Активная реакция. Форменные элементы крови. Методы определения рН среды




Под активной реакцией среды понимают концентрацию водородных ионов. В числе различных физико-химических защитных констант организма таких, как изотермия, изотония и другие постоянство концентрации водородных ионов – изогидрия – имеет особо важное значение для биологических процессов организма. Физико-химическое состояние белков, каталитическая функция ферментов, активность солевых ионов зависят от концентрации ионов водорода.

Ионное произведение воды. Водородный показатель

Точные измерения показывают, что чистая дистиллированная во­да в незначительной степени электропроводна. Следовательно, вода в некоторой степени диссоцирована, что можно представить уравнением:

Для обратимых процессов константа диссоциаций (К) выражается уравнением:

где [Н + и - концентрации ионов Н + и ОН - при установившемся равновесии диссоциированных и недиссоциированных: молекул воды. Выражается эта концентрация в г-ионах на литр (г-ион/л), 1 г-ион Н + = I г, I г-ион ОН - = 17 г. [Н 2 О] - равновесная концентрация недиссоцированных молекул воды, моль/л.

Принимая во внимание, что из 555 млн. молекул воды диссоцирует только одна, можно допустить, что концентрация недиссоцированных молекул воды практически равна общей концентрации воды.

Концентрация воды определяется количеством г-молей воды в I л.Таким образом, зная значения К и , из уравнения I можно определить величину произведения |Н + ] и :

+ ] . [ OH - ] = К . [ H 2 O ] = 1,8 . 10 -16 . 55,56 = 1 . 10 -14 , т.е.

+ ] . [ OH - ] = 10 -14 (2)

Произведение концентрации ионов водорода и ионов гидроксида для воды при постоянной температуре есть величина постоянная и называется ионным произведением воды.

Таким образом, связанные между собой концентрации гидроксид-ионов и ионов водорода являются величинами сопряженными. Следова­тельно, если добавлением кислоты увеличить концентрацию ионов водорода, то одновременно во столько же раз уменьшится концентрация гидроксид-ионов. Следовательно, по концентрации ионов водорода можно судить о характере среды:

+ ] = [ OH - ] = 10 -7 - среда нейтральная;

+ ] > [ OH - ] > 10 -7 - среда кислая;

+ ] < [ OH - ] < 10 -7 - среда щелочная.

Следует отметить, что характеризовать кислотностъ и щелочность раствора числами с отрицательными показателями степени очень неудобно. Поэтому степень кислотности растворов принято выражать не концентрацией ионов Н+, а ее десятичным логарифмом, взятым с обратным знаком. Эту величину называют водородным показателем и обозначают через рН:

рН = - lg + ] (3)

Следовательно, диапазон концентраций ионов водорода, выраженных через рН, будет представлен рядом натуральных чисел по схеме:

Рис. 1.2. Диапазон концентраций ионов водорода и значений

При переводе с Н + в рН следует пользоваться таблицами логарифмов.

Методы определения рН среды

Кислотность среды оценивают рН-метрией. Один из способов определения рН основан на способности некоторых веществ, называемых индикаторами, изменять свою окраску в зависимости от рН среды. Каждый индикатор характеризуется определенным интервалом перехода окраски. Так, фенолфталеин меняет свою окраску от бесцветной до красной в пределах рН 8,2-10,0, а метилоранж – в пределах 3,1-4,4.

Методы определения рН среды, основанные на изменении окраски индикаторов, называют колориметрическими . В настоящее время чаще все­го используют универсальные индикаторы. Это смесь обычных индикато­ров, изменяющая окраску в пределах рН от 2,0 до 10.

При определении рН раствора универсальным индикатором каплю ин­дикатора вносят в исследуемый раствор. Появившуюся окраску сравнивают с прилагаемым к индикатору спектром цветов, соответствующих определенным значениям рН. Точность измерения pН среды колориметрическим методом ± 0,1. В качестве индикатора может служить и бума­га, пропитанная индикатором (бумажные индикаторы).

Другим более точным методом определения рН является электрометрический метод, для определения концентраций водородных ионов в растворе злектрометрическим методом используются гальванические элементы, составленные из двух электродов – электрода сравнения с устойчивым и известным потенциалом и индикаторного (электрода измерения), потенциал которого зависит от концентрации ионов Н + в растворе. В качестве электродов сравнения часто применяют водородный, хингидронный, сурьмяный и стеклянный электроды. Стеклянный электрод хорошо работает в агрессивных средах, потенциал его быстро устанавливается.

Электродвижущая сила гальванического элемента может измеряться либо включением в цепь вольтметра, либо компенсационным методом. На практике пользуются только вторым из указанных методов. Сущность его состо­ит в том, что э.д.с. исследуемого гальванического элемента уравно­вешивается разностью потенциалов, которая получается на части рео­хорда компенсационной установки, питаемой двухвольтовым аккумулятором. Оба элемента присоединяются друг к другу одноименными полюсами.

Биохимия

Электронный дидактический комплекс (ЭДК)

Настоящий электронный дидактический комплекс (ЭДК) объединяет в себе несколько функций учебных материалов:

  • Информационная текстовая часть учебного курса «биохимия животных с основами физколлоидной химии».
  • Наглядные материалы (рисунки, схемы, таблицы).
  • Материалы для самоконтроля знаний обучающихся.

В текстовой части кратко изложены основные термины и понятия с выделением ключевых слов. В дополнительный блок ЭДК помещены краткие учебные пособия, методические разработки по биохимии животных.

Составители: з аведующий кафедрой органической и биологической химии Казанской государственной академии ветеринарной медицины доктор ветеринарных наук профессор Хазипов Нариман Залилович, доцент кафедры биохимии Казанского государственного университета Аскарова Альфия Наримановна, доценты кафедры органической и биологической химии Казанской государственной академии ветеринарной медицины доктор биологических наук Логинов Георгий Павлович, Тюрикова Раиса Павловна, Закирова Лилия Азатовна, ассистент кафедры Казанской государственной академии ветеринарной медицины Шилова Светлана Вячеславовна.

Техническое исполнение осуществлено кандидатом ветеринарных наук ассистентом КГАВМ Усольцевым Константином Валерьевичем.

При разработке ЭДК были использованы учебники «Биохимия животных» (Н.З.Хазипов, А.Н.Аскарова, 2003 г.), «Биохимия» (В.П.Козлов, В.Н.Шведова, 2004 г.), «Физическая и коллоидная химия» (М.М.Равич-Щербо, В.В.Новиков, 1975), «Методическое пособие по физической и коллоидной химии» (Р.П.Тюрикова, 2001 г.).

ФИЗИЧЕСКАЯ ХИМИЯ

ВОДА

Как известно, жизнь зародилась в воде и по-прежнему остается тесно связанной с во­дой. Вода является источником кислорода в атмосфере Земли. Это происходит при фотосинтезе в растениях, при этом энергия света преобразуется в энергию химических связей молекул. Животный мир может использовать только энергию, освободившуюся из этих химических связей в форме АТФ и других трифосфатов.

Вода составляет от 50 до 98% от общей массы организма. Каждая клетка и каждая ткань содержит определенное количество воды, так кожа содержит 72%, сердце – 79%, спинной и головной мозг – 70%, кровь – 79%, лимфа – 96%. С помощью воды осуществляется перенос питательных веществ и продуктов обмена веществ; вода играет важную роль в осмотических явлениях, в сохранении коллоидного состояния протоплазмы и т.д.

Вода обеспечивает растворение веществ, процессы всасывания, передвижения, набухания, осмоса и многих других. Высокая теплоемкость, теплопроводность, теплота испарения воды способствует поддержанию температуры тела у теплокровных животных. Она участвует в реакциях гидролиза, вызывает диссоциацию молекул (электролитов). Вода – конечный продукт обмена веществ в организме


Уникальные свойства воды Н 2 О становятся очевидными при сравнении с метаном (СН 4). Обе молекулы одинаковы по массе и разме­рам. Тем не менее температура кипения воды на 250°С выше по сравнению с температурой кипения метана. В результате вода на поверх­ности Земли находится в жидком, а метан – в газообразном состоянии. Высокая точка ки­пения воды является следствием высокой те­плоемкости испарения, что в свою очередь обусловлено неравномерным распределением электронной плотности в молекуле воды. Молекула воды имеет форму тетраэдра, в центре которого расположен атом кислорода. Две вершины тетраэдра заняты свободными электронными парами атома кислорода, а остальные две – атомами во­дорода. Поэтому связи Н-О-Н расположе­ны под углом друг к другу. Кроме того, из-за высокой электроотрицательности атома кис­лорода связь О-Н полярна. т. е. мо­лекула воды представляет собой электриче­ский диполь .

Каждая молекула тетраэдрически координирована с четырьмя другими молекулами воды, благодаря водородным связям энергия диссоциации водородной связи составляет 25 кДж/моль.

Биполярное строение молекул воды благо­приятствует образованию водородных связей. Поэтому у воды в жидком состоянии многие молекулы связа­ны между собой водородными «мостиками». Часто образуются тетраэдрические структуры, так называемые "кластеры" во­ды. Поскольку в твер­дом состоянии расстояние между молеку­лами в среднем больше, чем в жидкости, плотность льда меньше по сравнению с плотностью воды. Это свойство воды очень важно в экологическом отношении, т.к. зимой на поверхности водо­емов образуется слой льда, и они редко промерзают до дна.

Вода имеет высокую константу диэлектрической про­ницаемости, т.е. в воде электростати­ческое притяжение двух противоположно заряженных ионов снижается примерно в 80 раз.

В этом полярном растворителе (воде) хорошо растворяются полярные молекулы. Они окружаются молекулами воды, происходит гидратация молекул.

Электростатические силы притяжения удерживают молекулы воды, тем самым разрушая межионные или внутримолекулярные связи самой гидратированной молекулы.

Рис.1.1. Электростатические силы притяжения

АКТИВНАЯ РЕАКЦИЯ ВОДНЫХ РАСТВОРОВ

Под активной реакцией среды понимают концентрацию водородных ионов. В числе различных физико-химических защитных констант организма таких, как изотермия, изотония и другие постоянство концентрации водородных ионов – изогидрия – имеет особо важное значение для биологических процессов организма. Физико-химическое состояние белков, каталитическая функция ферментов, активность солевых ионов зависят от концентрации ионов водорода.

Активная реакция крови

Активная реакция крови (pH) обусловлена соотношением в ней Н + и OН- ионов. Кровь имеет слабощелочную реакцию. pH артериальной крови - 7,4, венозной - 7,35. Крайние пределы изменения pH, совместимые с жизнью - 7,0-7,8.

Сдвиг pH крови в кислую сторону - ацидоз, в щелочную - алкалоз. Как ацидоз, так и алкалоз могут быть дыхательными, метаболическими, компенсированными и некомпенсированными.

Кровь имеет 4 буферные системы, которые поддерживают постоянство pH.

1. Буферная система гемоглобина. Эта система представлена восстановленным гемоглобином (ННb) и его калиевой солью (КНb). В тканях Нb выполняет функцию щелочи, присоединяя Н +, а в легких функционирует как кислота, отдавая Н +.

2. Карбонат-бикарбонатная буферная система - представлена угольной кислотой в недиссоциированных и диссоциированных состояниях: Н2СO3 ↔ Н + + НСO3-. Если в крови увеличивается количество Н +, реакция идет влево. Ионы Н + связываются с анионом НСO3- с образованием дополнительного количества недиссоциированной угольной кислоты (Н2СO3). При возникновении дефицита Н + реакция идет вправо. Мощность этой системы определяется тем, что Н2СO3 в организме находится в состоянии равновесия с СО2: Н2СO3 ↔ СО2 + Н2О (реакция происходит при участии карбоангидразы эритроцитов). При росте в крови напряжения СО2 одновременно возрастает концентрация Н +. избыток

СО выделяется легкими при дыхании, a H + - почками. При уменьшении напряжения СО2 его выделение легкими при дыхании уменьшается. В конечном виде функционирования карбонат-бикарбонатной буферной системы можно представить следующим образом:

3. Фосфатная буферная система образована:

а) фосфат NaH2PO4 - функционирует как слабая кислота

б) фосфат Na2HPO4 - функционирует как щелочь.

Функционирование фосфатной буферной системы можно представить следующим образом:

Концентрация фосфатов в плазме крови мала для того, чтобы эта система играла значительную роль, однако она имеет важное значение для поддержания внутриклеточного pH и pH мочи.

4. Буферная ситема белков плазмы крови. Белки являются эффективными буферными системами, поскольку способность к диссоциации имеют как карбоксил, так и аминные свободные группы:

Значительно больший вклад в создание буферной емкости белков вносят боковые группы, способные ионизироваться, особенно имидазольное кольцо гистидина.

При клинической оценке кислотно-щелочного равновесия в комплексе показателей важное значение имеют pH артериальной крови, напряжение СО2, стандартный бикарбонат плазмы крови (standart bicarbonate - SB; составляет 22- 26 ммоль / л представляет собой содержание бикарбонатов в плазме крови, полностью насыщенной кислородом при напряжении углекислого газа 40 мм рт.ст, и температуре 37 ° С) и содержание в плазме анионов всех слабых кислот (прежде всего бикарбонаты и анионные группы белков). Все эти вместе взятые анионы называются буферными основаниями (buffer bases - ВВ). Содержание ВВ в артериальной крови составляет 48 ммоль / л.

Форменные элементы крови

Эритроциты

Имеют форму двояковогнутого диска, безъядерные. Содержание в крови: у мужчин - 4,5-5,5 млн в 1 мм 3 или 4,5-5,5 × 10 12 / л у женщин - 3,8-4,5 млн в 1 мм 3 или 3,8 -4,5 × 1010 12 / л.

Эритроцит является сложной системой, структура и функционирование которой поддерживается специальными физико-химическими механизмами для создания оптимальных условий обмена кислорода и углекислого газа. Важное место в этом занимает мембрана эритроцита. В эритроцитарной мембране различают три основные составляющие: липидный бислой, интегральные белки и цитоскелетного каркас. Выделяют пять основных белков и большое количество меньших, т. Н. минорных. Большим интегральным белком является гликофорина, который участвует в транспортировке глюкозы. Внешний конец его молекулы содержит цепочки углеводородов и несколько выступает над поверхностью мембраны. Именно на нем расположены антигенные детерминанты, которые определяют группу крови по системе АВ0.

Другим белком мембраны эритроцита является спектрин. Молекулы спектрина связываются с белками и липидами на внутренней поверхности мембраны, в том числе с Микрофиламентов актина, и формируют сетку, которая играет роль каркаса. Бислой липидов является асимметричным, и за правильность этой асимметрии соответствуют внутришньомембранни белки флипазы. В эритроцитах также присутствуют аквапорины, которые осуществляют транспортировку молекул воды. Кроме того, эритроцитарная мембрана имеет заряд и обладает избирательной проницаемостью. Сквозь нее свободно проходят газы, вода, ионы водорода, анионы хлора, гидроксильного радикала, хуже - глюкоза, мочевина, ионы калия и натрия, и она практически не пропускает большинство катионов и совсем не пропускает белки.

Мембрана эритроцитов в 100 раз эластичная, чем мембрана из латекса такой же толщины, и устойчива, чем сталь, с точки зрения структурного сопротивления.

Эритроцит содержит более 140 ферментов. Его объем составляет 90 fL, площадь поверхности составляет 140 pm, что на 40% больше площади поверхности шарика такого же объема. Эритроциты в венозной крови больше по размеру, чем в артериальной. Это связано с тем, что в процессе газообмена внутри них накапливается больше солей, вслед за которыми, по законам осмоса поступает вода.

Общая площадь поверхности всех эритроцитов составляет около 3800 м2, что в 1500 раз больше площади поверхности тела человека!

Размер эритроцита мыши и слона примерно одинаковый!

Формирования и поддержания формы двояковогнутого диске обеспечивается рядом механизмов. Ключевую роль в этом играют тесная связь мембранных белков с белками цитоскелета, различные виды ионного транспорта через мембрану и изотоничность осмотического давления. Интересен факт, что в зависимости от колебаний этого давления, объем эритроцита может меняться в пределах нормы от 20 до 200 fL, но концентрация гемоглобина поддерживается в очень узких пределах (30-35 g / dL). Это связано с тем, что эритроцитарный объем и форма также зависит и от вязкости цитоплазмы, которая обеспечивается концентрацией гемоглобина. Установлено, что вязкость гемоглобина при его концентрации 27 g / dL составляет 0,05 Па, что в 5 раз больше вязкости воды. При концентрации 37 g / dL - 0,15 Па, возрастает до 0,45 Па при концентрации 40 g / dL, составляет 0,170 Па при 45 g / dL и достигает 650 Па при 50 g / dL. Поэтому концентрация гемолобину играет важную роль в поддержании объема красных кровяных телец.

Образуются в красном костном мозге, разрушаются в печени и селезенке. Продолжительность жизни - 120 суток. Для образования эритроцитов необходимы "строительные материалы" и стимуляторы этого процесса. Для синтеза гема в сутки необходимо 20-25 мг железа, поступления витаминов В12, С, В2, В6, фолиевой кислоты.

Каждый час кровь циркулирует в организме, покидают 5000000000 старых эритроцитов, 1000000000 старых лейкоцитов и 2 миллиарда тромбоцитов. Столько же новых форменных элементов поступает в нее из красного костного мозга. Таким образом, за сутки полностью меняется 25 грамм массы крови. В плазме является С секстильоны различных молекул. Это огромное количество молекул белков, углеводов, жиров, солей, витаминов, гормонов, ферментов. Все они постоянно обновляются, распадаются и вновь синтезируются, а состав крови остается постоянным!

Увеличение количества эритроцитов крови - эритроцитоз , уменьшение - эритропения .

Функции эритроцитов:

1) дыхательная;

2) питательная;

3) защитная;

4) ферментативная;

5) регуляция pH крови.

В состав эритроцитов входит гемоглобин, который является гемпротеидом. Нb участвует в транспорте O2 и СО2. Состоит гемоглобин с белковой и небелковой частей: глобина и гема. Гем удерживает атом Fe2 +. Содержание Нb у мужчин 14-16 г /%, или 140-160 г / л; у женщин: 12-14 г /%, или 120-140 г / л.

В крови гемоглобин может быть в виде нескольких соединений:

1) Оксигемоглобин - Нb + O2 (в артериальной крови), соединения, легко распадается. 1 г гемоглобина присоединяет 1,34 мл O2.

2) карбгемоглобин Нb + СО2 (в венозной крови), легко распадается.

3) Карбоксигемоглобин Hb + СО (угарный газ), очень стойкое соединение. Нb теряет сродство к 02.

4) Метгемоглобин образуется в случае попадания в организм сильных окислителей. В результате в геми Fe2 + превращается в Fe3 +. Накопление большого количества такого гемоглобина делает транспорт O2 невозможным и организм погибает.

Гемолиз - это разрушение оболочки эритроцитов и выход Нb в плазму крови.

Уменьшение осмотического давления вызывает набухание эритроцитов, а затем их разрушения (осмотическое гемолиз). По мере осмотического устойчивости (резистентности) эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0,45-0,52% растворе (минимальная осмотическая резистентность), в 0,28-0,32% растворе разрушаются все эритроциты (максимальная осмотическая резистентность).

Химический гемолиз - происходит под влиянием веществ, которые разрушают оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол).

Механический гемолиз - возникает при сильных механических воздействий на кровь.

Термический гемолиз - замораживание с последующим нагреванием.

Биологический - переливание несовместимой крови, укусы змей.

Цветовой показатель - характеризует соотношение количества гемоглобина и числа эритроцитов в крови и, тем самым, степень насыщенности каждого эритроцита гемоглобином. В норме составляет 0,85-1,0. Определяют цветовой показатель по формуле: 3 × Нb (в г / л) / три первые цифры количества эритроцитов в мкл.

СОЭ (скорость оседания эритроцитов). У мужчин СОЭ - 2-10 мм / час, у женщин СОЭ - 1-15 мм / час. Зависит от свойства плазмы и прежде всего от содержания в плазме белков глобулинов и фибриногена. Количество глобулинов увеличивается при воспалительных процессах.

Количество фибриногена увеличивается у беременных женщин в 2 раза и СОЭ при этом достигает 40-50 мм / час.

Активная реакция среды . Обусловлена присутствием в воде ионов Н + и ОН - . Как известно, часть молекул воды диссоциирует на эти ионы, причем произведение их концентраций есть величина постоянная, численно равная при 25°С 10 -14 г-ионов в 1 дм 3 воды.

Рисунок 6 - Схема круговорота вещества в океане (по )

В случае, когда концентрации ионов Н + и ОН - равны (каждый из них содержится в количестве 10 -7 г-ионов/дм 3) вода нейтральная . С увеличением содержания ионов Н + и ОН - более 10 -7 г-ионов/дм 3 вода будет соответственно кислой или щелочной .

Обычно в качестве показателя активной реакции берется не концентрация Н + , а ее десятичный логарифм с обратным знаком. Эта величина называется водородным показателем и обозначается символом рН . Если рН меньше 7 - вода кислая, больше 7 - щелочная, для нейтральной воды рН равен 7.

Активная реакция природных вод довольно устойчива, т.к. они благодаря присутствию карбонатов представляют собой сильно забуфференную систему. В случае отсутствия карбонатов рН воды может снижаться. Во время интенсивного фотосинтеза рН может подниматься до 10 и более вследствие почти полного исчезновения из воды углекислоты.

В морских водах рН обычно равен 8,1-8, Природные воды с рН от 3,4 до 6,5 называются кислыми , с рН от 6,5 до 7,5 - нейтральными , с рН от 7,5 до 10 и выше - щелочными .

В одном и том же водоеме рН в течение суток может колебаться на 2 единицы и более: ночью рН понижается в результате подкисления воды выделяющимся в процессе дыхания углекислым газом, днем повышается за счет потребления углекислого газа фотосинтезирующими растениями. В грунтах озер и болот рН обычно несколько ниже 7, в океанических осадках он часто бывает несколько сдвинут в щелочную сторону.

По отношению к различным концентрациям водородных и гидроксильных ионов гидробионты подразделяются на:

эвриионных , выдерживающих большие изменения рН;

стеноионных , обитающих в водах с колебанием рН в незначительных пределах. Среди стеноионных выделяются ацидофильные (предпочитают кислые воды), алкалифильные (обитают в щелочных водах).

Экологическое действие рН связано с изменением проницаемости наружных мембран клеток, влиянием на водно-солевой обмен, границы распространения и характер жизнедеятельности гидробионтов.

Окислительно-восстановительный потенциал. Характеризует условия протекания в среде окислительных и восстановительных процессов.

В результате взаимодействия двух веществ может происходить окислительно-восстановительная реакция, приводящая к возникновению между ними разности электрических потенциалов - Еh , или редоксипотенциала . Величина Еh измеряется обычно милливольтами (мВ ). Он тем выше, чем больше отношение концентрации компонентов, способных к окислению, к концентрации компонентов, могущих восстанавливаться.

Концентрация окисленной формы водорода (Н +) характеризуется величиной рН, концентрация восстановленной формы водорода выражается показателем rH (или rH 2 ), представляющим собой логарифм величины давления молекулярного водорода, взятый с обратным знаком. Чем меньше величина rH, тем выше восстановительная способность среды. Таким образом, окислительно-восстановительные свойства среды могут характеризоваться как величиной редоксипотенциала Eh, так и условными единицами rH, указывающими концентрацию молекулярного водорода, способную создать данные окислительно-восстановительные условия. Чем выше редоксипотенциал, тем выше окислительная способность среды и тем выше величина r, т.е. ниже концентрация молекулярного водорода, необходимая для создания окислительно-восстановительных условий.

Связь между Eh, rH и рН выражается зависимостью:

Eh=0,029 (rH-2pH).

Вода морских и пресных водоемов, содержащая значительное количество кислорода, имеет положительный Eh=300-350 мВ, т.е. является средой окисленной, и в ней величина rH=35-40. В придонных слоях воды содержание кислорода снижается, Eh становится отрицательным, rH падает до 15-12.

Величина редоксипотенциала влияет на скорость окисления сероводорода серными бактериями, на поведение гидробионтов.

Те или иные свойства воды в разных участках водоемов, водотоков проявляются в неодинаковой степени. Проникновение света, движение воды, температурный режим, кислородный баланс и др. показывают, что в различных участках водоемов свойства воды проявляются не в равной мере.

Из курса химии каждый из нас помнит формулы хотя бы нескольких молекул. Даже если вы не знаете самих принципов химии, то наверняка у вас в памяти отложилась одна символическая запись - Н2О, обозначающая, что молекула воды состоит из двух атомов водорода, соединенных с атомом кислорода. Но такая молекула является химически неактивной, то есть не может вступать в реакции с другими веществами. Этот процесс возможен лишь при распаде молекул на ионы.

Не все, но определенная часть молекул воды диссоциирует на положительно заряженный катион Н+ и анион с отрицательным зарядом ОН-. Такое разделение и соединение в полную молекулу происходит постоянно, одна часть молекул распадается на ионы, а другая в это время соединяется воедино. В химически чистой воде при комнатной температуре 1/10 000 000 часть от общего числа молекул постоянно находится в диссоциированном состоянии.

Доля диссоциированных молекул может увеличиваться или уменьшаться. Колебания температуры на это явление не воздействуют, по крайней мере в пределах комнатной температуры число молекул остается прежним. Зато добавки других веществ, растворяемых в воде, сильно влияют на количество частиц.

Воздействие, оказанное на степень диссоциации, может быть троякое:

  1. Растворенное вещество не изменяет долю диссоциированных молекул. Например, вы можете растворить в воде кухонную соль (NaCl), которая продиссоциирует на ионы Na+ и С1-. Доля ионов Н+ и ОН-, составляющих воду, при этом не изменится.
  2. Растворенное вещество увеличивает концентрацию ионов Н+. Например, молекулы фосфорной кислоты Н2РО3 также продиссоциируют на два иона Н+ и один РО3-. А значит, количество ионов Н+ в растворе воды и фосфорной кислоты станет больше, в то время как число ионов ОН- не изменится.
  3. Растворенное вещество увеличивает концентрацию ионов ОН-. Например, молекулы едкого натрия (NaOH) образуют ионы Na+ и ОН-. В этом случае концентрация ионов Н+ не изменится, а ионов ОН- в растворе станет больше.

На этом можно окончить насыщенный сложными терминами пролог и сделать основные выводы. Избыток Н+ придает воде кислотные свойства, а избыток ОН- - щелочные. Там, где доля диссоциированных молекул не изменилась, вода имеет нейтральные свойства. В целом, подобная характеристика воды называется активной реакцией.

Чтобы оценить активную реакцию в цифрах, применяют так называемый водородный показатель. Он равен антилогарифму ионов Н+ в растворе, то есть для химически чистой воды antilog (1/10 000 000) = 7. Для тех, кто не очень дружит с математикой и не знает, что такое антилогарифм, обращаю внимание на количество нолей в доле диссоциированных молекул воды - оно совпадает с величиной водородного показателя. Сокращенно величину водородного показателя нейтральной воды записывают как рН 7. Сокращение рН означает pondus hydrogenii, что переводится с латинского языка как "водородный показатель".

В самом общем смысле при рН 7 вода обладает нейтральными свойствами, при рН 7 - щелочная. Для более точного указания свойств воду называют:

  • рН 1-3 - сильнокислой;
  • рН 3-5 - кислой;
  • рН 5-7 - слабокислой;
  • рН 7 - нейтральной;
  • рН 7-9 - слабощелочной;
  • рН 9-11 - щелочной;
  • рН 11-14 - сильнощелочной.

В приведенном выше примере список различных веществ, изменяющих водородный показатель, далеко не исчерпан. Все они, независимо от химического состава, оказывают влияние на эту величину. Понижают ее (или, иными словами, подкисляют воду) кислоты и их соли. Повышению водородного показателя способствует наличие в воде щелочей или щелочных солей. Часть веществ не изменяет величину водородного показателя - это нейтральные вещества.

В аквариумной практике давно применяются несколько веществ, способных повлиять на активную реакцию. Например, снижение величины рН производят с помощью кислого отвара торфа. Такое же действие имеет растворенный в воде углекислый газ. При разведении аквариумных рыбок нередко используют и ортофосфорную кислоту. Повышение величины водородного показателя производят с помощью раствора питьевой соды (Nа2НСОз). Как вы понимаете, подкислить или подщелочить воду можно любым веществом, обладающим соответствующими свойствами, но для использования в аквариуме оно не должно быть ядовитым. Поэтому приведенный список применяемых в аквариумистике веществ можно считать исчерпанным.

Нередко, говоря о водородном показателе воды, аквариумисты употребляют термины "кислотность" или "щелочность". При этом они применяют их так, будто увеличение кислотности - это то же самое, что снижение водородного показателя, и наоборот. На самом же деле это ошибка. Кислотностью называют количество кислотных остатков в воде и измеряют в мг/л, а это значит, что одна и та же кислотность может соответствовать различным значениям водородного показателя, смотря какой именно силой обладает этот кислотный остаток. Например, в одной пробе в одинаковой концентрации растворена угольная кислота, а в другой - соляная. Так как кислотные свойства соляной кислоты в сотни раз сильнее, чем угольной, то водородный показатель в растворе соляной кислоты будет намного ниже, а кислотность растворов станет при этом одинаковой. То же самое можно сказать и о щелочности. Эти термины в аквариумной практике лучше не использовать вообще.

И. Шереметьев