Теплоизолирующая способность воздушных прослоек. Термическое сопротивление воздушной прослойки Воздушная прослойка




В таблице приведены значения теплопроводности воздуха λ в зависимости от температуры при нормальном атмосферном давлении.

Величина коэффициента теплопроводности воздуха необходима при расчетах теплообмена и входит в состав чисел подобия, например таких, как число Прандтля, Нуссельта, Био.

Теплопроводность выражена в размерности и дана для газообразного воздуха в интервале температуры от -183 до 1200°С. Например, при температуре 20°С и нормальном атмосферном давлении теплопроводность воздуха равна 0,0259 Вт/(м·град) .

При низких отрицательных температурах охлажденный воздух имеет малую теплопроводность, например при температуре минус 183°С, она составляет всего 0,0084 Вт/(м·град).

По данным таблицы видно, что с ростом температуры теплопроводность воздуха увеличивается . Так, при увеличении температуры с 20 до 1200°С, величина теплопроводности воздуха возрастает с 0,0259 до 0,0915 Вт/(м·град), то есть более чем в 3,5 раза.

Теплопроводность воздуха в зависимости от температуры — таблица
t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-183 0,0084 -30 0,022 110 0,0328 450 0,0548
-173 0,0093 -20 0,0228 120 0,0334 500 0,0574
-163 0,0102 -10 0,0236 130 0,0342 550 0,0598
-153 0,0111 0 0,0244 140 0,0349 600 0,0622
-143 0,012 10 0,0251 150 0,0357 650 0,0647
-133 0,0129 20 0,0259 160 0,0364 700 0,0671
-123 0,0138 30 0,0267 170 0,0371 750 0,0695
-113 0,0147 40 0,0276 180 0,0378 800 0,0718
-103 0,0155 50 0,0283 190 0,0386 850 0,0741
-93 0,0164 60 0,029 200 0,0393 900 0,0763
-83 0,0172 70 0,0296 250 0,0427 950 0,0785
-73 0,018 80 0,0305 300 0,046 1000 0,0807
-50 0,0204 90 0,0313 350 0,0491 1100 0,085
-40 0,0212 100 0,0321 400 0,0521 1200 0,0915

Теплопроводность воздуха в жидком и газообразном состояниях при низких температурах и давлении до 1000 бар

В таблице приведены значения теплопроводности воздуха при низких температурах и давлении до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 75 до 300К (от -198 до 27°С).

Величина теплопроводности воздуха в газообразном состоянии увеличивается с ростом давления и температуры .
Воздух в жидком состоянии с ростом температуры имеет тенденцию к снижению коэффициента теплопроводности.

Черта под значениями в таблице означает переход жидкого воздуха в газ — цифры под чертой относятся к газу, а выше ее — к жидкости.
Смена агрегатного состояния воздуха существенно сказывается на значении коэффициента теплопроводности — теплопроводность жидкого воздуха значительно выше .

Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность газообразного воздуха при температуре от 300 до 800К и различном давлении

В таблице приведены значения теплопроводности воздуха при различных температурах в зависимости от давления от 1 до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 300 до 800К (от 27 до 527°С).

По данным таблицы видно, что с ростом температуры и давления теплопроводность воздуха увеличивается.
Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность воздуха при высоких температурах и давлении от 0,001 до 100 бар

В таблице приведены значения теплопроводности воздуха при высоких температурах и давлении от 0,001 до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 1500 до 6000К (от 1227 до 5727°С).

С ростом температуры молекулы воздуха диссоциирует и максимальное значение его теплопроводности достигается при давлении (разряжении) 0,001 атм. и температуре 5000К.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Слои, материалы

(поз. в табл. СП )

Термическое сопротивление

R i =  i /l i , м 2 ×°С/Вт

Тепловая инерция

D i = R i s i

Сопротивление паропроницанию

R vp,i =  i /m i , м 2 ×чПа/мг

Внутренний пограничный слой

Внутренняя штукатурка из цем.-песч. раствора (227)

Железобетон(255)

Плиты минераловатные (50)

Воздушная прослойка

Наружный экран – керамогранит

Наружный пограничный слой

Итого ()

* – без учёта паропроницаемости швов экрана

    Термическое сопротивление замкнутой воздушной прослойки принимается по таблице 7 СП .

    Принимаем коэффициент теплотехнической неоднородности конструкции r = 0,85, тогдаR req /r = 3,19/0,85 = 3,75 м 2 ×°С/Вт и требуемая толщина утеплителя

0,045(3,75 – 0,11 – 0,02 – 0,10 – 0,14 – 0,04) = 0,150 м.

    Принимаем толщину утеплителя  3 = 0,15 м = 150 мм (кратно 30 мм), и добавляем в табл. 4.2.

Выводы:

    По сопротивлению теплопередаче конструкция соответствует нормам, так как приведённое сопротивление теплопередаче R 0 r выше требуемого значенияR req :

R 0 r =3,760,85 = 3,19> R req = 3,19 м 2 ×°С/Вт.

4.6. Определение теплового и влажностного режима вентилируемой воздушной прослойки

    Расчёт проводим для условий зимнего периода.

Определение скорости движения и температуры воздуха в прослойке

    Чем длиннее (выше) прослойка, тем больше скорость движения воздуха и его расход, а, следовательно, и эффективность выноса влаги. С другой стороны, чем длиннее (выше) прослойка, тем больше вероятность недопустимого влагонакопления в утеплителе и на экране.

    Расстояние между входными и выходными вентиляционными отверстиями (высоту прослойки) принимаем равным Н = 12 м.

    Среднюю температуру воздуха в прослойке t 0 предварительно принимаем как

t 0 = 0,8t ext = 0,8(-9,75) = -7,8°С.

    Скорость движения воздуха в прослойке при расположении приточных и вытяжных отверстий на одной стороне здания:

где – сумма местных аэродинамических сопротивлений течению воздуха на входе, на поворотах и на выходе из прослойки; в зависимости от конструктивного решения фасадной системы= 3…7; принимаем= 6.

    Площадь сечения прослойки условной шириной b = 1 м и принятой (в табл. 4.1) толщиной = 0,05 м:F =b = 0,05 м 2 .

    Эквивалентный диаметр воздушной прослойки:

    Коэффициент теплоотдачи поверхности воздушной прослойки a 0 предварительно принимаем по п. 9.1.2 СП :a 0 = 10,8 Вт/(м 2 ×°С).

(м 2 ×°С)/Вт,

K int = 1/R 0,int = 1/3,67 = 0,273Вт/(м 2 ×°С).

(м 2 ×°С)/Вт,

K ext = 1/R 0, ext = 1/0,14 = 7,470 Вт/(м 2 ×°С).

    Коэффициенты

0,35120 + 7,198(-8,9) = -64,72 Вт/м 2 ,

0,351 + 7,198 =7,470 Вт/(м 2 ×°С).

где с удельная теплоёмкость воздуха,с = 1000 Дж/(кг×°С).

    Средняя температура воздуха в прослойке отличается от принятой ранее более чем на 5%, поэтому уточняем расчётные параметры.

    Скорость движения воздуха в прослойке:

    Плотность воздуха в прослойке

    Количество (расход) воздуха, проходящего через прослойку:

    Уточняем коэффициент теплоотдачи поверхности воздушной прослойки:

Вт/(м 2 ×°С).

    Сопротивление теплопередаче и коэффициент теплопередачи внутренней части стены:

(м 2 ×°С)/Вт,

K int = 1/R 0,int = 1/3,86 = 0,259Вт/(м 2 ×°С).

    Сопротивление теплопередаче и коэффициент теплопередачи наружной части стены:

(м 2 ×°С)/Вт,

K ext = 1/R 0,ext = 1/0,36 = 2,777Вт/(м 2 ×°С).

    Коэффициенты

0,25920 + 2,777(-9,75) = -21,89 Вт/м 2 ,

0,259 + 2,777 =3,036 Вт/(м 2 ×°С).

    Уточняем среднюю температуру воздуха в прослойке:

    Уточняем ещё несколько раз среднюю температуру воздуха в прослойке, пока значения на соседних итерациях не будут отличаться более, чем на 5% (табл. 4.6).

.
1.3 Здание как единая энергетическая система .
2. Тепловлагопередача через наружные ограждения .
2.1 Основы теплопередачи в здании .
2.1.1 Теплопроводность .
2.1.2 Конвекция .
2.1.3 Излучение .
2.1.4 Термическое сопротивление воздушной прослойки.
2.1.5 Коэффициенты теплоотдачи на внутренней и наружной поверхностях.
2.1.6 Теплопередача через многослойную стенку.
2.1.7 Приведенное сопротивление теплопередаче.
2.1.8 Распределение температуры по сечению ограждения.
2.2 Влажностный режим ограждающих конструкций.
2.2.1 Причины появления влаги в ограждениях.
2.2.2 Отрицательные последствия увлажнения наружных ограждений.
2.2.3 Связь влаги со строительными материалами.
2.2.4 Влажный воздух.
2.2.5 Влажность материала.
2.2.6 Сорбция и десорбция.
2.2.7 Паропроницаемость ограждений.
2.3 Воздухопроницаемость наружных ограждений.
2.3.1 Основные положения.
2.3.2 Разность давлений на наружной и внутренней поверхности ограждений.
2.3.3 Воздухопроницаемость строительных материалов.

2.1.4 Термическое сопротивление воздушной прослойки.


Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек , расположенных между слоями ограждающей конструкции, называют термическим сопротивлением R в.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис.5. Теплообмен в воздушной прослойке.


Тепловой поток, проходящий через воздушную прослойку q в.п , Вт/м
² , складывается из потоков, передаваемых теплопроводностью (2) q т , Вт/м ² , конвекцией (1) q к , Вт/м ² , и излучением (3) q л , Вт/м ² .


(2.12)

При этом доля потока, передаваемого излучением самая большая. Рассмотрим замкнутую вертикальную воздушную прослойку, на поверхностях которой разность температуры составляет 5ºС. С увеличением толщины прослойки от 10 мм до 200 мм доля теплового потока за счет излучения возрастает с 60% до 80%. При этом доля теплоты, передаваемой путем теплопроводности, падает от 38% до 2%, а доля конвективного теплового потока возрастает с 2% до 20% .
Прямой расчет этих составляющих достаточно громоздок. Поэтому в нормативных документах приводятся данные о термических сопротивлениях замкнутых воздушных прослоек, которые в 50-х годах ХХ века была составлена К.Ф. Фокиным по результатам экспериментов М.А. Михеева . При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги, затрудняющей лучистый теплообмен между поверхностями, обрамляющими воздушную прослойку, термическое сопротивление следует увеличить в два раза. Для увеличения термического сопротивления замкнутыми воздушными прослойками в рекомендуется иметь в виду следующие выводы из исследований:
1) эффективными в теплотехническом отношении являются прослойки небольшой толщины;
2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну большой;
3) воздушные прослойки желательно располагать ближе к наружной поверхности ограждения, так как при этом в зимнее время уменьшается тепловой поток излучением;
4) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий;
5) для сокращения теплового потока, передаваемого излучением, можно одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения около ε=0,05. Покрытие фольгой обеих поверхностей воздушной прослойки практически не уменьшает передачу теплоты по сравнению с покрытием одной поверхности.
Вопросы для самоконтроля
1. Что является потенциалом переноса теплоты?
2. Перечислите элементарные виды теплообмена.
3. Что такое теплопередача?
4. Что такое теплопроводность?
5. Что такое коэффициент теплопроводности материала?
6. Напишите формулу теплового потока, передаваемого теплопроводностью в многослойной стенке при известных температурах внутренней tв и наружной tн поверхностей.
7. Что такое термическое сопротивление?
8. Что такое конвекция?
9. Напишите формулу теплового потока, передаваемого конвекцией от воздуха к поверхности.
10. Физический смысл коэффициента конвективной теплоотдачи.
11. Что такое излучение?
12. Напишите формулу теплового потока, передаваемого излучением от одной поверхности к другой.
13. Физический смысл коэффициента лучистой теплоотдачи.
14. Как называется сопротивление теплопередаче замкнутой воздушной прослойки в ограждающей конструкции?
15. Из тепловых потоков какой природы состоит общий тепловой поток через воздушную прослойку?
16. Какой природы тепловой поток превалирует в тепловом потоке через воздушную прослойку?
17. Как влияет толщина воздушной прослойки на распределение потоков в ней.
18. Как уменьшить тепловой поток через воздушную прослойку?


ВОЗДУШНАЯ ПРОСЛОЙКА , один из видов изолирующих слоев, уменьшающих теплопроводность среды. В последнее время значение воздушной прослойки особенно возросло в связи с применением в строительном деле пустотелых материалов. В среде, разделенной воздушной прослойкой, тепло передается: 1) путем лучеиспускания поверхностей, прилегающих к воздушной прослойке, и путем теплоотдачи между поверхностью и воздухом и 2) путем переноса тепла воздухом, если он подвижен, или путем передачи тепла одними частицами воздуха другим вследствие теплопроводности его, если он неподвижен, причем опыты Нуссельта доказывают, что более тонкие прослойки, в которых воздух может считаться почти неподвижным, обладают меньшим коэффициентом теплопроводности k, чем более толстые прослойки, но с возникающими в них конвекционными течениями. Нуссельт дает следующее выражение для определения количества тепла, передаваемого в час воздушной прослойкой:

где F - одна из поверхностей, ограничивающих воздушную прослойку; λ 0 - условный коэффициент, числовые значения которого, зависящие от ширины воздушной прослойки (е), выраженной в м, даются в прилагаемой табличке:

s 1 и s 2 - коэффициенты лучеиспускания обеих поверхностей воздушной прослойки; s - коэффициент лучеиспускания абсолютно черного тела, равный 4,61; θ 1 и θ 2 - температуры поверхностей, ограничивающих воздушную прослойку. Подставляя в формулу соответствующие значения, можно получить нужные для расчетов величины k (коэффициент теплопроводности) и 1/k (изолирующей способности) воздушных прослоек различной толщины. С. Л. Прохоров составил по данным Нуссельта диаграммы (см. фиг.), показывающие изменение величин k и 1/k воздушных прослоек в зависимости от их толщины, причем наивыгоднейшим участком является участок от 15 до 45 мм.

Меньшие воздушные прослойки практически трудноосуществимы, а большие дают уже значительный коэффициент теплопроводности (около 0,07). Следующая таблица дает величины k и 1/k для различных материалов, причем для воздуха дано несколько значений этих величин в зависимости от толщины слоя.

Т. о. видно, что часто бывает выгоднее делать несколько более тонких воздушных прослоек, чем применять те или другие изолирующие слои. Воздушная прослойка толщиной до 15 мм может считаться изолятором с неподвижным слоем воздуха, при толщине 15-45 мм - с почти неподвижным и, наконец, воздушные прослойки толщиной свыше 45-50 мм должны признаваться прослойками с возникающими в них конвекционными течениями и потому подлежащими расчету на общем основании.

Толщина воздушной прослойки,

Термическое сопротивление замкнутой воздушной прослойки

R в.п, м 2 ×°С/Вт

горизонтальной при потоке тепла снизу вверх и вертикальной

горизонтальной при потоке тепла сверху вниз

при температуре воздуха в прослойке

положительной

отрицательной

Положительной

отрицательной

Примечание. При оклейке одной или обеих поверхностей воздушной прослойки алюминиевой фольгой термическое сопротивление следует увеличивать в 2 раза.

Приложение 5*

Схемы теплопроводных включений в ограждающих конструкциях

Приложение 6*

(Справочное)

Приведенное сопротивление теплопередаче окон, балконных дверей и фонарей

Заполнение светового проема

Приведенное сопротивление теплопередаче R o , м 2 *°С/Вт

в деревянных или ПВХ переплетах

в алюминиевых переплетах

1. Двойное остекление в спаренных переплетах

2. Двойное остекление в раздельных переплетах

3. Блоки стеклянные пустотные (с шириной швов 6 мм) размером: 194х194х98

0,31 (без переплета)

0,33 (без переплета)

4. Профильное стекло коробчатого сечения

0,31 (без переплета)

5. Двойное из органического стекла для зенитных фонарей

6. Тройное из органического стекла для зенитных фонарей

7. Тройное остекление в раздельно–спаренных переплетах

8. Однокамерный стеклопакет:

Из обычного стекла

Из стекла с мягким селективным покрытием

9. Двухкамерный стеклопакет:

Из обычного стекла (с межстекольным расстоянием 6 мм)

Из обычного стекла (с межстекольным расстоянием 12 мм)

Из стекла с твердым селективным покрытием

10. Обычное стекло и однокамерный стеклопакет в раздельных переплетах:

Из обычного стекла

Из стекла с твердым селективным покрытием

Из стекла с мягким селективным покрытием

Из стекла с твердым селективным покрытием и заполнением аргоном

11. Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:

Из обычного стекла

Из стекла с твердым селективным покрытием

Из стекла с мягким селективным покрытием

Из стекла с твердым селективным покрытием и заполнением аргоном

12. Два однокамерных стеклопакета в спаренных переплетах

13. Два однокамерных стеклопакета в раздельных переплетах

14. Четырехслойное остекление в двух спаренных переплетах

* в стальных переплетах

Примечания:

1. К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым - более 0,15.

2. Значения приведенных сопротивлений теплопередаче заполнений световых проемов даны для случаев, когда отношение площади остекления к площади заполнения светового проема равно 0,75.

Значения приведенных сопротивлений теплопередаче, указанные в таблице, допускается применять в качестве расчетных в случае отсутствия таких значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний.

3. Температура внутренней поверхности конструктивных элементов окон зданий (кроме производственных) должна быть не ниже 3 °С при расчетной температуре наружного воздуха.