Когда графики функций параллельны. Как решать линейные функции




Рассмотрим задачу. Мотоциклист, выехавший из города А, в настоящий момент находится в 20 км от него. На каком расстоянии s (км) от А будет находиться мотоциклист через t часов, если он будет двигаться со скоростью 40 км/ч?

Очевидно, что за t часов мотоциклист проедет 50t км. Следовательно, через t часов он будет находиться от А на расстоянии (20 + 50t) км, т.е. s = 50t + 20, где t ≥ 0.

Каждому значению t соответствует единственное значение s.

Формулой s = 50t + 20, где t ≥ 0, задается функция.

Рассмотрим еще одну задачу. За отправление телеграммы взимается плата 3 копейки за каждое слово и дополнительно 10 копеек. Сколько копеек (u) следует уплатить за отправление телеграммы, содержащей n слов?

Так как за n слов отправитель должен уплатить 3n копеек, то стоимость отправления телеграммы в n слов может быть найдена по формуле u = 3n + 10, где n – любое натуральное число.

В обеих рассмотренных задачах мы столкнулись с функциями, которые заданы формулами вида у = kx + l, где k и l – это некоторые числа, а х и у – это переменные.

Функция, которую можно задать формулой вида у = kx + l, где k и l – некоторые числа, называется линейной.

Так как выражение kx + l имеет смысл при любых х, то областью определения линейной функции может служить множество всех чисел или любое его подмножество.

Частным случаем линейной функции является рассмотренная ранее прямая пропорциональность. Вспомним, при l = 0 и k ≠ 0 формула у = kx + l принимает вид у = kx, а этой формулой, как известно, при k ≠ 0 задается прямая пропорциональность.

Пусть нам нужно построить график линейной функции f, заданной формулой
у = 0,5х + 2.

Получим несколько соответственных значений переменной у для некоторых значений х:

х -6 -4 -2 0 2 4 6 8
y -1 0 1 2 3 4 5 6

Отметим точки с полученными нами координатами: (-6; -1), (-4; 0); (-2; 1), (0; 2), (2; 3), (4; 4); (6; 5), (8; 6).

Очевидно, что построенные точки лежат на некоторой прямой. Из этого еще не следует, что графиком данной функции является прямая линия.

Чтобы выяснить, какой вид имеет график рассматриваемой функции f, сравним его со знакомым нам графиком прямой пропорциональности х – у, где х = 0,5.

Для любого х значение выражение 0,5х + 2 больше соответствующего значения выражения 0,5х на 2 единицы. Поэтому ордината каждой точки графика функции f больше соответствующей ординаты графика прямой пропорциональности на 2 единицы.

Следовательно, график рассматриваемой функции f может быть получен из графика прямой пропорциональности путем параллельного переноса на 2 единицы в направлении оси ординат.

Так как график прямой пропорциональности – это прямая линия, то и график рассматриваемой линейной функции f также прямая линия.

Вообще, график функции, заданной формулой вида у = kx + l, есть прямая линия.

Мы знаем, что для построения прямой линии достаточно определить положение двух ее точек.

Пусть, например, нужно построить график функции, которая задана формулой
у = 1,5х – 3.

Возьмем два произвольных значения х, например, х 1 = 0 и х 2 = 4. Вычислим соответствующие значения функции у 1 = -3, у 2 = 3, построим в координатной плоскости точки А (-3; 0) и В (4; 3) и проведем через эти точки прямую. Эта прямая и есть искомый график.

Если область определения линейной функции представлена не всеми числами, то ее графиком будет подмножество точек прямой (например, луч, отрезок, множество отдельных точек).

От значений l и k зависит расположение графика функции, заданной формулой у = kx + l. В частности, от коэффициента k зависит величина угла наклона графика линейной функции к оси х. Если k – положительное число, то этот угол острый; если k – отрицательное число, то угол – тупой. Число k называют угловым коэффициентом прямой.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 3 Линейные функции и их графики

Рассмотрим равенство

у = 2х + 1. (1)

Каждому значению буквы х это равенство ставит в соответствие вполне определенное значение буквы у . Если, например, x = 0, то у = 2 0 + 1 = 1; если х = 10, то у = 2 10 + 1 = 21; при х = - 1 / 2 имеем у = 2 (- 1 / 2) + 1= 0 и т. д. Обратимся к еще к одному равенству:

у = х 2 (2)

Каждому значению х это равенство, как и равенство (1), ставит в соответствие вполне определенное значение у . Если, например, х = 2, то у = 4; при х = - 3 получаем у = 9 и т. д. Равенства (1) и (2) связывают между собой две величины х и у так, что каждому значению одной из них (х ) ставится в соответствие вполне определенное значение другой величины (у ).

Если каждому значению величины х соответствует вполне определенное значение величины у , то эта величина у называется функцией от х . Величина х при этом называется аргументом функции у .

Таким образом, формулы (1) и (2) определяют две различные функции аргумента х .

Функция аргумента х , имеющая вид

у = ах + b , (3)

где а и b - некоторые заданные числа, называется линейной . Примером линейной функции может служить любая из функций:

у = х + 2 (а = 1, b = 2);
у = - 10 (а = 0, b = - 10);
у = - 3х (а = - 3, b = 0);
у = 0 (а = b = 0).

Как известно из курса VIII класса, графиком функции у = ах + b является прямая линия . Поэтому-то данная функция и называется линейной.

Напомним, как строится график линейной функции у = ах + b .

1. График функции у = b . При a = 0 линейная функция у = ах + b имеет вид у = b . Ее графиком служит прямая, параллельная оси х и пересекающая ось у в точке с ординатой b . На рисунке 1 вы видите график функции у = 2 (b > 0), а на рисунке 2- график функции у = - 1 (b < 0).

Если не только а , но и b равно нулю, то функция у= ах+ b имеет вид у = 0. В этом случае ее график совпадает с осью х (рис. 3.)

2. График функции у = ах . При b = 0 линейная функция у = ах + b имеет вид у = ах .

Если а =/= 0, то графиком ее является прямая, проходящая через начало координат и наклоненная к оси х под углом φ , тангенс которого равен а (рис. 4). Для построения прямой у = ах достаточно найти какую-нибудь одну ее точку, отличную от начала координат. Полагая, например, в равенстве у = ах х = 1, получим у = а . Следовательно, точка М с координатами (1; а ) лежит на нашей прямой (рис. 4). Проводя теперь прямую через начало координат и точку М, получаем искомую прямую у = аx .

На рисунке 5 для примера начерчена прямая у = 2х (а > 0), а на рисунке 6 - прямая у = - х (а < 0).

3. График функции у = ах + b .

Пусть b > 0. Тогда прямая у = ах + b у = ах на b единиц вверх. В качестве примера на рисунке 7 показано построение прямой у = x / 2 + 3.

Если b < 0, то прямая у = ах + b получается посредством параллельного сдвига прямой у = ах на - b единиц вниз. В качестве примера на рисунке 8 показано построение прямой у = x / 2 - 3

Прямую у = ах + b можно построить и другим способом.

Любая прямая полностью определяется двумя своими точками. Поэтому для построения графика функции у = ах + b достаточно найти какие-нибудь две его точки, а затем провести через них прямую линию. Поясним это на примере функции у = - 2х + 3.

При х = 0 у = 3, а при х = 1 у = 1. Поэтому две точки: М с координатами (0; 3) и N с координатами (1;1) - лежат на нашей прямой. Отметив эти точки на плоскости координат и соединив их прямой линией (рис. 9), получим график функции у = - 2х + 3.

Вместо точек М и N можно было бы взять, конечно, и другие две точки. Например, в качестве значений х мы могли бы выбрать не 0 и 1, как выше, а - 1 и 2,5. Тогда для у мы получили бы соответственно значения 5 и - 2. Вместо точек М и N мы имели бы точки Р с координатами (- 1; 5) и Q с координатами (2,5; - 2). Эти две точки, так же как и точки М и N, полностью определяют искомую прямую у = - 2х + 3.

Упражнения

15. На одном и том же рисунке построить графики функций:

а) у = - 4; б) у = -2; в) у = 0; г) у = 2; д) у = 4.

Пересекаются ли эти графики с осями координат? Если пересекаются, то укажите координаты точек пересечения.

16. На одном и томже рисунке построить графики функций:

а) у = x / 4 ; б) у = x / 2 ; в) у = х ; г) у = 2х ; д) у = 4х .

17. На одном и том же рисунке построить графики функций:

а) у = - x / 4 ; б) у = - x / 2 ; в) у = - х ; г) у = - 2х ; д) у = - 4х .

Построить графики данных функций (№ 18-21) и определить координаты точек пересечения этих графиков с осями координат.

18. у = 3+ х . 20. у = - 4 - х .

19. у = 2х - 2. 21. у = 0,5(1 - 3х ).

22. Построить график функции

у = 2x - 4;

используя этот график, выяснить: а) при каких значениях х y = 0;

б) при каких значениях х значения у отрицательны и при каких - положительны;

в) при каких значениях х величины х и у имеют одинаковые знаки;

г) при каких значениях х величины х и у имеют разные знаки.

23. Написать уравнения прямых, представленных на рисунках 10 и 11.

24. Какие из известных вам физических законов описываются с помощью линейных функций?

25. Как построить график функции у = - (ах + b ), если задан график функции у = ах + b ?

Инструкция

Существует несколько способов решения линейных функций. Приведем наиболее из них. Чаще всего используется пошаговый метод подстановки. В одном из уравнений необходимо выразить одну переменную через другую, и подставить в другое уравнение. И так до тех пор, пока в одном из уравнений не останется лишь одна переменная. Чтобы решить его необходимо с одной стороны знака равенства оставить переменную (она может быть с коэффициентом), а на другую сторону знака равенства все числовые данные, не забыв при переносе поменять знак числа на противоположный. Вычислив одну переменную, подставьте ее в другие выражения, продолжите вычисления по такому же алгоритму.

Для примера возьмем систему линейной функции , состоящую из двух уравнений:
2х+у-7=0;
х-у-2=0.
Из второго уравнения удобно выразить х:
х=у+2.
Как видите, при переносе из одной части равенства в другую, у и переменных поменялся знак, как и было описано выше.
Подставляем полученное выражение в первое уравнение, таким образом исключая из него переменную х:
2*(у+2)+у-7=0.
Раскрываем скобки:
2у+4+у-7=0.
Компонуем переменные и числа, складываем их:
3у-3=0.
Переносим в правую часть уравнения, меняем знак:
3у=3.
Делим на общий коэффициент, получаем:
у=1.
Подставляем полученное значение в первое выражение:
х=у+2.
Получаем х=3.

Еще один способ решения подобных - это почленное двух уравнений для получения нового с одной переменной. Уравнение можно умножить на определенный коэффициент, главное при этом умножить каждый член уравнения и не забыть , а затем сложить или вычесть одно уравнение из . Этот метод очень экономит при нахождении линейной функции .

Возьмем уже знакомую нам систему уравнений с двумя переменными:
2х+у-7=0;
х-у-2=0.
Легко заметить что коэффициент при переменной у идентичен в первом и втором уравнении и отличается лишь знаком. Значит, при почленном сложении двух этих уравнений мы получим новое, но уже с одной переменной.
2х+х+у-у-7-2=0;
3х-9=0.
Переносим числовые данные на правую сторону уравнения, меняя при этом знак:
3х=9.
Находим общий множитель, равный коэффициенту, стоящему при х и дели обе части уравнения на него:
х=3.
Полученный можно подставить в любое из уравнений системы, чтобы вычислить у:
х-у-2=0;
3-у-2=0;
-у+1=0;
-у=-1;
у=1.

Также вы можете вычислять данные, построив точный график. Для этого необходимо найти нули функции . Если одна из переменных равняется нулю, то такая функция называется однородной. Решив такие уравнения, вы получите две точки, необходимые и достаточные для построения прямой - одна из них будет располагаться на оси х, другая на оси у.

Берем любое уравнение системы и подставляем туда значение х=0:
2*0+у-7=0;
Получаем у=7. Таким образом первая точка, назовем ее А, будет иметь координаты А(0;7).
Для того чтобы вычислить точку, лежащую на оси х, удобно подставить значение у=0 во второе уравнение системы:
х-0-2=0;
х=2.
Вторая точка (В) будет иметь координаты В (2;0).
На координатной сетке отмечаем полученные точки и поводим через них прямую. Если вы построите ее довольно точно, другие значения х и у можно будет вычислять прямо по ней.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).