Функция обратная синусу. Обратные тригонометрические функции. Функция, обратная синусу




Обратные тригонометрические функции - это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях - обратных тригонометрических.

Помните, мы уже встречались с .

Например, арифметический квадратный корень из числа а - такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a - такое число с, что

При этом

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения - это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения - иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен - это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, - это

А вторая серия решений нашего уравнения - это

Подробнее о решении тригонометрических уравнений - .

Осталось выяснить - зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса - отрезок Область значений - отрезок .

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у - по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля - это такое число из отрезка , синус которого равен нулю. Что это за число? - Понятно, что это ноль.

Аналогично, арксинус единицы - это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: - это такое число из отрезка , синус которого равен . Да, это

0
0

Строим график функции

Свойства функции

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное - , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» - так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально - и мы получим график арксинуса.

То, что для функции на этом промежутке - значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус - взаимно-обратные функции. Другие примеры пар взаимно обратных функций - это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса - отрезок Область значений - отрезок

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

Значит, , поскольку ;

Так как ;

Так как ,

Так как ,

0
0

Вот график арккосинуса:

Свойства функции

1. Область определения

2. Область значений

Эта функция общего вида - она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие - арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса - промежуток Область значений - интервал .

Почему в определении арктангенса исключены концы промежутка - точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график - уже понятно. Поскольку арктангенс - функция обратная тангенсу, мы поступаем следующим образом:

Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений - интервал

Значит,

Значит,

Значит,

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? - Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке - график функции

Свойства функции

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

6. Функции и являются взаимно обратными - конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

График функции :

Свойства функции

1. Область определения

2. Область значений

3. Функция - общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и - горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x ; arcsin x — это угол, sin которого равен x ),
  • арккосинус (обозначение: arccos x ; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x ),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x ),
  • арксеканс (обозначение: arcsec x ),
  • арккосеканс (обозначение: arccosec x или arccsc x ).

Арксинус (y = arcsin x ) - обратная функция к sin (x = sin y . Другими словами возвращает угол по значению его sin .

Арккосинус (y = arccos x ) - обратная функция к cos (x = cos y cos .

Арктангенс (y = arctg x ) - обратная функция к tg (x = tg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg .

Арккотангенс (y = arcctg x ) - обратная функция к ctg (x = ctg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg .

arcsec - арксеканс, возвращает угол по значению его секанса.

arccosec - арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arc us — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах , используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1 −1 » (минус первая степень) определяет функцию x = f -1 (y) , обратную функции y = f (x) ).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x , Arccos x , Arctan x , Arccot x и сохраним обозначения: arcsin x , arcos x , arctan x , arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями.

Задания, связанные с обратными тригонометрическими функциями, часто предлагаются на школьных выпускных экзаменах и на вступительных экзаменах в некоторых ВУЗах. Подробное изучение этой темы может быть достигнуто только на факультативных занятиях или на элективных курсах. Предлагаемый курс призван как можно полнее развить способности каждого ученика, повысить его математическую подготовку.

Курс рассчитан на 10 часов:

1.Функции arcsin x, arccos x, arctg x, arcctg x (4 ч.).

2.Операции над обратными тригонометрическими функциями (4 ч.).

3.Обратные тригонометрические операции над тригонометрическими функциями (2 ч.).

Урок 1 (2 ч.) Тема: Функции y = arcsin x, y = arccos x, y = arctg x, y = arcctg x.

Цель: полное освещение данного вопроса.

1.Функция y = arcsin х.

а) Для функции y = sin x на отрезке существует обратная (однозначная) функция, которую условились называть арксинусом и обозначать так: y = arcsin x. График обратной функции симметричен с графиком основной функции относительно биссектрисы I - III координатных углов.

Свойства функции y = arcsin x .

1)Область определения: отрезок [-1; 1];

2)Область изменения: отрезок ;

3)Функция y = arcsin x нечетная: arcsin (-x) = - arcsin x;

4)Функция y = arcsin x монотонно возрастающая;

5)График пересекает оси Ох, Оу в начале координат.

Пример 1. Найти a = arcsin . Данный пример подробно можно сформулировать так: найти такой аргумент a , лежащий в пределах от до , синус которого равен .

Решение. Существует бесчисленное множество аргументов, синус которых равен , например: и т.д. Но нас интересует только тот аргумент, который находится на отрезке . Таким аргументом будет . Итак, .

Пример 2. Найти .Решение. Рассуждая так же, как и в примере 1, получим .

б) устные упражнения. Найти: arcsin 1, arcsin (-1), arcsin , arcsin (), arcsin , arcsin (), arcsin , arcsin (), arcsin 0. Образец ответа: , т.к. . Имеют ли смысл выражения: ; arcsin 1,5; ?

в) Расположите в порядке возрастания: arcsin, arcsin (-0,3), arcsin 0,9.

II. Функции y = arccos x, y = arctg x, y = arcctg x (аналогично).

Урок 2 (2 ч) Тема: Обратные тригонометрические функции, их графики.

Цель: на данном уроке необходимо отработать навыки в определении значений тригонометрических функций, в построении графиков обратных тригонометрических функций с использованием Д (у), Е (у) и необходимых преобразований.

На данном уроке выполнить упражнения, включающие нахождение области определения, области значения функций типа: y = arcsin , y = arccos (x-2), y = arctg (tg x), y = arccos .

Следует построить графики функций: а) y = arcsin 2x; б) y = 2 arcsin 2x; в) y = arcsin ;

г) y = arcsin ; д) y = arcsin ; е) y = arcsin ; ж) y = | arcsin | .

Пример. Построим график y = arccos

В домашнее задание можно включить следующие упражнения: построить графики функций: y = arccos , y = 2 arcctg x, y = arccos | x | .

Графики обратных функций

Урок № 3 (2 ч.) Тема:

Операции над обратными тригонометрическими функциями.

Цель: расширить математические познания (это важно для поступающих на специальности с повышенными требованиями к математической подготовке) путем введения основных соотношений для обратных тригонометрических функций.

Материал для урока.

Некоторые простейшие тригонометрические операции над обратными тригонометрическими функциями: sin (arcsin x) = x , i xi ? 1; cos (arсcos x) = x , i xi ? 1; tg (arctg x)= x , x I R; ctg (arcctg x) = x , x I R.

Упражнения.

а) tg (1,5 + arctg 5) = - ctg (arctg 5) = .

ctg (arctg x) = ; tg (arcctg x) = .

б) cos ( + arcsin 0,6) = - cos (arcsin 0,6). Пусть arcsin 0,6 = a , sin a = 0,6;

cos (arcsin x) = ; sin (arccos x) = .

Замечание: берем перед корнем знак “+” потому, что a = arcsin x удовлетворяет .

в) sin (1,5 + arcsin ).Ответ: ;

г) ctg ( + arctg 3).Ответ: ;

д) tg ( – arcctg 4).Ответ: .

е) cos (0,5 + arccos ) . Ответ: .

Вычислить:

a) sin (2 arctg 5) .

Пусть arctg 5 = a , тогда sin 2 a = или sin (2 arctg 5) = ;

б) cos ( + 2 arcsin 0,8).Ответ: 0,28.

в) arctg + arctg .

Пусть a = arctg , b = arctg ,

тогда tg (a + b) = .

г) sin (arcsin + arcsin ).

д) Доказать, что для всех x I [-1; 1] верно arcsin x + arccos x = .

Доказательство:

arcsin x = – arccos x

sin (arcsin x) = sin ( – arccos x)

x = cos (arccos x)

Для самостоятельного решения: sin (arccos ), cos (arcsin ) , cos (arcsin ()), sin (arctg (- 3)), tg (arccos ) , ctg (arccos ).

Для домашнего решения: 1) sin (arcsin 0,6 + arctg 0); 2) arcsin + arcsin ; 3) ctg ( – arccos 0,6); 4) cos (2 arcctg 5) ; 5) sin (1,5 – arcsin 0,8); 6) arctg 0,5 – arctg 3.

Урок № 4 (2ч.) Тема: Операции над обратными тригонометрическими функциями.

Цель: на данном уроке показать использование соотношений в преобразовании более сложных выражений.

Материал для урока.

УСТНО:

а) sin (arccos 0,6), cos (arcsin 0,8);

б) tg (arcсtg 5), ctg (arctg 5);

в) sin (arctg -3), cos (arcсtg());

г) tg (arccos ), ctg (arccos()).

ПИСЬМЕННО:

1) cos (arcsin + arcsin + arcsin ).

2) cos (arctg 5–arccos 0,8) = cos (arctg 5) cos (arccos 0,8) + sin (arctg 5) sin (arccos 0,8) =

3) tg ( - arcsin 0,6) = - tg (arcsin 0,6) =

4)

Самостоятельная работа поможет выявить уровень усвоения материала

1) tg (arctg 2 – arctg )

2) cos( - arctg2)

3) arcsin + arccos

1) cos (arcsin + arcsin )

2) sin (1,5 - arctg 3)

3) arcctg3 – arctg 2

Для домашнего задания можно предложить:

1) ctg (arctg + arctg + arctg ); 2) sin 2 (arctg 2 – arcctg ()); 3) sin (2 arctg + tg ( arcsin )); 4) sin (2 arctg ); 5) tg ( (arcsin ))

Урок № 5 (2ч) Тема: Обратные тригонометрические операции над тригонометрическими функциями.

Цель: сформировать представление учащихся об обратных тригонометрических операциях над тригонометрическими функциями, основное внимание уделить повышению осмысленности изучаемой теории.

При изучении данной темы предполагается ограничение объема теоретического материала, подлежащего запоминанию.

Материал для урока:

Изучение нового материала можно начать с исследования функции y = arcsin (sin x) и построения ее графика.

3. Каждому x I R ставится в соответствие y I , т.е. <= y <= такое, что sin y = sin x.

4. Функция нечетна: sin(-x) = - sin x ; arcsin(sin(-x)) = - arcsin(sin x).

6. График y = arcsin (sin x) на :

a) 0 <= x <= имеем y = arcsin(sin x) = x, ибо sin y = sin x и <= y <= .

б) <= x <= получим y = arcsin (sin x) = arcsin ( - x) = - x, ибо

sin y = sin ( – x) = sinx , 0 <= - x <= .

Итак,

Построив y = arcsin (sin x) на , продолжим симметрично относительно начала координат на [- ; 0], учитывая нечетность этой функции. Используя периодичность, продолжим на всю числовую ось.

Затем записать некоторые соотношения: arcsin (sin a) = a , если <= a <= ; arccos (cos a ) = a , если 0 <= a <= ; arctg (tg a) = a , если < a < ; arcctg (ctg a) = a , если 0 < a < .

И выполнить следующие упражнения:a) arccos(sin 2).Ответ: 2 - ; б) arcsin (cos 0,6).Ответ: - 0,1 ; в) arctg (tg 2).Ответ: 2 - ;

г) arcctg(tg 0,6).Ответ: 0,9 ; д) arccos (cos ( - 2)).Ответ:2 - ; е) аrcsin (sin ( - 0,6)). Ответ: - 0,6; ж) аrctg (tg 2) = arctg (tg (2 - )). Ответ:2 - ; з) аrcctg (tg 0,6). Ответ: - 0,6; - arctg x; д) arccos + arccos

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y
Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .
Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .
Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при


при

при

при


при

при

при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.