Вычислить производную параметрически заданной функции. Функции, заданные параметрически




Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцевпараметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, закачайте мою геометрическую прогу на странице Математические формулы и таблицы .

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет . Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Пример 6

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать . Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.


Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Подставляет найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :

Я заметил, что в задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы . Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем? Сейчас нам предстоит взять производную от , и это явно лучше, чем находить производную от .

Найдем вторую производную.
Используем формулу: .

Посмотрим на нашу формулу. Знаменатель уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:

Осталось воспользоваться формулой:

Для закрепления материала предлагаю еще пару примеров для самостоятельного решения.

Пример 9

Пример 10

Найти и для функции, заданной параметрически

Желаю успехов!

Надеюсь, это занятие было полезным, и Вы теперь с лёгкость сможете находить производные от функций, заданных неявно и от параметрических функций

Решения и ответы:

Пример 3: Решение:






Таким образом:

Формула производной функции, заданной параметрическим способом. Доказательство и примеры применения этой формулы. Примеры вычисления производных первого, второго и третьего порядка.

Пусть функция задана параметрическим способом:
(1)
где некоторая переменная, называемая параметром. И пусть функции и имеют производные при некотором значении переменной . Причем и функция имеет обратную функцию в некоторой окрестности точки . Тогда функция (1) имеет в точке производную , которая, в параметрическом виде, определяется по формулам:
(2)

Здесь и - производные функций и по переменной (параметру) . Их часто записывают в следующем виде:
;
.

Тогда систему (2) можно записать так:

Доказательство

По условию, функция имеет обратную функцию. Обозначим ее как
.
Тогда исходную функцию можно представить как сложную функцию:
.
Найдем ее производную, применяя правила дифференцирования сложной и обратной функций:
.

Правило доказано.

Доказательство вторым способом

Найдем производную вторым способом, исходя из определения производной функции в точке :
.
Введем обозначение:
.
Тогда и предыдущая формула принимает вид:
.

Воспользуемся тем, что функция имеет обратную функцию , в окрестности точки .
Введем обозначения:
; ;
; .
Разделим числитель и знаменатель дроби на :
.
При , . Тогда
.

Правило доказано.

Производные высших порядков

Чтобы найти производные высших порядков, надо выполнять дифференцирование несколько раз. Допустим, нам надо найти производную второго порядка от функции, заданной параметрическим способом, следующего вида:
(1)

По формуле (2) находим первую производную, которая также определяется параметрическим способом:
(2)

Обозначим первую производную, посредством переменной :
.
Тогда, чтобы найти вторую производную от функции по переменной , нужно найти первую производную от функции по переменной . Зависимость переменной от переменной также задана параметрическим способом:
(3)
Сравнивая (3) с формулами (1) и (2), находим:

Теперь выразим результат через функции и . Для этого подставим и применим формулу производной дроби :
.
Тогда
.

Отсюда получаем вторую производную функции по переменной :

Она также задана в параметрическом виде. Заметим, что первую строку также можно записать следующим образом:
.

Продолжая процесс, можно получить производные функции от переменной третьего и более высоких порядков.

Заметим, что можно не вводить обозначение для производной . Можно записать так:
;
.

Пример 1

Найдите производную от функции, заданной параметрическим способом:

Решение

Находим производные и по .
Из таблицы производных находим:
;
.
Применяем :

.
Здесь .

.
Здесь .

Искомая производная:
.

Ответ

Пример 2

Найдите производную от функции, выраженной через параметр :

Решение

Раскроим скобки, применяя формулы для степенных функций и корней :
.

Находим производную :

.

Находим производную . Для этого введем переменную и применим формулу производной сложной функции .

.

Находим искомую производную:
.

Ответ

Пример 3

Найдите производные второго и третьего порядков от функции, заданной параметрическим способом в примере 1:

Решение

В примере 1 мы нашли производную первого порядка:

Введем обозначение . Тогда функция является производной по . Она задана параметрическим способом:

Чтобы найти вторую производную по , нам надо найти первую производную по .

Дифференцируем по .
.
Производную по мы нашли в примере 1:
.
Производная второго порядка по равна производной первого порядка по :
.

Итак, мы нашли производную второго порядка по в параметрическом виде:

Теперь находим производную третьего порядка. Введем обозначение . Тогда нам нужно найти производную первого порядка от функции , которая задана параметрическим способом:

Находим производную по . Для этого перепишем в эквивалентном виде:
.
Из

.

Производная третьего порядка по равна производной первого порядка по :
.

Замечание

Можно не вводить переменные и , которые являются производными и , соответственно. Тогда можно записать так:
;
;
;
;
;
;
;
;
.

Ответ

В параметрическом представлении, производная второго порядка имеет следующий вид:

Производная третьего порядка:

Производная функции, заданной неявно.
Производная параметрически заданной функции

В данной статье мы рассмотрим еще два типовых задания, которые часто встречаются в контрольных работах по высшей математике. Для того чтобы успешно освоить материал, необходимо уметь находить производные хотя бы на среднем уровне. Научиться находить производные практически с нуля можно на двух базовых уроках и Производная сложной функции . Если с навыками дифференцирования всё в порядке, тогда поехали.

Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Давайте сначала вспомним само определение функции одной переменной :

Функция одной переменной –это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек», а справа – только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: – пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

– просто до безобразия, производная от функции равна её производной : .

Как дифференцировать
Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что – тоже сложная функция, любой «игрек с наворотами» – сложная функция :

Само оформление решения должно выглядеть примерно так:


Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, – эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под фразой «неявная функция» понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные . Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт , иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле
Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

Окончательный ответ:

Пример 3

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Пример 4

Найти производную от функции, заданной неявно

Заключаем обе части под штрихи и используем правило линейности:

Дифференцируем, используя правило дифференцирования сложной функции и правило дифференцирования частного :


Раскрываем скобки:

Теперь нам нужно избавиться от дроби. Это можно сделать и позже, но рациональнее сделать сразу же. В знаменателе дроби находится . Умножаем на . Если подробно, то выглядеть это будет так:

Иногда после дифференцирования появляется 2-3 дроби. Если бы у нас была еще одна дробь, например, , то операцию нужно было бы повторить – умножить каждое слагаемое каждой части на

В левой части выносим за скобку:

Окончательный ответ:

Пример 5

Найти производную от функции, заданной неявно

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

Производная параметрически заданной функции

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, можете воспользоваться моей программой .

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет . Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Пример 6

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать . Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.

Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Подставляем найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :

Рассмотрим задание линии на плоскости, при котором переменные x, y являются функциями третьей переменной t (называемой параметром):

Для каждого значения t из некоторого интервала соответствуют определенные значения x и y, а , следовательно, определенная точка M (x, y) плоскости. Когда t пробегает все значения из заданного интервала, то точка M (x, y ) описывает некоторую линию L . Уравнения (2.2) называются параметрическими уравнениями линии L .

Если функция x = φ(t) имеет обратную t = Ф(x), то подставляя это выражение в уравнение y = g(t), получим y = g(Ф(x)), которое задает y как функцию от x . В этом случае говорят, что уравнения (2.2) задают функцию y параметрически.

Пример 1. Пусть M (x, y) – произвольная точка окружности радиуса R и с центром в начале координат. Пусть t – угол между осью Ox и радиусом OM (см. рис. 2.3). Тогда x, y выражаются через t:

Уравнения (2.3) являются параметрическими уравнениями окружности. Исключим из уравнений (2.3) параметр t. Для этого каждое из уравнений возведем в квадрат и сложим, получим: x 2 + y 2 = R 2 (cos 2 t + sin 2 t) или x 2 + y 2 = R 2 – уравнение окружности в декартовой системе координат. Оно определяет две функции: Каждая из этих функций задается параметрическими уравнениями (2.3), но для первой функции , а для второй .

Пример 2 . Параметрические уравнения

задают эллипс с полуосями a, b (рис. 2.4). Исключая из уравнений параметр t , получим каноническое уравнение эллипса:

Пример 3 . Циклоидой называется линия, описанная точкой, лежащей на окружности, если эта окружность катится без скольжения по прямой (рис. 2.5). Введем параметрические уравнения циклоиды. Пусть радиус катящейся окружности равен a , точка M , описывающая циклоиду, в начале движения совпадала с началом координат.

Определим координаты x , y точки M после того, как окружность повернулась на угол t
(рис. 2.5), t = ÐMCB . Длина дуги MB равна длине отрезка OB, так как окружность катится без скольжения, поэтому

OB = at, AB = MD = asint, CD = acost, x = OB – AB = at – asint = a(t – sint),

y = AM = CB – CD = a – acost = a(1 – cost).

Итак, получены параметрические уравнения циклоиды:

При изменении параметра t от 0 до окружность поворачивается на один оборот, при этом точка M описывает одну арку циклоиды. Уравнения (2.5) задают y как функцию от x . Хотя функция x = a(t – sint) имеет обратную функцию, но она не выражается через элементарные функции, поэтому функция y = f(x) не выражается через элементарные функции.

Рассмотрим дифференцирование функции, заданной параметрически уравнениями (2.2). Функция x = φ(t) на некотором интервале изменения t имеет обратную функцию t = Ф(x) , тогда y = g(Ф(x)) . Пусть x = φ(t) , y = g(t) имеют производные, причем x"t≠0 . По правилу дифференцирования сложной функции y"x=y"t×t"x. На основании правила дифференцирования обратной функции , поэтому:

Полученная формула (2.6) позволяет находить производную для функции, заданной параметрически.

Пример 4. Пусть функция y , зависящая от x , задана параметрически:


Решение . .
Пример 5. Найти угловой коэффициент k касательной к циклоиде в точке M 0 , соответствующей значению параметра .
Решение. Из уравнений циклоиды: y" t = asint, x" t = a(1 – cost), поэтому

Угловой коэффициент касательной в точке M 0 равен значению при t 0 = π/4:

ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Пусть функция в точке x 0 имеет производную. По определению:
поэтому по свойствам предела (разд. 1.8) , где a – бесконечно малая при Δx → 0 . Отсюда

Δy = f "(x0)Δx + α×Δx. (2.7)

При Δx → 0 второе слагаемое в равенстве (2.7) является бесконечно малой высшего порядка, по сравнению с , поэтому Δy и f " (x 0)×Δx – эквивалентные, бесконечно малые (при f "(x 0) ≠ 0).

Таким образом, приращение функции Δy состоит из двух слагаемых, из которых первое f "(x 0)×Δx является главной частью приращения Δy, линейной относительно Δx (при f "(x 0)≠ 0).

Дифференциалом функции f(x) в точке x 0 называется главная часть приращения функции и обозначается: dy или df (x 0) . Следовательно,

df (x0) =f "(x0)×Δx. (2.8)

Пример 1. Найти дифференциал функции dy и приращение функции Δy для функции y = x 2 при:
1) произвольных x и Δx ; 2) x 0 = 20, Δx = 0,1.

Решение

1) Δy = (x + Δx) 2 – x 2 = x 2 + 2xΔx + (Δx) 2 – x 2 = 2xΔx + (Δx) 2 , dy = 2xΔx.

2) Если x 0 = 20, Δx = 0,1, то Δy = 40×0,1 + (0,1) 2 = 4,01; dy = 40×0,1= 4.

Запишем равенство (2.7) в виде:

Δy = dy + a×Δx. (2.9)

Приращение Δy отличается от дифференциала dy на бесконечно малую высшего порядка, по сравнению с Δx, поэтому в приближенных вычислениях пользуются приближенным равенством Δy ≈ dy, если Δx достаточно мало.

Учитывая, что Δy = f(x 0 + Δx) – f(x 0), получаем приближенную формулу:

f(x 0 + Δx) ≈ f(x 0) + dy. (2.10)

Пример 2 . Вычислить приближенно .

Решение. Рассмотрим:

Используя формулу (2.10), получим:

Значит, ≈ 2,025.

Рассмотрим геометрический смысл дифференциала df(x 0) (рис. 2.6).

Проведем к графику функции y = f(x) касательную в точке M 0 (x0, f(x 0)), пусть φ – угол между касательной KM0 и осью Ox, тогда f"(x 0) = tgφ. Из ΔM0NP:
PN = tgφ×Δx = f "(x 0)×Δx = df(x 0). Но PN является приращением ординаты касательной при изменении x от x 0 до x 0 + Δx.

Следовательно, дифференциал функции f(x) в точке x 0 равен приращению ординаты касательной.

Найдем дифференциал функции
y = x. Так как (x)" = 1, то dx = 1×Δx = Δx. Будем считать, что дифференциал независимой переменной x равен ее приращению, т.е. dx = Δx.

Если x – произвольное число, то из равенства (2.8) получаем df(x) = f "(x)dx, откуда .
Таким образом, производная для функции y = f(x) равна отношению ее дифференциала к дифференциалу аргумента.

Рассмотрим свойства дифференциала функции.

Если u(x), v(x) – дифференцируемые функции, то справедливы следующие формулы:

Для доказательства этих формул используются формулы производных для суммы, произведения и частного функции. Докажем, например, формулу (2.12):

d(u×v) = (u×v)"Δx = (u×v" + u"×v)Δx = u×v"Δx + u"Δx×v = u×dv + v×du.

Рассмотрим дифференциал сложной функции: y = f(x), x = φ(t), т.е. y = f(φ(t)).

Тогда dy = y" t dt, но y" t = y" x ×x" t , поэтому dy =y" x x" t dt. Учитывая,

что x" t = dx, получаем dy = y" x dx =f "(x)dx.

Таким образом, дифференциал сложной функции y = f(x), где x =φ(t), имеет вид dy = f "(x)dx, такой же, как в том случае, когда x является независимой переменной. Это свойство называется инвариантностью формы дифференциал а.