Монтаж и эксплуатация воздушных линий электропередачи. Условные знаки, кресты, масштаб топографической съёмки Как на схеме обозначается опора лэп




Энергетическая отрасль имеет на своих руках очень большую проблему: профессионалы, родившиеся в период с середины 1940-х и до середины 1960-х годов, приближаются к пенсионному возрасту. И встает очень большой вопрос: кто их заменит?

Преодолевая барьеры применения энергии из возобновляемых источников

Несмотря на определенные достижения в последние годы, энергия из возобновляемых источников составляет весьма скромную часть современных услуг по предоставления энергии по всему миру. Почему это так?

Мониторинг передачи электроэнергии в реальном времени

Спрос на электроэнергию продолжает расти и перед компаниями, передающими электроэнергию, возникает задача роста пропускных мощностей их сетей. Решить ее можно строительством новых и модернизацией старых линий. Но есть еще один способ решения, он заключается в применении датчиков и технологии мониторинга сети.

Материал, способный сделать солнечную энергию «удивительно дешевой»

Солнечные батареи, изготовленные из давно известного и более дешевого, чем кремний материала, могут генерировать такое же количество электрической энергии, как и используемые сегодня солнечные панели.

Сравнение элегазовых и вакуумных выключателей для среднего напряжения

Опыт разработки выключателей среднего напряжения, как элегазовых, так и вакуумных, создали достаточное свидетельство того, что ни одна их этих двух технологий, в общем, значительно не превосходит другую. Принятие решения в пользу той или другой технологии стимулируют экономические факторы, предпочтения пользователей, национальные "традиции", компетенция и специальные требования.

КРУ среднего напряжения и LSС

Коммутационное оборудование среднего напряжения в металлическом корпусе и категории потери эксплуатационной готовности (LSС) - категории, классификация, примеры.

Какие факторы повлияют на будущее производителей трансформаторов?

Независимо от того, производите ли вы или продаете электроэнергию, или осуществляете поставки силовых трансформаторов за пределы страны, вы вынуждены бороться с конкуренцией на глобальном рынке. Существует три основных категории факторов, которые окажут влияние на будущее всех производителей трансформаторов.

Будущее коммутационного оборудования среднего напряжения

Умные сети стремятся оптимизировать связи между спросом и предложением электроэнергии. При интеграции большего количества распределенных и возобновляемых источников энергии в одну сеть. Готово ли коммутационное оборудование среднего напряжения к решению этих задач, или необходимо его развивать дальше?

В поисках замены элегазу

Элегаз, обладает рядом полезных характеристик, применяется в различных отраслях, в частности, активно используется в секторе электричества высокого напряжения. Однако элегаз обладает и значительным недостатком - это мощный парниковый газ. Он входит в список шести газов, включенных в Киотский протокол.

Преимущества и типы КРУЭ

Электрическую подстанцию желательно размещать в центре нагрузки. Однако, часто, основным препятствием такого размещения подстанции является требуемое для нее пространство. Эта проблема может быть решена за счет применения технологии КРУЭ.

Вакуум в качестве среды гашения дуги

В настоящее время в средних напряжениях технология гашения дуги в вакууме доминирует по отношению к технологиям, использующим воздух, элегаз, или масло. Обычно, вакуумные выключатели более безопасны, и более надежны в ситуациях, когда число нормальных операций и операций, обслуживающих короткие замыкания, очень велико.

Выбор компании и планирование тепловизионного обследования

Если для вас идея тепловизионного обследования электрического оборудования является новой, то планирование, поиски исполнителя, и определение преимуществ, которые может дать эта технология, вызывают растерянность.

Наиболее известные способы изолирования высокого напряжения

Приводены семь наиболее распространенных и известных материалов, применяемых в качестве высоковольтной изоляции в электрических конструкциях. Для них указываются аспекты, требующие специального внимания.

Пять технологий увеличения эффективности систем передачи и распределения электроэнергии

Если обратить внимание на меры, обладающие наивысшим потенциалом в улучшении энергоэффективности, то на первое место неизбежно выходит передача электроэнергии.

В Голландию приходят самовосстанавливающиеся сети

Рост экономики и увеличение численности населения приводят к увеличению спроса на электроэнергию, вместе c жесткими ограничениями на качество и надежность поставок энергии, растут усилия на обеспечение целостности сети. В случае отказа сетей, перед их владельцами стоит задача минимизировать последствия этих отказов, снижая время выхода из строя, и количество отключенных от сети потребителей.

Оборудование высоковольтных выключателей для каждой компании связано со значительными инвестициями. Когда встает вопрос об их обслуживании или замене, то необходимо рассматривать все возможные варианты.

Пути разработки безопасных, надежных и эффективных промышленных подстанций

Рассмотрены основные факторы, которые следует учитывать при разработке электрических подстанций для питания промышленных потребителей. Обращено внимание на некоторые инновационные технологии, которые могут улучшить надежность и эффективность подстанций.

Для проведения сравнения применения вакуумных выключателей или контакторов с плавкими предохранителями в распределительных сетях напряжения 6... 20 кВ, необходимо понимание основных характеристик каждой из этой технологии выключения.

Генераторные выключатели переменного тока

Играя важную роль в защите электростанций, генераторные выключатели дают возможность более гибкой эксплуатации и позволяют находить эффективные решения для сокращения инвестиционных затрат.

Взгляд сквозь коммутационное оборудование

Рентгенографическая инспекция может помочь сэкономить время и деньги за счет снижения объема работы. Кроме того снижается и время срывов поставок и простоев оборудования у клиента.

Тепловизионная инспекция электрических подстанций

Элегаз в электроэнергетике и его альтернативы

В последние годы вопросы охраны окружающей среды приобрели очень большой вес в обществе. Эмиссия элегаза из коммутационного оборудования является серьезной составляющей изменений климата.

Гибридный выключатель

Высоковольтные выключатели относятся к важному электроэнергетическому оборудованию, используемому в сетях передачи электроэнергии для изолирования сбойного участка от работоспособной части электрической сети. Тем самым обеспечивается безопасная работа электрической системы. В настоящей статье анализируются достоинства и недостатки этих двух типов выключателей, и необходимость в гибридной модели.

Безопасность и экологичность изоляции распределительного оборудования

Целью настоящей статьи является освещение потенциальных опасностей для персонала и окружающей среды, связанных с тем же самым оборудованием, но не находящимся под напряжением. Статья концентрируется на коммутационном и распределительном оборудовании на напряжения свыше 1000 В.

Функции и конструкция выключателей среднего и высокого напряжения

Преимущества постоянного тока в высоковольтных линиях

Несмотря на большее распространение переменного тока при передаче электрической энергии, в ряде случаев использование постоянного тока высокого напряжения предпочтительнее.

В зависимости от способа подвески проводов опоры воздушных линий (ВЛ) делятся на две основные группы:

а) опоры промежуточные , на которых провода закрепляются в поддерживающих зажимах,

б) опоры анкерного типа , служащие для натяжения проводов. На этих опорах провода закрепляются в натяжных зажимах.

Расстояние между опорами (ЛЭП) называется пролетом , а расстояние между опорами анкерного типа - анкерованным участком (рис. 1).

В соответствии с пересечения некоторых инженерных сооружений, например железных дорог общего пользования, необходимо выполнять на опорах анкерного типа. На углах поворота линии устанавливаются угловые опоры, на которых провода могут быть подвешены в поддерживающих или натяжных зажимах. Таким образом, две основные группы опор - промежуточные и анкерные - разбиваются на типы, имеющие специальное назначение.

Рис. 1. Схема анкерованного участка воздушной линии

Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально, на промежуточных опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов, изоляторов и собственного веса опоры.

При необорванных проводах и тросах промежуточные опоры, как правило, не воспринимают горизонтальной нагрузки от тяжения проводов и тросов в направлении линии и поэтому могут быть выполнены более легкой конструкции, чем опоры других типов, например концевые, воспринимающие тяжение проводов и тросов. Однако для обеспечения надежной работы линии промежуточные опоры должны выдерживать некоторые нагрузки в направлении линии.

Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерные угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов.

При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. Поэтому промежуточные угловые опоры применяются для углов до 10 - 20°. При больших углах поворота устанавливаются анкерные угловые опоры .

Рис. 2. Промежуточные опоры ВЛ

Анкерные опоры . На линиях с подвесными изоляторами провода закрепляются в зажимах натяжных гирлянд. Эти гирлянды являются как бы продолжением провода и передают его тяжение на опору. На линиях со штыревыми изоляторами провода закрепляются на анкерных опорах усиленной вязкой или специальными зажимами, обеспечивающими передачу полного тяжения провода на опору через штыревые изоляторы.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, т. е. воспринимает только горизонтальные поперечные и вертикальные нагрузки.

Рис. 3. Опоры ВЛ анкерного типа

В случае необходимости провода с одной и с другой стороны от анкерной опоры можно натягивать с различным тяжением, тогда анкерная опора будет воспринимать разность тяжения проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет также воздействовать горизонтальная продольная нагрузка. При установке анкерных опор на углах (в точках поворота линии) анкерные угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций. При подвеске проводов на линии до окончания сооружения подстанции концевые опоры воспринимают полное одностороннее тяжение .

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные , служащие для изменения порядка расположения проводов на опорах, ответвительные - для выполнения ответвлений от основной линии, опоры больших переходов через реки и водные пространства и др.

Основным типом опор на воздушных линиях являются промежуточные, число которых обычно составляет 85 -90% общего числа опор.

По конструктивному выполнению опоры можно разделить на свободностоящие и опоры на оттяжках . Оттяжки обычно выполняются из стальных тросов. На воздушных линиях применяются деревянные, стальные и железобетонные опоры. Разработаны также конструкции опор из алюминиевых сплавов.
Конструкции опор ВЛ

  1. Деревянная опора ЛОП 6 кВ (рис. 4) - одностоечная, промежуточная. Выполняется из сосны, иногда лиственницы. Пасынок выполняется из пропитанной сосны. Для линий 35-110 кВ применяются деревянные П-образные двухстоечные опоры. Дополнительные элементы конструкции опоры: подвесная гирлянда с подвесным зажимом, траверса, раскосы.
  2. Железобетонные опоры выполняются одностоечными свободностоящими, без оттяжек или с оттяжками на землю. Опора состоит из стойки (ствола), выполненной из центрифугированного железобетона, траверсы, грозозащитного троса с заземллителем на каждой опоре (для молниезащиты линии). С помощью заземляющего штыря трос связан с заземлителем (проводник в виде трубы, забитой в землю рядом с опорой). Трос служит для защиты линий от прямых ударов молнии. Другие элементы: стойка (ствол), тяга, траверса, тросостойка.
  3. Металлические (стальные) опоры (рис. 5) применяются при напряжении 220 кВ и более.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА ТЕХНОЛОГИЧЕСКОЙ ДОКУМЕНТАЦИИ

ОПОРЫ , ЗАЖИМЫ
И УСТАНОВОЧНЫЕ УСТРОЙСТВА.
ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ

ГОСТ 3.1107-81
( CT СЭВ 1803 -7 9)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система технологической документации

ОПОРЫ , ЗАЖИМЫ
И УСТАНОВОЧНЫЕ УСТРОЙСТВА.
ГРАФИЧЕСКИЕ
ОБОЗНАЧЕНИЯ

Unified system for technological documentation.
Bases, clamps and installing arrangements.
Symbolic representation

ГОСТ
3.1107-81

( CT СЭВ 1803 -7 9)

Взамен
ГОСТ 3.1107
-7 3

Постановлением Гос у дарственного комитета СССР по стандартам от 31 декабря 1981 г. № 5 943 срок введения установлен

с 01.07.82

1. Настоящий стандарт устанавливает графические обозначения опор, зажимов и установочных устройств, применяемых в технологической документации. Стандарт полностью соответствует СТ СЭВ 1803 -7 9. 2. Для изображения обозначения опор, зажимов и установочных устройств следует применять сплошную тонкую линию по ГОСТ 2.303-68. 3. Обозначения опор (условные) приведены в табл. 1.

Таблица 1

На и менование опоры

Обозначение опоры на видах

сперед и, сзади

1. Неподв и жная
2. Подвижная

3. Плавающая

4. Регулируемая

4. Допускается обозначение подвижной, плавающей и регулируемой опор на видах сверху и снизу изображать, как обозначение неподвижной опоры на аналогичных видах. 5. Обозначения зажимов приведены в табл. 2. 6. Обозначение двойного зажима на виде спереди или сзади при совпадении точек приложения силы, допускается изображать как обозначение одиночного зажима на аналогичных видах. 7. Обозначения установочных устройств приведены в табл. 3.

Таблица 2

Наи м енование зажима

Обозначение зажима на ви д ах

спереди, сзади

1. Одиночный
2. Двойной

П рим ечание. Для двойных зажимов длина плеча устана в лива ется разработчиком в зависимости от расстояния между точками приложения сил. Допускается упрощенное графическое обозначение двойно го зажима: . 8. Ус тановочно-зажимны е устройства следует обозначать так сочетание обозначений установочных устройств и зажимов (справочное приложение 2). Примечание. Для цанговых оправок (патронов) следует применять обозначение - . 9. Допускается обозначение опор и установочных устройств, кроме центров, наносить на выносных линиях, соответствующих поверхностей (справочные приложения 1 и 2). 10. Для указания формы рабочей поверхности опор, зажимов и установочных устройств следует применять обозначения в соответствии с табл. 4. 11. Обозначение форм рабочих поверхностей наносят слева от обозначения опоры, зажима или установочного устройства (справочные приложения 1 и 2). 12. Для указания рельефа рабочих поверхностей (рифленая, резьбовая, шлицева я и т.д.) опор, зажимов и установочных устройств следует применять обозначение в соответствии с чертежом.

Таб лиц а 3

Н аименов ание у станов очн ог о устройства

Обозначен и е установочного устрой ства на видах

спереди, сзади, свер х у снизу

1. Центр неподвижный

Без обозначения

Без обозначения

2. Центр вращающийся

3. Центр плавающий

4. Оправка цилиндрическая

5. Оправка шариковая (роликовая)

6. Патрон поводковый
Примечания: 1. Обозначение обратных центров следует в ыполнять в зеркальном изображении. 2. Дл я базовы х установочных поверхностей допускается применять обозначе ние - .

Таблица 4

Наименовани е форм ы рабочей поверх ности

Обозначение формы рабочей поверхности на всех в и дах

1. Плоская

2. Сферическая

3. Ци л индрическая (шарик овая)
4. Пр и зматическая
5. Ко н ическая
6. Ромбическая

7. Трехгранная
Примечание. Указание прочих форм рабочей поверхности опор, зажимов и установочных устройств следует выполнять в соответствии с требовани ями, установлен ными отраслевыми НТД. 13. Обоз н ачение рельефа рабочей п оверхности наносят на обозначение соответствующей опоры зажима или установочного устройства (справочное приложение 1). 14. Для указания устройств зажимов следует применять обозначения в соответствии с табл. 5.

Таблица 5

15. Обозначение видов устройств зажимов наносят слева от обозначения зажимов (справочные приложения 1 и 2). Примечание. Для г и дропластовы х оправок допускается применять обозначени е - . 16. Количество точек приложения силы зажима к изделию, при необходимости, следует записывать справа от обозначения зажима (справочное приложение 2, поз. 3). 17. На схемах, имеющих несколько проекций, допускается на отдельных проекциях не указывать обозначения опор, зажимов и установочных устройств относительно изделия, если их положение однозначно определяется на одной проекции (справочное приложение 2, поз. 2). 18. На схемах допускается несколько обозначений одноименных опор на каждом виде заменять одним, с обозначением их количества (справочное приложение 2, поз. 2). 19. Допускаются отклонения от размеров графических обозначений, указанных в табл. 1 - 4 и на чертеже.

ПРИЛОЖЕНИЕ 1

Справочное

Примеры нанесения обозначений опор, зажимов и установочных устройств на схемах

Наимено ван ие

Примеры нанесе н ия об означений опор, зажи мов и ус танов очных устройств

1. Центр неподвижный (гладкий)

2. Центр рифленый

3. Центр плавающий

4. Центр вращающийся

5. Центр обратный вращающийся с рифленой поверхностью

6. Патрон поводковый

7. Люнет подвижный

Обозначение опор воздушных линий

Обозначение опор.

Для опор ВЛ 35 кВ и выше, как правило, используется следующая система обозначений. Цифра, стоящая перед буквенным обозначением указывает на количество стоек, из которых состоит опора. Если в обозначении опоры присутствует буква Б – это указывает на то, что опора железобетонная, Д – деревянная, М – многогранная металлическая, отсутствие указанных букв означает, что опора металлическая решетчатого типа. Кроме того, в обозначение опор входят буквы указывающие тип опор (см. таблицу ниже). Цифры 35, 110, 150, 220 и т.д., следующие после букв, указывают напряжение ВЛ, а цифра, стоящая за ними после дефиса – типоразмер опор (нечетная – для одноцепных и четная – для двухцепных опор). Если после типоразмера опоры стоит буква Т – это означает, что у опоры есть тросостойка. Цифры, стоящие за типоразмером опоры после дефиса или знака «+» указывают на размер дополнительной секции-подставки.

Таблица - Обозначение опор
Обозначение Расшифровка
П Промежуточная опора.
К Концевая опора.
А Анкерная опора.
О Ответвительная опора.
С Специальная опора. Например, УС110-3 расшифровывается так: металлическая анкерно-угловая одноцепная специальная (с горизонтальным расположением проводов) опора для ВЛ 110 кВ; УС110-5 расшифровывается так: металлическая анкерно-угловая одноцепная специальная (для городской застройки - с уменьшенной базой и увеличенной высотой подвеса) опора для ВЛ 110 кВ.
У Угловая опора. Например, У110-2+14 расшифровывается так: металлическая анкерно-угловая двухцепная опора с подставкой высотой 14 м для ВЛ 110 кВ.
П Переходная опора. Например, ППМ110-2 расшифровывается так: промежуточная металлическая многогранная переходная двухцепная опора для ВЛ 110 кВ.
Б Железобетонная опора. Например, ПБ110-1Т расшифровывается так: промежуточная одноцепная одностоечная железобетонная опора с тросостойкой для ВЛ 110 кВ.
М Многогранная опора. Например, ПМ220-1 расшифровывается так: промежуточная металлическая многогранная одноцепная опора для ВЛ 220 кВ.
Д Деревянная опора. Например, УД220-1 расшифровывается так: деревянная анкерно-угловая одноцепная опора для ВЛ 220 кВ.
Т Опора с тросостойкой. Например, У35-2Т+5 расшифровывается так: металлическая анкерно-угловая двухцепная опора с тросостойкой и подставкой высотой 5 м для ВЛ 35 кВ.
В Опора с внутренними связями. Например, 2ПМ500-1В расшифровывается так: промежуточная металлическая многогранная одноцепная опора с внутренними связями для ВЛ 500 кВ состоящая из двух стоек.