами и имеют тенденцию не обладать нужными для лекарств свойствами, такими, как удобная фармакокинетика (приемлемая биодоступность, удобство клинического применения, приемлемый период полувыведения и т. д.), низкая аллергенность и приемлемая токсичность и уровень побочных эффектов, что делает их, как правило, непригодными или малопригодными для использования в клинической практике, за пределами исследовательских лабораторий.

    Привилегированная структура

    Привилегированная структура - это структурная часть молекулы, радикал или химический элемент, который или которая статистически часто повторяется среди уже известных лекарств данного фармакологического класса, среди уже известных лигандов данного типа или подтипа рецепторов или известных ингибиторов данного фермента, или среди некоего другого выделенного по неким общим признакам специфического подмножества уже известных биологически активных соединений. Эти статистически выделенные привилегированные элементы химической структуры могут в дальнейшем быть использованы в качестве основы для разработки новых биологически активных соединений или новых лекарств со сходными или, возможно, даже улучшенными по сравнению с исходными соединениями свойствами, и даже для разработки целых библиотек таких соединений.

    Характерными примерами являются, например, трициклические структуры разного химического строения в составе молекул трициклических антидепрессантов , или существование химически сходных целых подклассов антипсихотиков , таких, как производные бутирофенона (галоперидол , спиперон , дроперидол и др.), производные индола (резерпин , карбидин и др.), производные фенотиазина (хлорпромазин , перфеназин и др.).

    См. также

    Примечания

    1. Teif V.B. (2005). “Ligand-induced DNA condensation: choosing the model” . Biophysical Journal . 89 (4): 2574-2587. DOI :10.1529/biophysj.105.063909 . PMC . PMID .
    2. Teif VB, Rippe K. (2010). “Statistical-mechanical lattice models for protein-DNA binding in chromatin”. Journal of Physics: Condensed Matter . 22 (41): 414105.

    Структура модуля

    Темы

    Модульная единица 1

    1.1. Структурная организация белков. Этапы формирования нативной конформации белков

    1.2. Основы функционирования белков. Лекарства как лиганды, влияющие на функцию белков

    1.3. Денатурация белков и возможность их спонтанной ренативации

    Модульная единица 2

    1.4. Особенности строения и функционирования олигомерных белков на примере гемоглобина

    1.5. Поддержание нативной конформации белков в условиях клетки

    1.6. Многообразие белков. Семейства белков на примере иммуноглобулинов

    1.7. Физико-химические свойства белков и методы их разделения

    Модульная единица 1 СТРУКТУРНАЯ ОРГАНИЗАЦИЯ МОНОМЕРНЫХ БЕЛКОВ И ОСНОВЫ ИХ ФУНКЦИОНИРОВАНИЯ

    Цели изучения Уметь:

    1. Использовать знания об особенностях структуры белков и зависимости функций белков от их структуры для понимания механизмов развития наследственных и приобретенных протеинопатий.

    2. Объяснять механизмы лечебного действия некоторых лекарств как лигандов, взаимодействующих с белками и изменяющих их активность.

    3. Использовать знания о строении и конформационной лабильности белков для понимания их структурно-функциональной неустойчивости и склонности к денатурации в изменяющихся условиях.

    4. Объяснять применение денатурирующих агентов в качестве средств для стерилизации медицинского материала и инструментов, а также в качестве антисептиков.

    Знать:

    1. Уровни структурной организации белков.

    2. Значение первичной структуры белков, определяющей их структурное и функциональное многообразие.

    3. Механизм формирования в белках активного центра и его специфическое взаимодействие с лигандом, лежащее в основе функционирования белков.

    4. Примеры влияния экзогенных лигандов (лекарств, токсинов, ядов) на конформацию и функциональную активность белков.

    5. Причины и следствия денатурации белков, факторы, вызывающие денатурацию.

    6. Примеры использования денатурирующих факторов в медицине в качестве антисептиков и средств для стерилизации медицинских инструментов.

    ТЕМА 1.1. СТРУКТУРНАЯ ОРГАНИЗАЦИЯ БЕЛКОВ. ЭТАПЫ ФОРМИРОВАНИЯ НАТИВНОЙ

    КОНФОРМАЦИИ БЕЛКОВ

    Белки - это полимерные молекулы, мономерами которых являются всего 20 α-аминокислот. Набор и порядок соединения аминокислот в белке определяется строением генов в ДНК индивидумов. Каждый белок в соответствии с его специфической структурой выполняет свойственную ему функцию. Набор белков данного организма определяет его фенотипические особенности, а также наличие наследственных болезней или предрасположенность к их развитию.

    1. Аминокислоты, входящие в состав белков. Пептидная связь. Белки - полимеры, построенные из мономеров - 20 α-аминокислот, общая формула которых

    Аминокислоты различаются по строению, размерам, физико-химическим свойствам радикалов, присоединенных к α-углеродному атому. Функциональные группы аминокислот определяют особенности свойств разных α-аминокислот. Встречающиеся в α-аминокислотах радикалы можно разделить на несколько групп:

    Пролин, в отличие от других 19 мономеров белков, не аминокислота, а иминокислота, радикал в пролине связан как с α-углеродным атомом, так и с иминогруппой

    Аминокислоты различаются по растворимости в воде. Это связано со способностью радикалов взаимодействовать с водой (гидратироваться).

    К гидрофильным относятся радикалы, содержащие анионные, катионные и полярные незаряженные функциональные группы.

    К гидрофобным относятся радикалы, содержащие метильные группы, алифатические цепи или циклы.

    2. Пептидные связи соединяют аминокислоты в пептиды. При синтезе пептида α-карбоксильная группа одной аминокислоты взаимодействует с α-аминогруппой другой аминокислоты с образованием пептидной связи:

    Белки представляют собой полипептиды, т.е. линейные полимеры α-аминокислот, соединенных пептидной связью (рис. 1.1.)

    Рис. 1.1. Термины, используемые при описании строения пептидов

    Мономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками. Цепь повторяющихся групп -NH-CH-CO - образует пептидный остов. Аминокислотный остаток, имеющий свободную α-аминогруппу, называется N-концевым, а имеющий свободную α-карбоксильную группу - С-концевым. Пептиды записывают и читают с N-конца к С-концу.

    Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей: у атома азота пептидной группы отсутствует водород,

    вместо него имеется связь с радикалом, в результате одна сторона цикла включается в пептидный остов:

    Пептиды различаются аминокислотным составом, количеством аминокислот и порядком соединения аминокислот, например, Сер-Ала-Глу-Гис и Гис-Глу-Ала-Сер - два разных пептида.

    Пептидные связи очень прочные, и для их химического неферментативного гидролиза требуются жесткие условия: анализируемый белок гидролизуют в концентрированной соляной кислоте при температуре около 110° в течение 24 часов. В живой клетке пептидные связи могут разрываться с помощью протеолитических ферментов, называемых протеазами или пептидгидролазами.

    3. Первичная структура белков. Аминокислотные остатки в пептидных цепях разных белков чередуются не случайным образом, а расположены в определенном порядке. Линейная последовательность или порядок чередования аминокислотных остатков в полипептидной цепи называется первичной структурой белка.

    Первичная структура каждого индивидуального белка закодирована в молекуле ДНК (в участке, называемом геном) и реализуется в ходе транскрипции (переписывания информации на мРНК) и трансляции (синтез первичной структуры белка). Следовательно, первичная структура белков индивидуального человека - наследственно передаваемая от родителей детям информация, определяющая особенности строения белков данного организма, от которых зависит функция имеющихся белков (рис. 1.2.).

    Рис. 1.2. Взаимосвязь между генотипом и конформацией белков, синтезирующихся в организме индивидума

    Каждый из примерно 100 000 индивидуальных белков в организме человека имеет уникальную первичную структуру. В молекулах одного типа белка (например, альбумина) одинаковое чередование аминокислотных остатков, что отличает альбумин от любого другого индивидуального белка.

    Последовательность аминокислотных остатков в пептидной цепи можно рассматривать как форму записи информации. Эта информация определяет пространственную укладку линейной пептидной цепи в более компактную трехмерную структуру, называемую конформацией белка. Процесс формирования функционально активной конформации белка носит название фолдинг.

    4. Конформация белков. Свободное вращение в пептидном остове возможно между атомом азота пептидной группы и соседним α-углеродным атомом, а также между α-углеродным атомом и углеродом карбонильной группы. Вследствие взаимодействия функциональных групп аминокислотных остатков первичная структура белков может приобретать более сложные пространственные структуры. В глобулярных белках различают два основных уровня укладки конформации пептидных цепей: вторичную и третичную структуры.

    Вторичная структура белков - это пространственная структура, формирующаяся в результате образования водородных связей между функциональными группами -С=О и - NH- пептидного остова. При этом пептидная цепь может приобретать регулярные структуры двух типов: α-спирали и β-структуры.

    В α-спирали водородные связи образуются между атомом кислорода карбонильной группы и водородом амидного азота 4-й от него аминокислоты; боковые цепи аминокислотных остатков

    располагаются по периферии спирали, не участвуя в образовании вторичной структуры (рис. 1.3.).

    Объемные радикалы или радикалы, несущие одинаковые заряды, препятствуют формированию α-спирали. Остаток пролина, имеющий кольцевую структуру, прерывает α-спираль, так как из-за отсутствия водорода у атома азота в пептидной цепи невозможно образовать водородную связь. Связь между азотом и α-углеродным атомом входит в состав цикла пролина, поэтому пептидный остов в этом месте приобретает изгиб.

    β-Структура формируется между линейными областями пептидного остова одной полипептидной цепи, образуя при этом складчатые структуры. Полипептидные цепи или их части могут формировать параллельные или антипараллельные β-структуры. В первом случае N- и С-концы взаимодействующих пептидных цепей совпадают, а во втором - имеют противоположное направление (рис. 1.4).

    Рис. 1.3. Вторичная структура белка - α-спираль

    Рис. 1.4. Параллельные и антипараллельные β-складчатые структуры

    β-структуры обозначены широкими стрелками: А - Антипараллельная β-структура. Б - Параллельные β-складчатые структуры

    В некоторых белках β-структуры могут формироваться за счет образования водородных связей между атомами пептидного остова разных полипептидных цепей.

    В белках также встречаются области с нерегулярной вторичной структурой, к которым относят изгибы, петли, повороты полипептидного остова. Они часто располагаются в местах, где меняется направление пептидной цепи, например, при формировании параллельной β-складчатой структуры.

    По наличию α-спиралей и β-структур глобулярные белки могут быть разделены на четыре категории.

    Рис. 1.5. Вторичная структура миоглобина (А) и β-цепи гемоглобина (Б), содержащие восемь α-спиралей


    Рис. 1.6. Вторичная структура триозофосфатизомеразы и домена пируваткиназы

    Рис. 1.7. Вторичная структура константного домена иммуноглобулина (А) и фермента супероксиддисмутазы (Б)

    В четвертую категорию включены белки, имеющие в своем составе незначительное количество регулярных вторичных структур. К таким белкам можно отнести небольшие, богатые цистеином белки или металлопротеины.

    Третичная структура белка - тип конформации, образующийся за счет взаимодействий между радикалами аминокислот, которые могут находиться на значительном расстоянии друг от друга в пептидной цепи. Большинство белков при этом формируют пространственную структуру, напоминающую глобулу (глобулярные белки).

    Так как гидрофобные радикалы аминокислот имеют тенденцию к объединению с помощью так называемых гидрофобных взаимодействий и межмолекулярных ван-дер-ваальсовых сил, внутри белковой глобулы образуется плотное гидрофобное ядро. Гидрофильные ионизированные и неионизированные радикалы в основном располагаются на поверхности белка и определяют его растворимость в воде.

    Рис. 1.8. Типы связей, возникающих между радикалами аминокислот при формировании третичной структуры белка

    1 - ионная связь - возникает между положительно и отрицательно заряженными функциональными группами;

    2 - водородная связь - возникает между гидрофильной незаряженной и любой другой гидрофильной группой;

    3 - гидрофобные взаимодействия - возникают между гидрофобными радикалами;

    4 - дисульфидная связь - формируется за счет окисления SH-групп остатков цистеина и их взаимодействия друг с другом

    Гидрофильные аминокислотные остатки, оказавшиеся внутри гидрофобного ядра, могут взаимодействовать друг с другом с помощью ионных и водородных связей (рис. 1.8).

    Ионные и водородные связи, а также гидрофобные взаимодействия относятся к числу слабых: их энергия ненамного превышает энергию теплового движения молекул при комнатной температуре. Конформация белка поддерживается за счет возникновения множества таких слабых связей. Так как атомы, из которых состоит белок, находятся в постоянном движении, то возможен разрыв одних слабых связей и образование других, что приводит к небольшим перемещениям отдельных участков полипептидной цепи. Это свойство белков изменять конформацию в результате разрыва одних и образования других слабых связей называется конформационной лабильностью.

    В организме человека функционируют системы, поддерживающие гомеостаз - постоянство внутренней среды в определенных допустимых для здорового организма пределах. В условиях гомеостаза небольшие изменения конформации не нарушают общую структуру и функцию белков. Функционально активная конформация белка называется нативной конформацией. Изменение внутренней среды (например, концентрации глюкозы, ионов Са, протонов и т.д.) приводит к изменению конформации и нарушению функций белков.

    Третичная структура некоторых белков стабилизирована дисульфидными связями, образующимися за счет взаимодействия -SH групп двух остатков

    Рис. 1.9. Образование дисульфидной связи в молекуле белка

    цистеина (рис. 1.9). Большинство внутриклеточных белков не имеет в третичной структуре ковалентных дисульфидных связей. Их наличие характерно для секретируемых клеткой белков, что обеспечивает их большую стабильность во внеклеточных условиях. Так, дисульфидные связи имеются в молекулах инсулина и иммуноглобулинов.

    Инсулин - белковый гормон, синтезирующийся в β-клетках поджелудочной железы и секретируемый в кровь в ответ на повышение концентрации глюкозы в крови. В структуре инсулина имеются две дисульфидные связи, соединяющие полипептидные А- и В-цепи, и одна дисульфидная связь внутри А-цепи (рис. 1.10).

    Рис. 1.10. Дисульфидные связи в структуре инсулина

    5. Супервторичная структура белков. В разных по первичной структуре и функциям белках иногда выявляются сходные сочетания и взаиморасположение вторичных структур, которые называются супервторичной структурой. Она занимает промежуточное положение между вторичной и третичной структурами, поскольку это специфическое сочетание элементов вторичной структуры при формировании третичной структуры белка. Супервторичные структуры имеют специфические названия, такие как «α-спираль-поворот-а-спираль», «лейциновая застежка молния», «цинковые пальцы» и др. Такие супервторичные структуры характерны для ДНК-связывающих белков.

    «Лейциновая застежка-молния». Этот вид супервторичной структуры используется для соединения двух белков. На поверхности взаимодействующих белков имеются α-спиральные участки, содержащие не менее четырех остатков лейцина. Лейциновые остатки в α-спирали располагаются через шесть аминокислот один от другого. Так как каждый виток α-спирали содержит 3,6 аминокислотных остатка, радикалы лейцина находятся на поверхности каждого второго витка. Лейциновые остатки α-спирали одного белка могут взаимодействовать с лейциновыми остатками другого белка (гидрофобные взаимодействия), соединяя их вместе (рис. 1.11.). Многие ДНК связывающие белки функционируют в составе олигомерных комплексов, где отдельные субъединицы связываются друг с другом «лейциновыми застежками».

    Рис. 1.11. «Лейциновая застежка-молния» между α-спиральными участками двух белков

    Примером таких белков могут служить гистоны. Гистоны - ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот - аргинина и лизина (до 80%). Молекулы гистонов объединяются в олигомерные комплексы, содержащие восемь мономеров с помощью «лейциновых застежек», несмотря на значительный одноименный заряд этих молекул.

    «Цинковый палец» - вариант супервторичной структуры, характерный для ДНК-связывающих белков, имеет вид вытянутого фрагмента на поверхности белка и содержит около 20 аминокислотных остатков (рис. 1.12). Форму «вытянутого пальца» поддерживает атом цинка, связанный с радикалами четыре аминокислот - двух остатков цистеина и двух - гистидина. В некоторых случаях вместо остатков гистидина находятся остатки цистеина. Два близко лежащих остатка цистеина отделены от двух других остатков Гисили Циспоследовательностью, состоящей примерно из 12 аминокислотных остатков. Этот участок белка образует α-спираль, радикалы которой могут специфично связываться с регуляторными участками большой бороздки ДНК. Специфичность связывания индивидуального

    Рис. 1.12. Первичная структура участка ДНК-связывающих белков, формирующих структуру «цинкового пальца» (буквами обозначены аминокислоты, входящие в состав этой структуры)

    регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца». Такие структуры содержат, в частности, рецепторы стероидных гормонов, участвующих в регуляции транскрипции (считывание информации с ДНК на РНК).

    ТЕМА 1.2. ОСНОВЫ ФУНКЦИОНИРОВАНИЯ БЕЛКОВ. ЛЕКАРСТВА КАК ЛИГАНДЫ, ВЛИЯЮЩИЕ НА ФУНКЦИЮ БЕЛКОВ

    1. Активный центр белка и его взаимодействие с лигандом. В процессе формирования третичной структуры на поверхности функционально активного белка, обычно в углублении, образуется участок, сформированный радикалами аминокислот, далеко стоящими друг от друга в первичной структуре. Этот участок, имеющий уникальное строение для данного белка и способный специфично взаимодействовать с определенной молекулой или группой похожих молекул, называется центром связывания белка с лигандом или активным центром. Лигандами называются молекулы, взаимодействующие с белками.

    Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда.

    Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Активный центр должен не только пространственно соответствовать входящему в него лиганду, но и между функциональными группами радикалов, входящих в активный центр, и лигандом должны образоваться связи (ионные, водородные, а также гидрофобные взаимодействия), которые удерживают лиганд в активном центре (рис. 1.13).

    Рис. 1.13. Комплементарное взаимодействие белка с лигандом

    Некоторые лиганды, присоединяясь к активному центру белка, выполняют вспомогательную роль в функционировании белков. Такие лиганды называются кофакторами, а белки, имеющие в своем составе небелковую часть, - сложными белками (в отличие от простых белков, состоящих только из белковой части). Небелковая часть, прочно соединенная с белком, носит название простетической группы. Например, в составе миоглобина, гемоглобина и цитохромов содержится прочно прикрепленная к активному центру простетическая группа - гем, содержащий ион железа. Сложные белки, содержащие гем, называются гемопротеинами.

    При присоединении к белкам специфических лигандов проявляется функция этих белков. Так, альбумин - важнейший белок плазмы крови - проявляет свою транспортную функцию, присоединяя к активному центру гидрофобные лиганды, такие как жирные кислоты, билирубин, некоторые лекарства и др. (рис. 1.14)

    Лигандами, взаимодействующими с трехмерной структурой пептидной цепи, могут быть не только низкомолекулярные органические и неорганические молекулы, но и макромолекулы:

    ДНК (рассмотренные выше примеры с ДНК-связывающими белками);

    Полисахариды;

    Рис. 1.14. Взаимосвязь генотипа и фенотипа

    Уникальная первичная структура белков человека, закодированная в молекуле ДНК, в клетках реализуется в виде уникальной конформации, структуры активного центра и функций белков

    В этих случаях белок узнает определенный участок лиганда, соразмерный и комплементарный центру связывания. Так на поверхности гепатоцитов имеются белки-рецепторы к гормону инсулину, имеющему также белковое строение. Взаимодействие инсулина с рецептором вызывает изменение его конформации и активации сигнальных систем, приводящих к запасанию в гепатоцитах питательных веществ после еды.

    Таким образом, в основе функционирования белков лежит специфическое взаимодействие активного центра белка с лигандом.

    2. Доменная структура и ее роль в функционировании белков. Длинные полипептидные цепи глобулярных белков часто складываются в несколько компактных, относительно независимых областей. Они имеют самостоятельную третичную структуру, напоминающую таковую у глобулярных белков, и называются доменами. Благодаря доменной структуре белков легче формируется их третичная структура.

    В доменных белках центры связывания с лигандом часто располагаются между доменами. Так, трипсин - протеолитический фермент, который вырабатывается экзокринной частью поджелудочной железы и необходим для переваривания белков пищи. Он имеет двухдоменное строение, а центр связывания трипсина с его лигандом - пищевым белком - располагается в бороздке между двумя доменами. В активном центре создаются условия, необходимые для эффективного связывания специфического участка пищевого белка и гидролиза его пептидных связей.

    Разные домены в белке при взаимодействии активного центра с лигандом могут перемещаться друг относительно друга (рис. 1.15).

    Гексокиназа - фермент, катализирующий фосфорилирование глюкозы с помощью АТФ. Активный центр фермента располагается в расщелине между двумя доменами. При связывании гексокиназы с глюкозой окружающие ее домены смыкаются и субстрат оказывается в «ловушке», где и происходит фосфорилирование (см. рис. 1.15).

    Рис. 1.15. Связывание доменов гексокиназы с глюкозой

    В некоторых белках домены выполняют самостоятельные функции, связываясь с различными лигандами. Такие белки называются многофункциональными.

    3. Лекарства - лиганды, влияющие на функцию белков. Взаимодействие белков с лигандами специфично. Однако благодаря конформационной лабильности белка и его активного центра можно подобрать другое вещество, которое также могло бы взаимодействовать с белком в активном центре или ином участке молекулы.

    Вещество, по структуре похожее на природный лиганд, называют структурным аналогом лиганда или неприродным лигандом. Оно также взаимодействует с белком в активном центре. Структурный аналог лиганда может как усиливать функцию белка (агонист), так и снижать ее (антагонист). Лиганд и его структурные аналоги конкурируют друг с другом за связывание с белком в одном центре. Такие вещества называются конкурентными модуляторами (регуляторами) белковых функций. Многие лекарственные препараты действуют как ингибиторы белков. Некоторые из них получают химической модификацией природных лигандов. Ингибиторы белковых функций могут быть лекарствами и ядами.

    Атропин - конкурентный ингибитор М-холинорецепторов. Ацетилхолин - нейромедиатор передачи нервного импульса через холинэргические синапсы. Для проведения возбуждения выделившийся в синаптическую щель ацетилхолин должен взаимодействовать с белком - рецептором постсинаптической мембраны. Обнаружены два типа холинорецепторов:

    М-рецептор, кроме ацетилхолина избирательно взаимодействующий с мускарином (токсином мухомора). М - холинорецепторы имеются на гладких мышцах и при взаимодействии с ацетилхолином вызывают их сокращение;

    Н-рецептор, специфично связывающийся с никотином. Н-холинорецепторы обнаружены в синапсах поперечнополосатых скелетных мышц.

    Специфическим ингибитором М-холинорецепторов является атропин. Он содержится в растениях красавке и белене.

    Атропин имеет в структуре схожие с ацетилхолином функциональные группы и их пространственное расположение, поэтому относится к конкурентным ингибиторам М-холинорецепторов. Учитывая, что связывание ацетилхолина с М-холинорецепторами вызывает сокращение гладких мышц, атропин используют как лекарство, снимающее их спазм (спазмолитик). Так, известно применение атропина для расслабления глазных мышц при просмотре глазного дна, а также для снятия спазмов при желудочнокишечных коликах. М-холинорецепторы имеются и в центральной нервной системе (ЦНС), поэтому большие дозы атропина могут вызвать нежелательную реакцию со стороны ЦНС: двигательное и психическое возбуждение, галлюцинации, судороги.

    Дитилин - конкурентный агонист Н-холинорецепторов, ингибирующий функцию нервно-мышечных синапсов.

    Нервно-мышечные синапсы скелетных мышц содержат Н-холинорецепторы. Их взаимодействие с ацетилхолином приводит к мышечным сокращениям. При некоторых хирургических операциях, а также в эндоскопических исследованиях используют препараты, вызывающие расслабление скелетных мышц (миорелаксанты). К ним относится дитилин, являющийся структурным аналогом ацетилхолина. Он присоединяется к Н-холинорецепторам, но в отличие от ацетилхолина очень медленно разрушается ферментом - ацетилхолинэстеразой. В результате длительного открытия ионных каналов и стойкой деполяризации мембраны нарушается проведение нервного импульса и происходит мышечное расслабление. Первоначально эти свойства были обнаружены у яда кураре, поэтому такие препараты называют курареподобными.

    ТЕМА 1.3. ДЕНАТУРАЦИЯ БЕЛКОВ И ВОЗМОЖНОСТЬ ИХ СПОНТАННОЙ РЕНАТИВАЦИИ

    1. Так как нативная конформация белков поддерживается за счет слабых взаимодействий, изменение состава и свойств окружающей белок среды, воздействие химических реагентов и физических факторов вызывают изменение их конформации (свойство конформационной лабильности). Разрыв большого количества связей приводит к разрушению нативной конформации и денатурации белков.

    Денатурация белков - это разрушение их нативной конформации под действием денатурирующих агентов, вызванное разрывом слабых связей, стабилизирующих пространственную структуру белка. Денатурация сопровождается разрушением уникальной трехмерной структуры и активного центра белка и потерей его биологической активности (рис. 1.16).

    Все денатурированные молекулы одного белка приобретают случайную конформацию, отличающуюся от других молекул того же белка. Радикалы аминокислот, формирующие активный центр, оказываются пространственно удаленными друг от друга, т.е. разрушается специфический центр связывания белка с лигандом. При денатурации первичная структура белков остается неизменной.

    Применение денатурирующих агентов в биологических исследованиях и медицине. В биохимических исследованиях перед определением в биологическом материале низкомолекулярных соединений обычно из раствора вначале удаляют белки. Для этой цели чаще всего используют трихлоруксусную кислоту (ТХУ). После добавления ТХУ в раствор денатурированные белки выпадают в осадок и легко удаляются фильтрованием (табл. 1.1.)

    В медицине денатурирующие агенты часто применяют для стерилизации медицинского инструмента и материала в автоклавах (денатурирующий агент - высокая температура) и в качестве антисептиков (спирт, фенол, хлорамин) для обработки загрязненных поверхностей, содержащих патогенную микрофлору.

    2. Спонтанная ренативация белков - доказательство детерминированности первичной структуры, конформации и функции белков. Индивидуальные белки - это продукты одного гена, которые имеют идентичную аминокислотную последовательность и в клетке приобретают одинаковую конформацию. Фундаментальный вывод о том, что в первичной структуре белка уже заложена информация о его конформации и функции, был сделан на основе способности некоторых белков (в частности, рибонуклеазы и миоглобина) к спонтанной ренативации - восстановлению их нативной конформации после денатурации.

    Формирование пространственных структур белка осуществляется способом самосборки - самопроизвольного процесса, при котором полипептидная цепь, имеющая уникальную первичную структуру, стремится принять в растворе конформацию с наименьшей свободной энергией. Способность к ренативации белков, сохраняющих после денатурации первичную структуру, описана в опыте с ферментом рибонуклеазой.

    Рибонуклеаза - фермент, разрушающий связи между отдельными нуклеотидами в молекуле РНК. Этот глобулярный белок имеет одну полипептидную цепь, третичная структура которой стабилизирована множеством слабых и четырьмя дисульфидными связями.

    Обработка рибонуклеазы мочевиной, разрушающей водородные связи в молекуле, и восстановителем, разрывающим дисульфидные связи, приводит к денатурации фермента и потере его активности.

    Удаление денатурирующих агентов диализом приводит к восстановлению конформации и функции белка, т.е. к ренативации. (рис. 1.17).

    Рис. 1.17. Денатурация и ренативация рибонуклеазы

    А - нативная конформация рибонуклеазы, в третичной структуре которой имеются четыре дисульфидные связи; Б - денатурированная молекула рибонуклеазы;

    В - ренативированная молекула рибонуклеазы с восстановленной структурой и функцией

    1. Заполните таблицу 1.2.

    Таблица 1.2. Классификация аминокислот по полярности радикалов

    2. Напишите формулу тетрапептида:

    Асп - Про - Фен - Лиз

    а) выделите в пептиде повторяющиеся группы, образующие пептидный остов, и вариабельные группы, представленные радикалами аминокислот;

    б) обозначьте N- и С-концы;

    в) подчеркните пептидные связи;

    г) напишите другой пептид, состоящий из тех же аминокислот;

    д) подсчитайте количество возможных вариантов тетрапептида с аналогичным аминокислотным составом.

    3. Объясните роль первичной структуры белков на примере сравнительного анализа двух сходных по структуре и эволюционно близких пептидных гормонов нейрогипофиза млекопитающих - окситоцина и вазопрессина (табл. 1.3).

    Таблица 1.3. Структура и функции окситоцина и вазопрессина

    Для этого:

    а) сравните состав и последовательность аминокислот двух пептидов;

    б) найдите сходство первичной структуры двух пептидов и сходство их биологического действия;

    в) найдите различия в структуре двух пептидов и различие их функций;

    г) сделайте вывод о влиянии первичной структуры пептидов на их функции.

    4. Опишите основные этапы формирования конформации глобулярных белков (вторичная, третичная структуры, понятие о супервторичной структуре). Укажите типы связей, участвующих в формировании структур белка. Радикалы каких аминокислот могут участвовать в образовании гидрофобных взаимодействий, ионных, водородных связях.

    Приведите примеры.

    5. Дайте определение понятию «конформационная лабильность белков», укажите причины ее существования и значение.

    6. Раскройте смысл следующей фразы: «В основе функционирования белков лежит их специфическое взаимодействие с лигандом», используя термины и объясняя их значение: конформация белка, активный центр, лиганд, комплементарность, функция белка.

    7. На одном из примеров объясните, что такое домены и какова их роль в функционировании белков.

    ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

    1. Установите соответствие.

    Функциональная группа в радикале аминокислоты:

    А. Карбоксильная группа Б. Гидроксильная группа В Гуанидиновая группа Г. Тиольная группа Д. Аминогруппа

    2. Выберите правильные ответы.

    Аминокислоты с полярными незаряженными радикалами - это:

    A. Цис Б. Асн

    B. Глу Г. Три

    3. Выберите правильные ответы.

    Радикалы аминокислот:

    A. Обеспечивают специфичность первичной структуры Б. Участвуют в формировании третичной структуры

    B. Располагаясь на поверхности белка, влияют на его растворимость Г. Формируют активный центр

    Д. Участвуют в образовании пептидных связей

    4. Выберите правильные ответы.

    Гидрофобные взаимодействия могут образовываться между радикалами аминокислот:

    A. Тре Лей Б. Про Три

    B. Мет Иле Г. Тир Ала Д. Вал Фен

    5. Выберите правильные ответы.

    Ионные связи могут образовываться между радикалами аминокислот:

    A. Глн Асп Б. Apr Лиз

    B. Лиз Глу Г. Гис Асп Д. Асн Apr

    6. Выберите правильные ответы.

    Водородные связи могут образовываться между радикалами аминокислот:

    A. Сер Глн Б. Цис Тре

    B. Асп Лиз Г. Глу Асп Д. Асн Тре

    7. Установите соответствие.

    Тип связи, участвующий в формировании структуры белка:

    A. Первичная структура Б. Вторичная структура

    B. Третичная структура

    Г. Супервторичная структура Д. Конформация.

    1. Водородные связи между атомами пептидного остова

    2. Слабые связи между функциональными группами радикалов аминокислот

    3. Связи между α-амино и α-карбоксильными группами аминокислот

    8. Выберите правильные ответы. Трипсин:

    A. Протеолитический фермент Б. Содержит два домена

    B. Гидролизирует крахмал

    Г. Активный центр расположен между доменами. Д. Состоит из двух полипептидных цепей.

    9. Выберите правильные ответы. Атропин:

    A. Нейромедиатор

    Б. Структурный аналог ацетилхолина

    B. Взаимодействует с Н-холинорецепторами

    Г. Усиливает проведение нервного импульса через холинэргические синапсы

    Д. Конкурентный ингибитор М-холинорецепторов

    10. Выберите правильные утверждения. В белках:

    A. Первичная структура содержит информацию о строении его активного центра

    Б. Активный центр формируется на уровне первичной структуры

    B. Конформация жестко фиксирована ковалентными связями

    Г. Активный центр может взаимодействовать с группой похожих лигандов

    благодаря конформационной лабильности белков Д. Изменение окружающей среды, может влиять на сродство активного

    центра к лиганду

    1. 1-В, 2-Г, 3-Б.

    3. А, Б, В, Г.

    7. 1-Б, 2-Д, 3-А.

    8. А, Б, В, Г.

    ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

    1. Белок, полипептид, аминокислоты

    2. Первичная, вторичная, третичная структуры белка

    3. Конформация, нативная конформация белка

    4. Ковалентные и слабые связи в белке

    5. Конформационная лабильность

    6. Активный центр белка

    7. Лиганды

    8. Фолдинг белков

    9. Структурные аналоги лигандов

    10. Доменные белки

    11. Простые и сложные белки

    12. Денатурация белка, денатурирующие агенты

    13. Ренативация белков

    Решите задачи

    «Структурная организация белков и основы их функционирования»

    1. Основная функция белка - гемоглобина А (НвА) - транспорт кислорода к тканям. В популяции людей известны множественные формы этого белка с измененными свойствами и функцией - так называемые аномальные гемоглобины. Например, установлено, что гемоглобин S, обнаруженный в эритроцитах больных серповидно-клеточной анемией (HbS), имеет низкую растворимость в условиях низкого парциального давления кислорода (как это имеет место в венозной крови). Это приводит к образованию агрегатов данного белка. Белок утрачивает свою функцию, выпадает в осадок, а эритроциты приобретают неправильную форму (некоторые из них образуют форму серпа) и быстрее обычного разрушаются в селезенке. В результате развивается серповидноклеточная анемия.

    Единственное различие в первичной структуре НвА и обнаружено в N-концевом участке β-цепи гемоглобина. Сравните N-концевые участки β-цепи и покажите, как изменения в первичной структуре белка влияют на его свойства и функции.

    Для этого:

    а) напишите формулы аминокислот, по которым различаются НвА и сравните свойства этих аминокислот (полярность, заряд).

    б) сделайте вывод о причине снижения растворимости и нарушении транспорта кислорода в ткани.

    2. На рисунке представлена схема строения белка, имеющего центр связывания с лигандом (активный центр). Объясните, почему белок обладает избирательностью в выборе лиганда. Для этого:

    а) вспомните, что такое активный центр белка, и рассмотрите строение активного центра белка, представленного на рисунке;

    б) напишите формулы радикалов аминокислот, входящих в состав активного центра;

    в) нарисуйте лиганд, который мог бы специфически взаимодействовать с активным центром белка. Укажите на нем функциональные группы, способные образовать связи с радикалами аминокислот, входящих в состав активного центра;

    г) укажите типы связей, возникающих между лигандом и радикалами аминокислот активного центра;

    д) объясните, на чем основана специфичность взаимодействия белка с лигандом.

    3. На рисунке представлен активный центр белка и несколько лигандов.

    Определите, какой из лигандов с наибольшей вероятностью будет взаимодействовать с активным центром белка и почему.

    Какие типы связей возникают в процессе образования комплекса белок-лиганд»?

    4. Структурные аналоги естественных лигандов белков могут использоваться в качестве лекарственных препаратов для изменения активности белков.

    Ацетилхолин - медиатор передачи возбуждения в нервно-мышечных синапсах. При взаимодействии ацетилхолина с белками - рецепторами постсинаптической мембраны скелетных мышц происходит открытие ионных каналов и мышечное сокращение. Дитилин - лекарство, применяемое при некоторых операциях для расслабления мышц, так как он нарушает передачу нервного импульса через нервно-мышечные синапсы. Объясните механизм действия дитилина как миорелаксирующего препарата. Для этого:

    а) напишите формулы ацетилхолина и дитилина и сравните их структуры;

    б) опишите механизм расслабляющего действия дитилина.

    5. При некоторых заболеваниях у больного повышается температура тела, что рассматривают как защитную реакцию организма. Однако высокие температуры губительны для белков организма. Объясните, почему при температуре выше 40 °С нарушается функция белков и возникает угроза для жизни человека. Для этого вспомните:

    1) Строение белков и связи, удерживающие его структуру в нативной конформации;

    2) Как меняется структура и функция белков при повышении температуры?;

    3) Что такое гомеостаз и почему он важен для поддержания здоровья человека.

    Модульная единица 2 ОЛИГОМЕРНЫЕ БЕЛКИ КАК МИШЕНИ РЕГУЛЯТОРНЫХ ВОЗДЕЙСТВИЙ. СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ МНОГООБРАЗИЕ БЕЛКОВ. МЕТОДЫ РАЗДЕЛЕНИЯ И ОЧИСТКИ БЕЛКОВ

    Цели изучения Уметь:

    1. Использовать знания об особенностях структуры и функций олигомерных белков для понимания адаптивных механизмов регуляции их функций.

    2. Объяснять роль шаперонов в синтезе и поддержании конформации белков в условиях клетки.

    3. Объяснять многообразие проявления жизни многообразием структур и функций синтезирующихся в организме белков.

    4. Анализировать связь структуры белков с их функцией на примерах сравнения родственных гемопротеинов - миоглобина и гемоглобина, а также представителей пяти классов белков семейства иммуноглобулинов.

    5. Применять знания об особенностях физико-химических свойств белков для выбора методов их очистки от других белков и примесей.

    6. Интерпретировать результаты количественного и качественного состава белков плазмы крови для подтверждения или уточнения клинического диагноза.

    Знать:

    1. Особенности строения олигомерных белков и адаптивные механизмы регуляции их функций на примере гемоглобина.

    2. Строение и функции шаперонов и их значение для поддержания нативной конформации белков в условиях клетки.

    3. Принципы объединения белков в семейства по схожести их конформации и функций на примере иммуноглобулинов.

    4. Методы разделения белков, основанные на особенностях их физикохимических свойств.

    5. Электрофорез плазмы крови как метод оценки качественного и количественного состава белков.

    ТЕМА 1.4. ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ ОЛИГОМЕРНЫХ БЕЛКОВ НА ПРИМЕРЕ ГЕМОГЛОБИНА

    1. Многие белки имеют в своем составе несколько полипептидных цепей. Такие белки называют олигомерными, а отдельные цепи - протомерами. Протомеры в олигомерных белках соединены множеством слабых нековалентных связей (гидрофобных, ионных, водородных). Взаимодействие

    протомеров осуществляется благодаря комплементарности их контактирующих поверхностей.

    Количество протомеров в олигомерных белках может сильно варьировать: гемоглобин содержит 4 протомера, фермент аспартатаминотрансфераза - 12 протомеров, а в белок вируса табачной мозаики входит 2120 протомеров, соединенных нековалентными связями. Следовательно, олигомерные белки могут иметь очень большую молекулярную массу.

    Взаимодействие одного протомера с другими можно рассматривать как частный случай взаимодействия белка с лигандом, так как каждый протомер служит лигандом для других протомеров. Количество и способ соединения протомеров в белке называется четвертичной структурой белка.

    В состав белков могут входить одинаковые или разные по строению протомеры, например, гомодимеры - белки, содержащие два одинаковых протомера, а гетеродимеры - белки, содержащие два разных протомера.

    Если в состав белков входят разные протомеры, то на них могут формироваться отличающиеся по структуре центры связывания с разными лигандами. При связывании лиганда с активным центром проявляется функция данного белка. Центр, расположенный на другом протомере, называется аллостерическим (другим, отличным от активного). Связываясь с аллостерическим лигандом или эффектором, он выполняет регуляторную функцию (рис. 1.18). Взаимодействие аллостерического центра с эффектором вызывает конформационные изменения в структуре всего олигомерного белка благодаря его конформационной лабильности. Это влияет на сродство активного центра к специфическому лиганду и регулирует функцию данного белка. Изменение конформации и функции всех протомеров при взаимодействии олигомерного белка хотя бы с одним лигандом носит название кооперативных изменений конформации. Эффекторы, усиливающие функцию белка, называются активаторами, а эффекторы, угнетающие его функцию, - ингибиторами.

    Таким образом, у олигомерных белков, а также белков, имеющих доменное строение, появляется новое по сравнению с мономерными белками свойство - способность к аллостерической регуляции функций (регуляции присоединением к белку разных лигандов). Это можно проследить, сравнивая структуры и функции двух близко родственных сложных белков миоглобина и гемоглобина.

    Рис. 1.18. Схема строения димерного белка

    2. Формирование пространственных структур и функционирование миоглобина.

    Миоглобин (Мв) - белок, находящийся в красных мышцах, основная функция которого - создание запасов О 2 , необходимых при интенсивной мышечной работе. Мв - сложный белок, содержащий белковую часть - апоМв и небелковую часть - гем. Первичная структура апоМв определяет его компактную глобулярную конформацию и структуру активного центра, к которому присоединяется небелковая часть миоглобина - гем. Кислород, поступающий из крови в мышцы, связывается с Fe+ 2 гема в составе миоглобина. Мв - мономерный белок, имеющий очень высокое сродство к О 2 , поэтому отдача кислорода миоглобином происходит только при интенсивной мышечной работе, когда парциальное давление O 2 резко снижается.

    Формирование конформации Мв. В красных мышцах на рибосомах в ходе трансляции идет синтез первичной структуры Мв, представленной специфической последовательностью 153 аминокислотных остатков. Вторичная структура Мв содержит восемь α-спиралей, называемых латинскими буквами от А до Н, между которыми имеются неспирализованные участки. Третичная структура Мв имеет вид компактной глобулы, в углублении которой между F и Е α-спиралями расположен активный центр (рис. 1.19).

    Рис. 1.19. Структура миоглобина

    3. Особенности строения и функционирования активного центра Мв. Активный центр Мв сформирован преимущественно гидрофобными радикалами аминокислот, далеко отстоящими друг от друга в первичной структуре (например, Три 3 9 и Фен 138) К активному центру присоединяется плохо растворимые в воде лиганды - гем и О 2 . Гем - специфический лиганд апоМв (рис. 1.20), основу которого составляют четыре пиррольных кольца, соединенных метенильными мостиками; в центре расположен атом Fe+ 2 , соединенный с атомами азота пиррольных колец четырьмя координационными связями. В активном центре Мв кроме гидрофобных радикалов аминокислот имеются также остатки двух аминокислот с гидрофильными радикалами - Гис Е 7 (Гис 64) и Гис F 8 (Гис 93) (рис. 1.21).

    Рис. 1.20. Строение гема - небелковой части миоглобина и гемоглобина

    Рис. 1.21. Расположение гема и O 2 в активном центре апомиоглобина и протомеров гемоглобина

    Гем через атом железа ковалентно связан с Гис F 8 . O 2 присоединяется к железу с другой стороны плоскости гема. Гис Е 7 необходим для правильной ориентации О 2 и облегчает присоединение кислорода к Fe+ 2 гема

    Гис F 8 образует координационную связь с Fe+ 2 и прочно фиксирует гем в активном центре. Гис Е 7 необходим для правильной ориентации в активном центре другого лиганда - O 2 при его взаимодействии с Fe+ 2 гема. Микроокружение гема создает условия для прочного, но обратимого связывания O 2 с Fe +2 и препятствует попаданию в гидрофобный активный центр воды, что может привести к его окислению в Fе+ 3 .

    Мономерное строение Мв и его активного центра определяет высокое сродство белка к О 2 .

    4. Олигомерное строение Нв и регуляция сродства Нв к О 2 лигандами. Гемоглобины человека - семейство белков, так же как и миоглобин относящиеся к сложным белкам (гемопротеинам). Они имеют тетрамерное строение и содержат две α-цепи, но различаются по строению двух других полипептидных цепей (2α-, 2х-цепи). Строение второй полипептидной цепи определяет особенности функционирования этих форм Нв. Около 98% гемоглобина эритроцитов взрослого человека составляет гемоглобин А (2α-, 2р-цепи).

    В период внутриутробного развития функционируют два основных типа гемоглобинов: эмбриональный Нв (2α, 2ε), который обнаруживается на ранних этапах развития плода, и гемоглобин F (фетальный) - (2α, 2γ), который приходит на смену раннему гемоглобину плода на шестом месяце внутриутробного развития и только после рождения замещается на Нв А.

    Нв А - белок, родственный миоглобину (Мв), содержится в эритроцитах взрослого человека. Строение его отдельных протомеров аналогично таковому у миоглобина. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны, несмотря на то что в первичной структуре их полипептидных цепей идентичны только 24 аминокислотных остатка (вторичная структура протомеров гемоглобина, так же как миоглобин, содержит восемь α-спиралей, обозначаемых латинскими буквами от А до Н, а третичная структура имеет вид компактной глобулы). Но в отличие от миоглобина гемоглобин имеет олигомерное строение, состоит из четырех полипептидных цепей, соединенных нековалентными связями (рис 1.22).

    Каждый протомер Нв связан с небелковой частью - гемом и соседними протомерами. Соединение белковой части Нв с гемом аналогично таковому у миоглобина: в активном центре белка гидрофобные части гема окружены гидрофобными радикалами аминокислот за исключением Гис F 8 и Гис Е 7 , которые расположены по обе стороны от плоскости гема и играют аналогичную роль в функционировании белка и связывании его с кислородом (см. строение миоглобина).

    Рис. 1.22. Олигомерная структура гемоглобина

    Кроме того, Гис Е 7 выполняет важную дополнительную роль в функционировании Нв. Свободный гем имеет в 25 000 раз более высокое сродство к СО, чем к О 2 . СО в небольших количествах образуется в организме и, учитывая его высокое сродство к гему, он мог бы нарушать транспорт необходимого для жизни клеток О 2 . Однако в составе гемоглобина сродство гема к оксиду углерода превышает сродство к О 2 всего в 200 раз благодаря наличию в активном центре Гис Е 7 . Остаток этой аминокислоты создает оптимальные условия для связывания гема с O 2 и ослабляет взаимодействие гема с СО.

    5. Основная функция Нв - транспорт О 2 из легких в ткани. В отличие от мономерного миоглобина, имеющего очень высокое сродство к О 2 и выполняющего функцию запасания кислорода в красных мышцах, олигомерная структура гемоглобина обеспечивает:

    1) быстрое насыщение Нв кислородом в легких;

    2) способность Нв отдавать кислород в тканях при относительно высоком парциальном давлении O 2 (20-40 мм рт. ст.);

    3) возможность регуляции сродства Нв к О 2 .

    6. Кооперативные изменения конформации протомеров гемоглобина ускоряют связывание O 2 в легких и отдачу его в ткани. В легких высокое парциальное давление O 2 способствует связыванию его с Нв в активном центре четырех протомеров (2α и 2β). Активный центр каждого протомера, так же как и в миоглобине, расположен между двумя α-спиралями (F и Е) в гидрофобном кармане. Он содержит небелковую часть - гем, прикрепленный к белковой части множеством слабых гидрофобных взаимодействий и одной прочной связью между Fe 2 + гема и Гис F 8 (см. рис. 1.21).

    В дезоксигемоглобине, благодаря этой связи с Гис F 8 , атом Fe 2 + выступает из плоскости гема по направлению к гистидину. Связывание O 2 с Fe 2 + происходит по другую сторону гема в области Гис Е 7 с помощью единственной свободной координационной связи. Гис Е 7 обеспечивает оптимальные условия для связывания O 2 с железом гема.

    Присоединение O 2 к атому Fe +2 одного протомера вызывает его перемещение в плоскость гема, а за ним и остатка гистидина, связанного с ним

    Рис. 1.23. Изменение конформации протомера гемоглобина при соединении с O 2

    Это приводит к изменению конформации всех полипептидных цепей за счет их конформационной лабильности. Изменение конформации других цепей облегчает их взаимодействие со следующими молекулами О 2 .

    Четвертая молекула О 2 присоединяется к гемоглобину в 300 раз легче, чем первая (рис. 1.24).

    Рис. 1.24. Кооперативные изменения конформации протомеров гемоглобина при его взаимодействии с О 2

    В тканях каждая следующая молекула O 2 отщепляется легче, чем предыдущая, также за счет кооперативных изменений конформации протомеров.

    7. CO 2 и Н+, образующиеся при катаболизме органических веществ, уменьшают сродство гемоглобина к О 2 пропорционально их концентрации. Энергия, необходимая для работы клеток, вырабатывается преимущественно в митохондриях при окислении органических веществ с использованием O 2 , доставляемого из легких гемоглобином. В результате окисления органических веществ образуются конечные продукты их распада: СО 2 и K 2 O, количество которых пропорционально интенсивности протекающих процессов окисления.

    СO 2 диффузией попадает из клеток в кровь и проникает в эритроциты, где под действием фермента карбангидразы превращается в угольную кислоту. Эта слабая кислота диссоциирует на протон и бикарбонат ион.

    Н+ способны присоединятся к радикалам Гис 14 6 в α- и β-цепях гемоглобина, т.е. в участках, удаленных от гема. Протонирование гемоглобина снижает его сродство к О 2 , способствует отщеплению О 2 от оксиНв, образованию дезоксиНв и увеличивает поступление кислорода в ткани пропорционально количеству образовавшихся протонов (рис. 1.25).

    Увеличение количества освобожденного кислорода в зависимости от увеличения концентрации Н+ в эритроцитах называется эффектом Бора (по имени датского физиолога Христиана Бора, впервые открывшего этот эффект).

    В легких высокое парциальное давление кислорода способствует его связыванию с дезоксиНв, что уменьшает сродство белка к Н + . Освободившиеся протоны под действием карбангидразы взаимодействуют с бикарбонатами с образованием СО 2 и Н 2 О


    Рис. 1.25. Зависимость сродства Нв к О 2 от концентрации СО 2 и протонов (эффект Бора):

    А - влияние концентрации СО 2 и Н+ на высвобождение О 2 из комплекса с Нв (эффект Бора); Б - оксигенирование дезоксигемоглобина в легких, образование и выделение СО 2 .

    Образовавшийся СО 2 поступает в альвеолярное пространство и удаляется с выдыхаемым воздухом. Таким образом, количество высвобождаемого гемоглобином кислорода в тканях регулируется продуктами катаболизма органических веществ: чем интенсивнее распад веществ, например при физических нагрузках, тем выше концентрация СО 2 и Н + и тем больше кислорода получают ткани в результате уменьшения сродства Нв к О 2 .

    8. Аллостерическая регуляция сродства Нв к О 2 лигандом - 2,3-бис- фосфоглицератом. В эритроцитах из продукта окисления глюкозы - 1,3-бисфосфоглицерата синтезируется аллостерический лиганд гемоглобина - 2,3-бисфосфоглицерат (2,3-БФГ). В нормальных условиях концентрация 2,3-БФГ высокая и сравнима с концентрацией Нв. 2,3-БФГ имеет сильный отрицательный заряд -5.

    Бисфосфоглицерат в капиллярах тканей, связываясь с дезоксигемоглобином, увеличивает выход кислорода в ткани, уменьшая сродство Нв к О 2 .

    В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех четырех протомеров (см. рис. 1.22). В капиллярах тканей протонирование Нв (эффект Бора) приводит к разрыву связи между железом гема и О 2 . В молекуле

    дезоксигемоглобина по сравнению с оксигемоглобином возникают дополнительные ионные связи, соединяющие протомеры, вследствие чего размеры центральной полости по сравнению с оксигемоглобином увеличиваются. Центральная полость является местом присоединения 2,3-БФГ к гемоглобину. Из-за различия в размерах центральной полости 2,3-БФГ может присоединяться только к дезоксигемоглобину.

    2,3-БФГ взаимодействует с гемоглобином в участке, удаленном от активных центров белка и относится к аллостерическим (регуляторным) лигандам, а центральная полость Нв является аллостерическим центром. 2,3-БФГ имеет сильный отрицательный заряд и взаимодействует с пятью положительно заряженными группами двух β-цепей Нв: N-концевой α-аминогруппой Вал и радикалами Лиз 82 Гис 143 (рис. 1.26).

    Рис. 1.26. БФГ в центральной полости дезоксигемоглобина

    БФГ связывается с тремя положительно заряженными группами в каждой β-цепи.

    В капиллярах тканей образующийся дезоксигемоглобин взаимодействует с 2,3-БФГ и между положительно заряженными радикалами β-цепей и отрицательно заряженным лигандом образуются ионные связи, которые изменяют конформацию белка и снижают сродство Нв к О 2 . Уменьшение сродства Нв к О 2 способствует более эффективному выходу О 2 в ткани.

    В легких при высоком парциальном давлении кислород взаимодействует с Нв, присоединяясь к железу гема; при этом изменяется конформация белка, уменьшается центральная полость и происходит вытеснение 2,3-БФГ из аллостерического центра

    Таким образом, олигомерные белки обладают новыми по сравнению с мономерными белками свойствами. Присоединение лигандов на участках,

    пространственно удаленных друг от друга (аллостерических), способно вызывать конформационные изменения во всей белковой молекуле. Благодаря взаимодействию с регуляторными лигандами происходит изменение конформации и адаптация функции белковой молекулы к изменениям окружающей среды.

    ТЕМА 1.5. ПОДДЕРЖАНИЕ НАТИВНОЙ КОНФОРМАЦИИ БЕЛКОВ В УСЛОВИЯХ КЛЕТКИ

    В клетках в процессе синтеза полипептидных цепей, их транспорта через мембраны в соответствующие отделы клетки, в процессе фолдинга (формирования нативной конформации) и при сборке олигомерных белков, а также в период их функционирования в структуре белков возникают промежуточные, склонные к агрегации, нестабильные конформации. Гидрофобные радикалы, в нативной конформации обычно спрятанные внутри белковой молекулы, в нестабильной конформации оказываются на поверхности и стремятся к объединению с такими же плохо растворимыми в воде группами других белков. В клетках всех известных организмов обнаружены специальные белки, которые обеспечивают оптимальный фолдинг белков клетки, стабилизируют их нативную конформацию при функционировании и, что особенно важно, поддерживают структуру и функции внутриклеточных белков при нарушении гомеостаза. Эти белки получили название «шапероны», что в переводе с французского обозначает «няня».

    1. Молекулярные шапероны и их роль в предотвращении денатурации белков.

    Шапероны (Ш) классифицируются по массе субъединиц. Высокомолекулярные шапероны имеют массу от 60 до 110 кД. Среди них наиболее изучены три класса: Ш-60, Ш-70 и Ш-90. Каждый класс включает семейство родственных белков. Так, в состав Ш-70 входят белки с молекулярной массой от 66 до 78 кД. Низкомолекулярные шапероны имеют молекулярную массу от 40 до 15 кД.

    Среди шаперонов различают конститутивные белки, высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма, и индуцибельные, синтез которых в нормальных условиях идет слабо, но резко возрастает при стрессовых воздействиях. Индуцибельные шапероны называют также «белками теплового шока», так как впервые они были обнаружены в клетках, подвергавшихся воздействию высоких температур. В клетках из-за высокой концентрации белков самопроизвольная ренативация частично денатурированных белков затруднена. Ш-70 могут предотвращать начавшийся процесс денатурации и способствовать восстановлению нативной конформации белков. Молекулярные шапероны-70 - высококонсервативный класс белков, находящихся во всех отделах клетки: цитоплазме, ядре, эндоплазматическом ретикулуме, митохондриях. На карбоксильном конце единственной полипептидной цепи Ш-70 имеется участок, который представляет собой бороздку, способный взаимодействовать с пептидами длиной

    от 7 до 9 аминокислотных остатков, обогащенных гидрофобными радикалами. Такие участки в глобулярных белках встречаются примерно через каждые 16 аминокислот. Ш-70 способны защищать белки от температурной инактивации и восстанавливать конформацию и активность частично денатурированных белков.

    2. Роль шаперонов в фолдинге белков. При синтезе белков на рибосоме N-концевая область полипептида синтезируется раньше С-концевой. Для формирования нативной конформации необходима полная аминокислотная последовательность белка. В процессе синтеза белков шапероны-70, благодаря строению их активного центра, способны закрывать склонные к агрегации участки полипептида, обогащенные гидрофобными радикалами аминокислот до завершения синтеза (рис 1.27, А).

    Рис. 1.27. Участие шаперонов в фолдинге белков

    А - участие шаперонов-70 в предотвращении гидрофобных взаимодействий между участками синтезирующегося полипептида; Б - формирование нативной конформации белка в шапероновом комплексе

    Многие высокомолекулярные белки, имеющие сложную конформацию, например доменное строение, осуществляют фолдинг в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомерного комплекса, состоящего из 14 субъединиц. Они формируют два полых кольца, каждое из которых состоит из семи субъединиц, эти кольца соединены друг с другом. Каждая субъединица Ш-60 состоит из трех доменов: апикального (верхушечного), обогащенного гидрофобными радикалами, обращенными в полость кольца, промежуточного и экваториального (рис. 1.28).

    Рис. 1.28 . Структура шаперонинового комплекса, состоящего из 14 Ш-60

    А - вид сбоку; Б - вид сверху

    Синтезированные белки, имеющие на поверхности элементы, характерные для несвернутых молекул, в частности гидрофобные радикалы, попадают в полость шапероновых колец. В специфической среде этих полостей происходит перебор возможных конформаций, пока не будет найдена единственная, энергетически наиболее выгодная (рис. 1.27, Б). Формирование конформаций и высвобождение белка сопровождается гидролизом АТФ в экваториальной области. Обычно такой шаперонозависимый фолдинг требует затрат значительного количества энергии.

    Кроме участия в формировании трехмерной структуры белков и ренативации частично денатурированных белков, шапероны также необходимы для протекания таких фундаментальных процессов, как сборка олигомерных белков, узнавание и транспорт в лизосомы денатурированных белков, транспорт белков через мембраны, участие в регуляции активности белковых комплексов.

    ТЕМА 1.6. МНОГООБРАЗИЕ БЕЛКОВ. СЕМЕЙСТВА БЕЛКОВ НА ПРИМЕРЕ ИММУНОГЛОБУЛИНОВ

    1. Белки играют решающую роль в жизнедеятельности отдельных клеток и всего многоклеточного организма, а их функции удивительно многообразны. Это определяется особенностями первичной структуры и конформаций белков, уникальностью строения активного центра и способностью связывать специфические лиганды.

    Лишь очень небольшая часть всех возможных вариантов пептидных цепей может принять стабильную пространственную структуру; большинство

    из них может принимать множество конформаций с примерно одинаковой энергией Гиббса, но с различными свойствами. Первичная структура большинства известных белков, отобранных биологической эволюцией, обеспечивает исключительную стабильность одной из конформаций, которая определяет особенности функционирования этого белка.

    2. Семейства белков. В пределах одного биологического вида замены аминокислотных остатков могут приводить к возникновению разных белков, выполняющих родственные функции и имеющих гомологичные последовательности аминокислот. Такие родственные белки имеют поразительно сходные конформации: количество и взаиморасположение α-спиралей и (или) β-структур, большинство поворотов и изгибов полипептидных цепей похожи или идентичны. Белки с гомологичными участками полипептидной цепи, сходной конформацией и родственными функциями выделяют в семейства белков. Примеры семейств белков: сериновые протеиназы, семейство иммуноглобулинов, семейство миоглобина.

    Сериновые протеиназы - семейство белков, выполняющих функцию протеолитических ферментов. К ним относятся пищеварительные ферменты - химотрипсин, трипсин, эластаза и многие факторы свертывания крови. Эти белки имеют в 40% положений идентичные аминокислоты и очень близкую конформацию (рис. 1.29).

    Рис. 1.29 . Пространственные структуры эластазы (А) и химотрипсина (Б)

    Некоторые аминокислотные замены привели к изменению субстратной специфичности этих белков и возникновению функционального многообразия внутри семейства.

    3. Семейство иммуноглобулинов. В работе иммунной системы огромную роль играют белки суперсемейства иммуноглобулинов, которое включает в себя три семейства белков:

    Антитела (иммуноглобулины);

    Рецепторы Т-лимфоцитов;

    Белки главного комплекса гистосовместимости - МНС 1-го и 2-го классов (Major Histocompatibility Complex).

    Все эти белки имеют доменное строение, состоят из гомологичных иммуноподобных доменов и выполняют сходные функции: взаимодействуют с чужеродными структурами, либо растворенными в крови, лимфе или межклеточной жидкости (антитела), либо находящимися на поверхности клеток (собственных или чужеродных).

    4. Антитела - специфические белки, вырабатываемые В-лимфоцитами в ответ на попадание в организм чужеродной структуры, называемой антигеном.

    Особенности строения антител

    Простейшие молекулы антител состоят из четырех полипептидных цепей: двух идентичных легких - L, содержащих около 220 аминокислот, и двух идентичных тяжелых - Н, состоящих из 440-700 аминокислот. Все четыре цепи в молекуле антитела соединены множеством нековалентных связей и четырьмя дисульфидными связями (рис. 1.30).

    Легкие цепи антитела состоят из двух доменов: вариабельного (VL), находящегося в N-концевой области полипептидной цепи, и константного (CL), расположенного на С-конце. Тяжелые цепи обычно имеют четыре домена: один вариабельный (VH), находящийся на N-конце, и три константных (CH1, CH2, СНЗ) (см. рис. 1.30). Каждый домен иммуноглобулина имеет β-складчатую суперструктуру, в которой два остатка цистеина соединены дисульфидной связью.

    Между двумя константными доменами СН1 и СН2 имеется участок, содержащий большое число остатков пролина, которые препятствуют формированию вторичной структуры и взаимодействию соседних Н-цепей на этом отрезке. Эта шарнирная область придает молекуле антитела гибкость. Между вариабельными доменами тяжелых и легких цепей находятся два идентичных антигенсвязывающих участка (активные центры для связывания антигенов), поэтому такие антитела часто называют бивалентами. В связывании антигена с антителом участвует не вся аминокислотная последовательность вариабельных участков обеих цепей, а всего лишь 20-30 аминокислот, расположенных в гипервариабельных областях каждой цепи. Именно эти области определяют уникальную способность каждого вида антитела взаимодействовать с соответствующим комплементарным антигеном.

    Антитела - одна из линий защиты организма против внедрившихся чужеродных организмов. Их функционирование можно разделить на два этапа: первый этап - узнавание и связывание антигена на поверхности чужеродных организмов, что возможно благодаря наличию в структуре антитела антигенсвязывающих участков; второй этап - инициация процесса инактивации и разрушения антигена. Специфичность второго этапа зависит от класса антител. Существует пять классов тяжелых цепей, отличающихся друг от друга по строению константных доменов: α, δ, ε, γ и μ, в соответствии с которыми различают пять классов иммуноглобулинов: A, D, Е, G и М.

    Особенности строения тяжелых цепей придают шарнирным участкам и С-концевым областям тяжелых цепей характерную для каждого класса конформацию. После связывания антигена с антителом конформационные изменения константных доменов определяют путь удаления антигена.

    Рис. 1. 30. Доменное строение IgG

    Иммуноглобулины М

    Иммуноглобулины М имеют две формы.

    Мономерная форма - 1-й класс антител, продуцируемый развивающимся В-лимфоцитом. Впоследствии многие В-клетки переключаются на выработку других классов антител, но с тем же антигенсвязывающим участком. IgM встраивается в мембрану и выполняет роль антигенраспознающего рецептора. Встраивание IgM в мембрану клеток возможно благодаря наличию в хвостовой части участка 25 гидрофобных аминокислотных остатков.

    Секреторная форма IgM содержит пять мономерных субъединиц, связанных друг с другом дисульфидными связями и дополнительной полипептидной J-цепью (рис. 1.31). Тяжелые цепи мономеров этой формы не содержат гидрофобной хвостовой части. Пентамер имеет 10 центров связывания с антигеном и поэтому эффективен в распознавании и удалении впервые попавшего в организм антигена. Секреторная форма IgM - основной класс антител, секретируемых в кровь при первичном иммунном ответе. Связывание IgM с антигеном изменяет конформацию IgM и индуцирует связывание его с первым белковым компонентом системы комплемента (система комплемента - набор белков, участвующих в уничтожении антигена) и активацию этой системы. Если антиген расположен на поверхности микроорганизма, система комплемента вызывает нарушение целостности клеточной мембраны и гибель бактериальной клетки.

    Иммуноглобулины G

    В количественном отношении этот класс иммуноглобулинов преобладает в крови (75% от всех Ig). IgG - мономеры, основной класс антител, секретируемый в кровь при вторичном иммунном ответе. После взаимодействия IgG с поверхностными антигенами микроорганизмов комплекс антиген-антитело способен связывать и активировать белки системы комплемента или может взаимодействовать со специфическими рецепторами макрофагов и нейтрофилов. Взаимодействие с фагоцитами приводит

    Рис. 1.31. Строение секреторной формы IgM

    к поглощению комплексов антиген-антитело и разрушению их в фагосомах клеток. IgG - единственный класс антител, которые способны проникать через плацентарный барьер и обеспечивать внутриутробную защиту плода от инфекций.

    Иммуноглобулины А

    Основной класс антител, присутствующий в секретах (молоке, слюне, секретах дыхательных путей и кишечного тракта). IgA секретируются в основном в димерной форме, где мономеры связаны друг с другом через дополнительную J-цепь (рис. 1.32).

    IgA не взаимодействуют с системой комплемента и фагоцитирующими клетками, но, связываясь с микроорганизмами, антитела препятствуют их присоединению к эпителиальным клеткам и проникновению в организм.

    Иммуноглобулины Е

    Иммуноглобулины Е представлены мономерами, в которых тяжелые ε-цепи содержат, так же как и μ-цепи иммуноглобулинов М, один вариабельный и четыре константных домена. IgE после секреции связываются своими

    Рис. 1.32. Строение IgA

    С-концевыми участками с соответствующими рецепторами на поверхности тучных клеток и базофилов. В результате они становятся рецепторами для антигенов на поверхности данных клеток (рис. 1.33).

    Рис. 1.33. Взаимодействие IgE с антигеном на поверхности тучной клетки

    После того как происходит присоединение антигена к соответствующим антигенсвязывающим участкам IgE, клетки получают сигнал к секреции биологически активных веществ (гистамина, серотонина), которые в большой мере ответственны за развитие воспалительной реакции и за проявление таких аллергических реакций, как астма, крапивница, сенная лихорадка.

    Иммуноглобулины D

    Иммуноглобулины D обнаружены в сыворотке в очень небольшом количестве, они являются мономерами. В тяжелых δ-цепях имеются один вариабельный и три константных домена. IgD выполняют роль рецепторов В-лимфоцитов, другие функции пока неизвестны. Взаимодействие специфических антигенов с рецепторами на поверхности В-лимфоцитов (IgD) приводит к передаче этих сигналов в клетку и включению механизмов, обеспечивающих размножение данного клона лимфоцитов.

    ТЕМА 1.7. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ И МЕТОДЫ ИХ РАЗДЕЛЕНИЯ

    1. Индивидуальные белки различаются по физико-химическим свойствам:

    Форме молекул;

    Молекулярной массе;

    Суммарному заряду, величина которого зависит от соотношения анионных и катионных групп аминокислот;

    Соотношению полярных и неполярных радикалов аминокислот на поверхности молекул;

    Степени устойчивости к воздействию различных денатурирующих агентов.

    2. Растворимость белков зависит от свойств белков, перечисленных выше, а также от состава среды, в которой растворяется белок (значения рН, солевого состава, температуры, наличия других органических веществ, способных взаимодействовать с белком). Величина заряда белковых молекул - один из факторов, влияющих на их растворимость. При потере заряда в изоэлектрической точке белки легче агрегируют и выпадают в осадок. Это особенно характерно для денатурированных белков, у которых на поверхности оказываются гидрофобные радикалы аминокислот.

    На поверхности белковой молекулы имеются как положительно, так и отрицательно заряженные радикалы аминокислот. Количество этих групп, а следовательно, и суммарный заряд белков зависят от рН среды, т.е. соотношения концентрации Н+- и ОН - -групп. В кислой среде повышение концентрации Н+ приводит к подавлению диссоциации карбоксильных групп -СОО - + Н+ > - СООН и понижению отрицательного заряда белков. В щелочной среде связывание избытка ОН - протонами, образующимися при диссоциации аминогрупп -NH 3 + + ОН - - NH 2 + Н 2 О с образованием воды, приводит к уменьшению положительного заряда белков. Значение рН, при котором белок имеет суммарный нулевой заряд, называется изоэлектрической точкой (ИЭТ). В ИЭТ число положительно и отрицательно заряженных групп одинаково, т.е. белок находится в изоэлектрическом состоянии.

    3. Разделение индивидуальных белков. Особенности строения и функционирования организма зависят от набора белков, синтезирующихся в нем. Изучение строения и свойств белков невозможно без их выделения из клетки и очистки от других белков и органических молекул. Стадии выделения и очистки индивидуальных белков:

    Разрушение клеток изучаемой ткани и получение гомогената.

    Разделение гомогената на фракции центрифугированием, получение ядерной, митохондриальной, цитозольной или иной фракции, содержащей искомый белок.

    Избирательная тепловая денатурация - кратковременное нагревание раствора белков, при котором можно удалить часть денатурированных белковых примесей (в том случае, если белок относительно термостабилен).

    Высаливание. Различные белки выпадают в осадок при разных концентрациях соли в растворе. Постепенно повышая концентрацию соли, можно получить ряд отдельных фракций с преимущественным содержанием выделяемого белка в одной из них. Наиболее часто для фракционирования белков используют сульфат аммония. Белки с наименьшей растворимостью выпадают в осадок при небольших концентрациях солей.

    Гель-фильтрация - метод просеивания молекул через набухшие гранулы сефадекса (трехмерные полисахаридные цепи декстрана, имеющие поры). Скорость прохождения белков через колонку, заполненную сефадексом, будет зависеть от их молекулярной массы: чем меньше масса молекул белка, тем легче они проникают внутрь гранул и дольше там задерживаются, чем больше масса, тем быстрее они элюируют с колонки.

    Ультрацентрифугирование - метод, заключающийся в том, что белки в центрифужной пробирке помещают в ротор ультрацентрифуги. При вращении ротора скорость оседания белков пропорциональна их молекулярной массе: фракции более тяжелых белков расположены ближе ко дну пробирки, более легкие - ближе к поверхности.

    Электрофорез - метод, в основе которого лежат различия в скорости движения белков в электрическом поле. Эта величина пропорциональна заряду белков. Электрофорез белков проводят на бумаге (в этом случае скорость движения белков пропорциональна только их заряду) или в полиакриламидном геле с определенной величиной пор (скорость движения белков пропорциональна их заряду и молекулярной массе).

    Ионообменная хроматография - метод фракционирования, основанный на связывании ионизированных групп белков с противоположно заряженными группами ионообменных смол (нерастворимых полимерных материалов). Прочность связывания белка со смолой пропорциональна заряду белка. Белки, адсорбированные на ионообменном полимере, можно смыть растворами NaCl с возрастающими концентрациями; чем меньше заряд белка, тем меньшая концентрация NaCl потребуется, чтобы смыть белок, связанный с ионогенными группами смолы.

    Аффинная хроматография - наиболее специфический метод выделения индивидуальных белков.К инертному полимеру ковалентно присоединяется лиганд какого-либо белка. При пропускании раствора белков через колонку с полимером за счет комплементарного связывания белка с лигандом на колонке адсорбируется только специфичный для данного лиганда белок.

    Диализ - метод, применяемый для удаления низкомолекулярных соединений из раствора выделяемого белка. Метод основан на неспособности белков проходить через полупроницаемую мембрану в отличие от низкомолекулярных веществ. Применяется для очистки белков от низкомолекулярных примесей, например от солей после высаливания.

    ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

    1. Заполните табл. 1.4.

    Таблица 1.4. Сравнительный анализ структуры и функций родственных белков - миоглобина и гемоглобина

    а) вспомните строение активного центра Мв и НЬ. Какую роль играют гидрофобные радикалы аминокислот в формировании активных центров этих белков? Опишите строение активного центра Мв и НЬ и механизмы присоединения к нему лигандов. Какую роль играют остатки Гис F 8 и Гис Е 7 в функционировании активного центра Мв иНв?

    б) какими новыми свойствами по сравнению с мономерным миоглобином обладает близко родственный олигомерный белок - гемоглобин? Объясните роль кооперативных изменений конформации протомеров в молекуле гемоглобина, влияние концентраций СО 2 и протонов на сродство гемоглобина к кислороду, а также роль 2,3-БФГ в аллостерической регуляции функции НЬ.

    2. Дайте характеристику молекулярным шаперонам, обращая внимание на связь их структуры с функцией.

    3. Какие белки объединяют в семейства? На примере семейства иммуноглобулинов определите сходные черты строения и родственные функции белков этого семейства.

    4. Часто для биохимических и медицинских целей требуются очищенные индивидуальные белки. Объясните, на каких физико-химических свойствах белков основаны используемые методы их разделения и очистки.

    ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

    1. Выберите правильные ответы.

    Функции гемоглобина:

    A. Транспорт О 2 из легких в ткани Б. Транспорт Н + из тканей в легкие

    B. Поддержание постоянства рН крови Г. Транспорт СО 2 из легких в ткани

    Д. Транспорт СО 2 из тканей в легкие

    2. Выберите правильные ответы. Лигандом α-протомера Нв является: A. Гем

    Б. Кислород

    B. СО Г. 2,3-БФГ

    Д. β-Протомер

    3. Выберите правильные ответы.

    Гемоглобин в отличие от миоглобина:

    A. Имеет четвертичную структуру

    Б. Вторичная структура представлена только α-спиралями

    B. Относится к сложным белкам

    Г. Взаимодействует с аллостерическим лигандом Д. Ковалентно связан с гемом

    4. Выберите правильные ответы.

    Сродство Нв к О 2 уменьшается:

    A. При присоединении одной молекулы О 2 Б. При отщеплении одной молекулы О 2

    B. При взаимодействии с 2,3-БФГ

    Г. При присоединении к протомерам Н + Д. При снижении концентрации 2,3-БФГ

    5. Установите соответствие.

    Для типов Нв характерно:

    A. В дезокси форме образует фибриллярные агрегаты Б. Содержит в составе две α- и две δ-цепи

    B. Преобладающая форма Нв в эритроцитах взрослого человека Г. В активном центре содержит гем с Fе+ 3

    Д. Содержит в составе две α- и две γ-цепи 1. НвА 2.

    6. Установите соответствие.

    Лиганды Нв:

    A. Связывается с Нв в аллостерическом центре

    Б. Имеет очень высокое сродство к активному центру Нв

    B. Присоединяясь, повышает сродство Нв к O 2 Г. Окисляет Fe+ 2 в Fе+ 3

    Д. Образует ковалентную связь с гисF8

    7. Выберите правильные ответы.

    Шапероны:

    A. Белки, присутствующие во всех отделах клетки

    Б. Синтез усиливается при стрессовых воздействиях

    B. Участвуют в гидролизе денатурированных белков

    Г. Участвуют в поддержании нативной конформации белков

    Д. Создают органеллы, в которых формируется конформация белков

    8. Установите соответствие. Иммуноглобулины:

    A. Секреторная форма имеет пентамерную форму

    Б. Класс Ig, проникающих через плацентарный барьер

    B. Ig - рецептор тучных клеток

    Г. Основной класс Ig, присутствующих в секретах эпителиальных клеток. Д. Рецептор В-лимфоцитов, активация которого обеспечивает размножение клеток

    9. Выберите правильные ответы.

    Иммуноглобулины Е:

    A. Вырабатываются макрофагами Б. Имеют тяжелые ε-цепи.

    B. Встраиваются в мембрану Т-лимфоцитов

    Г. Выполняют роль мембранных рецепторов антигенов на тучных клетках и базофилах

    Д. Ответственны за проявление аллергических реакций

    10. Выберите правильные ответы.

    Метод разделения белков основан на различиях в их молекулярной массе:

    A. Гель-фильтрация

    Б. Ультрацентрифугирование

    B. Электрофорез в полиакриламидном геле Г. Ионообменная хроматография

    Д. Аффинная хроматография

    11. Выберите правильный ответ.

    Метод разделения белков основан на различиях в их растворимости в воде:

    A. Гель-фильтрация Б. Высаливание

    B. Ионообменная хроматография Г. Аффинная хроматография

    Д. Электрофорез в полиакриламидном геле

    ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

    1. А, Б, В, Д

    2. А, Б, В, Д

    5. 1-В, 2-А, 3-Г

    6. 1-В, 2-Б, 3-А

    7. А, Б, Г, Д

    8. 1-Г; 2-Б, 3-В

    ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

    1. Олигомерные белки, протомер, четвертичная структура белков

    2. Кооперативные изменения конформации протомеров

    3. Эффект Бора

    4. Аллостерическая регуляция функций белков, аллостерический центр и аллостерический эффектор

    5. Молекулярные шапероны, белки теплового шока

    6. Семейства белков (сериновые протеазы, иммуноглобулины)

    7. IgM-, G-, Е-, А-связь структуры с функцией

    8. Суммарный заряд белков, изоэлектрическая точка белков

    9. Электрофорез

    10. Высаливание

    11. Гель-фильтрация

    12. Ионообменная хроматография

    13. Ультрацентрифугирование

    14. Аффинная хроматография

    15. Электрофорез белков плазмы крови

    ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

    1. Сравните зависимости степеней насыщения гемоглобина (Нв) и миоглобина (Mb) кислородом от его парциального давления в тканях

    Рис. 1.34. Зависимость насыщения Мв и НЬ кислородом от его парциального давления

    Обратите внимание, что форма кривых насыщения белков кислородом различна: для миоглобина - гипербола, для гемоглобина - сигмоидная форма.

    1. сравните значения парциального давления кислорода, при котором Мв и Нв насыщены О 2 на 50%. Какой из этих белков характеризуется более высоким сродством к О 2 ?

    2. какие особенности строения Мв определяют его высокое сродство к О 2 ?

    3. какие особенности строения Нв позволяют ему отдавать О 2 в капиллярах покоящихся тканей (при относительно высоком парциальном давлении О 2) и резко увеличивать эту отдачу в работающих мышцах? Какое свойство олигомерных белков обеспечивает этот эффект?

    4. вычислите, какое количество О 2 (в %) отдает оксигенированный гемоглобин покоящейся и работающей мышце?

    5. сделайте выводы о связи структуры белка с его функцией.

    2. Количество освобождаемого гемоглобином кислорода в капиллярах зависит от интенсивности процессов катаболизма в тканях (эффект Бора). Как изменения метаболизма в тканях регулируют сродство НЬ к O 2 ? Влияние СО 2 и Н+ на сродство НЬ к О 2

    1. опишите эффект Бора.

    2. в каком направлении протекает процесс, представленный на схеме:

    а) в капиллярах легких;

    б) в капиллярах тканей?

    3. в чем физиологическое значение эффекта Бора?

    4. почему взаимодействие Нв с Н+ на участках, удаленных от гема, изменяет сродство белка к О 2 ?

    3. Сродство НЬв к О 2 зависит от концентрации его лиганда - 2,3-бифосфо- глицерата, который является аллостерическим регулятором сродства Нв к О 2 . Почему взаимодействие лиганда в участке, удаленном от активного центра, влияет на функцию белка? Как 2,3-БФГ регулирует сродство НЬ к О 2 ? Для решения задачи ответьте на следующие вопросы:

    1. где и из чего синтезируется 2.3-бифосфоглицерат (2,3-БФГ)? Напишите его формулу, укажите заряд данной молекулы.

    2. с какой формой гемоглобина (окси или дезокси) взаимодействует БФГ и почему? В каком участке молекулы Нв происходит взаимодействие?

    3. в каком направлении протекает процесс, представленный на схеме

    а) в капиллярах тканей;

    б) в капиллярах легких?

    4. где должна быть более высокой концентрация комплекса

    Нв-2,3-БФГ:

    а) в капиллярах мышц, находящихся в состоянии покоя,

    б) в капиллярах работающих мышц (при условии одинаковой концентрации БФГ в эритроцитах)?

    5. как изменится сродство Нв к кислороду при адаптации человека к условиям высокогорья, если концентрация БФГ в эритроцитах при этом повышается? В чем физиологическое значение этого явления?

    4. Разрушение 2,3-БФГ при хранении консервированной крови нарушает функции Нв. Как изменится сродство Нв к O 2 в консервированной крови, если концентрация 2,3-БФГ в эритроцитах может уменьшатся с 8 до 0,5 ммол/л. Можно ли переливать такую кровь тяжелобольным пациентам, если концентрация 2,3-БФГ восстанавливается не ранее чем через трое суток? Можно ли добавлением в кровь 2,3-БФГ восстановить функции эритроцитов?

    5. Вспомните строение простейших молекул иммуноглобулинов. Какую роль играют иммуноглобулины в работе иммунной системы? Почему Ig часто называют бивалентами? Как структура Ig связана с их функцией? (Опишите на примере какого-либо класса иммуноглобулинов.)

    Физико-химические свойства белков и методы их разделения.

    6. Как суммарный заряд белка влияет на его растворимость?

    а) определите суммарный заряд пептида при рН 7

    Ала-Глу-Тре-Про-Асп-Лиз-Цис

    б) как изменится заряд этого пептида при рН >7, рН <7, рН <<7?

    в) что такое изоэлектрическая точка белка (ИЭТ) и в какой среде лежит

    ИЭТ данного пептида?

    г) при каком значении рН будет наблюдаться наименьшая растворимость данного пептида.

    7. Почему кислое молоко в отличие от свежего при кипячении «сворачивается» (т.е. белок молока казеин выпадает в осадок)? В свежем молоке молекулы казеина имеют отрицательный заряд.

    8. Для разделения индивидуальных белков используется метод гельфильтрации. Смесь, содержащую белки А, В, С с молекулярными массами, равными соответственно 160 000, 80 000 и 60 000, анализировали методом гель-фильтрации (рис. 1.35). Гранулы набухшего геля проницаемы для белков с молекулярной массой меньше 70 000. Какой принцип лежит в основе данного метода разделения? Какой из графиков правильно отражает результаты фракционирования? Укажите порядок выхода белков А, В и С с колонки.

    Рис. 1.35. Использование метода гель-фильтрации для разделения белков

    9. На рис. 1.36, А представлена схема электрофореза на бумаге белков сыворотки крови здорового человека. Относительные количества белковых фракций, полученных с помощью этого метода, составляют: альбумины 54-58%, α 1 -глобулины 6-7%, α 2 -глобулины 8-9%, β-глобулины 13%, γ-глобулины 11-12%.

    Рис. 1.36 Электрофорез на бумаге белков плазмы крови здорового человека (А) и больного (Б)

    I - γ-глобулины; II - β-глобулины; III - α 2 -глобулин; IV - α 2 -глобулин; V - альбумины

    Многие болезни сопровождаются количественными изменениями в составе сывороточных белков (диспротеинемии). Характер этих изменений учитывается при постановке диагноза и оценке тяжести и стадии заболевания.

    С помощью данных, приведенных в табл. 1.5, сделайте предположение о заболевании, для которого характерен электрофоретический профиль, представленный на рис. 1.36.

    Таблица 1.5. Изменение концентрации белков сыворотки крови при патологии

    Активный центр белка – это центр связывания белка с лигандом. На поверхности глобулы образуется участок, который может присоединять к себе другие молекулы называемые лигандами . Активный центр белка формируется из боковых групп аминокислот, сближенных на уровне третичной структуры. В линейной последовательности пептидной цепи они могут находиться на расстоянии значительно удаленном друг от друга. Белки проявляют высокую специфичность при взаимодействии с лигандом. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда. Комплементарность – это пространственное и химическое соответствие взаимодействующих молекул. Центры связывания белка с лигандом часто располагаются между доменами (например, центр связывания трипсина с его лигандом имеет 2 домена разделенных бороздкой).

    В основе функционирования белков лежит их специфическое взаимодействие с лигандами. 50000 индивидуальных белков, содержащих уникальные активные центры, способные связываться только со специфическими лигандами и, благодаря особенностям строения активного центра, проявлять свойственные им функции. Очевидно, в первичной структуре содержится информация о функции белков.

    Четвертичная структура - это высший уровень структурной организации, возможный не у всех белков. Под четвертичной структурой понимают способ укладки в пространстве полипептидных цепей и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Каждая отдельно взятая полипептидная цепь, получившая название протомера или субъединицы , чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров. Образовавшуюся молекулу принято называть олигомером (мультимером) .

    Четвертичную структуру стабилизируют нековалентные связи, которые возникают между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности.

    К белкам, имеющим четвертичную структуру, относятся многие ферменты (лактатдегидрогеназа, глутаматдегидрогеназа и др.), а также гемоглобин, сократительный белок мышц миозин. Одни белки имеют небольшое число субъединиц 2 – 8, другие сотни и даже тысячи субъединиц. Например, белок вируса табачной мозайки имеет 2130 субъединиц.

    Типичным примером белка, имеющего четвертичную структуру, является гемоглобин. Молекула гемоглобина состоит из 4 субъединиц, т. е. полипептидных цепей, каждая из которых связана с гемом, из них 2 полипептидные цепи называются -2афьла и -2бета Они различаются первичной структурой и длиной полипептидной цепи.

    Связи, образующие четвертичную структуру менее прочные. Под влиянием некоторых агентов происходит разделение белка на отдельные субъединицы. При удалении агента субъединицы могут вновь объединиться и биологическая функция белка восстанавливается. Так при добавлении к раствору гемоглобина мочевины он распадается на 4 составляющие его субъединицы, при удалении мочевины структурная и функциональная роль гемоглобина восстанавливается.

    Конец работы -

    Эта тема принадлежит разделу:

    Биохимия. Белки. Аминокислоты - структурные компоненты белков

    Белки аминокислоты структурные компоненты белков.. белки.. белки это азотсодержащие высокомолекулярные органические соединения состоящие из аминокислот соединенных в цепи с..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Механизм действия ферментов
    Согласно современным представлениям при взаимодействии фермента с субстратом условно можно выделить 3 стадии: 1 стадия характеризуется диффузией субстрата к фермен

    Кислотно-основный катализ
    В активном центре фермента содержатся группы кислотного и основного типа. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют поло

    А). Гипотеза Фишера
    Согласно ей имеется строгое стерическое соответствие субстрата и активного центра фермента. По Фишеру, фермент - это жёсткая структура, а субстрат является как бы слепком его активного цент

    Обмен углеводов
    ОБМЕН УГЛЕВОДОВ 1. Основные углеводы животного организма, их биологическая роль. 2. Превращение углеводов в органах пищеварительной системы. 3. Биосинтез и распад

    Биологическая роль углеводов
    БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ: 1. ЭНЕРГЕТИЧЕСКАЯ. При окислении1 г углеводов до конечных продуктов (СО2 и Н2О) выделяется 4,1-ккал энергии. На долю углеводов приходится около 60-70

    Превращение углеводов в пищеварительном тракте
    ПРЕВРАЩЕНИЕ УГЛЕВОДОВ В ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ Основными углеводами пищи для организма человека являются: крахмал, гликоген, сахароза, лактоза. Поступивший с пищей крахма

    Биосинтез и распад гликогена
    БИОСИНТЕЗ И РАСПАД ГЛИКОГЕНА В ТКАНЯХ. ГЛИКОГЕНОВЫЕ БОЛЕЗНИ. Было установлено, что гликоген может синтезироваться практически во всех органах и тканях. Однако наибольшая его конце

    Анаэробный гликолиз
    В зависимости от функционального состояния организма, клетки органов и тканей могут находиться как в условиях достаточного снабжения кислородом, так и испытывать его недостаток, то


    Аэробный гликолиз (гексозодифосфатный путь)
    ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

    Гексозомонофосфатный путь
    ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ В ТКАНЯХ, ХИМИЗМ РЕАКЦИЙ. Окисление глюкозы по этому пути протекает в цитоплазме клеток и представлено двумя последовательными ветвям

    Глюконеогенез
    ГЛЮКОНЕОГЕНЕЗ Основными источниками глюкозы для организма человека являются: 1. углеводы пищи; 2. гликоген тканей; 3. глюконеогенез. ГЛЮКОНЕОГЕНЕЗ - это

    Основные липиды организма человека их биологическая роль
    ЛИПИДАМИ называются сложные органические вещества биологической природы нерастворимые в воде, но растворимые в органических растворителях. ЛИПИДЫ являются основным продуктом питания. Они п

    Переваривание липидов, ресинтез жира
    Переваривание липидов. Поступающие с пищей ЛИПИДЫ в ротовой полости подвергаются только механической переработке. ЛИПОЛИТИЧЕСКИЕ ферменты в ротовой полости не образуются. Переваривание жир

    Липопротеины крови
    ЛИПИДЫ являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, которые растворимы в воде. Такими транспортными формами являются ЛИПОПРОТЕИНЫ.

    Окисление высших жирных кислот
    Жировая ткань, состоящая из адипозоцитов, выполняет специфическую роль в липидном обмене. Около 65% массы жировой ткани приходится на долю отложенных в ней триацилглицеролов (ТАГ) - они представляю

    Биосинтез вжк в тканях
    Биосинтез ВЖК происходит в эндоплазматической сети клеток. Заменимые ВЖК (все предельные и непредельные, имеющих одну двойную связь) синтезируются в клетках из АЦЁТИЛ-КоА. Условиями для би

    Обмен холестерина
    Обмен холестерина. Холестерин является предшественником в синтезе стероидов: желчных кислот, стероидных гормонов, витамина D3.Холестерин является обязательным структурным компон

    Переваривание белков
    Переваривание белков в пищеварительном тракте Пищевые белки подвергаются гидролитическому расщеплению под действием ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ (класс – гидролазы, подкласс - пептидазы).

    Гниение аминокислот, обезвреживание продуктов гниения
    ГНИЕНИЕ АМИНОКИСЛОТ Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ - это процесс распада аминокислот под действие

    Метаболизм аминокислот
    Метаболизм аминокислот Источниками аминокислот в клетке являются: 1. белки пищи после их гидролиза в органах пищеварения; 2. синтез заменимых аминокислот;

    Пути обезвреживания аммиака
    Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кр

    Регуляция обмена веществ
    СИГНАЛЬНЫЕ МОЛЕКУЛЫ. Основные задачи регуляции метаболизма и клеточных функций: 1. внутриклеточное и межклеточное согласование обменных процессов; 2. исключение «холостых

    Гормоны гипоталамуса
    ГОРМОНЫ ГИПОТАЛАМУСА ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гом

    Гормоны гипофиза

    Гормоны гипофиза
    ГОРМОНЫ ГИПОФИЗА В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз). Гормоны аденогипофиза можно разделить на 3 группы в зави

    Биосинтез йодтиронинов
    Синтез йодтиронинов происходит в составе белка – тиреоглобулина, который находится в фолликулах щитовидной железы. Тиреоглобулин представляет собой гликопротеин, содержащий 115 остатков тирозина. П

    Обмен липидов
    В печени жировой ткани гормоны стимулируют липолиз. Указанные эффекты на обмен углеводов и липидов связывают с повышением чувствительности клеток к действию адреналина под влиянием тиреоидных гормо

    Гипосекреция
    В детском возрасте снижение секреции приводит к задержке физического и умственного развития (кретинизм). У взрослых тяжелым проявлением недостатка гормонов щитовидной железы является миксе

    Гиперсекреция
    Диффузный токсический зоб (базедова болезнь) наиболее распространенное заболевание, сопровождающееся повышенной продукцией йодтиронинов. При этом заболевании размеры щитовидной железы увеличены и р

    Гормоны паращитовидных желез
    Паратгормон синтезируется в паращитовидных железах и состоит из 84 аминокислотных остатков. Гормон хранится в секреторных гранулах. Секреция ПТГ регулируется уровнем кальция в крови: при сни

    Гормоны половых желез
    Гормоны половых желез По химической природе представляют собой стероиды. Выделяют: 1. Андрогены; 2. Эстрогены; 3. Прогестины.

    Гормоны надпочечников
    Гормоны надпочечников Надпочечники – железы внутренней секреции, в которых выделяют корковое и мозговое вещество. В корковом слое синтезируется гормоны стероидной природы, в мозгово

    Гормоны поджелудочной железы
    Гормоны поджелудочной железы Функции поджелудочной железы: · экзокринная; · эндокринная. Экзокринная функция заключается в синтезе и секреции пищеварительных фер

    Экзаменационные вопросы
    ФАРМАЦЕВТИЧЕСКИЙ ФАКУЛЬТЕТ (ЗАОЧНОЕ ОТДЕЛЕНИЕ) Экзаменационные вопросы по биологической химии для студентов 3 курса (6 семестр) 1. Биохимия, ее задачи. Связь биохимии с ф