4 мощных транзистора в параллель как подобрать. Схемы включения биполярных транзисторов. Составной транзистор с высоким выходным сопротивлением




ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ СИЛОВЫХ ТРАНЗИСТОРОВ

Вопросы на тему использования силовых транзисторов в параллельном включении появляются все чаще и чаще. Причем вопросы относятся как и к автомобильным преобразователям, так и к сетевым.
Лень меня одолела и я решил ответить сразу на все вопросы в один заход, чтобы больше на эту тему не отвлекаться.
Для примера возьмем последний вопрос на эту тему:
Прошу помощи или совета с подбором MOSFET и рекомендации по ремонту. Ремонтирую преобразователь 12/220 1800 Ватт. Там в каждом плече выхода 220 Вольт стоят 6 транзисторов. В общем их всего 12шт. родные BLV740. Часть накрыльсь. До меня туда влепили IRF740 3 шт. Проверил нашёл пару ещё неисправных. Докупил ещё 3 IRF740 (чтобы все транзисторы в одном плече были одинаковые). Схема не заработала то включалась то уходила в защиту.
В конце концов умерли ещё часть полевиков. Поставил все IRF740, заменив сгоревшие - снова не работает. Часть транзисторов греется и в конце концов опять часть сгорела. Предположил, что параметры транзисторов "разбежались", выпаял все, оставил по 1 транзистору на полупериод т.е 2 вверху и 2 внизу. Подключил-всё работает, нагрузку 100 Ватт держит. Теперь вопрос. Прав ли я что транзисторы нужно менять все одновременно. И можно ли заменить BLV740 на IRF740?

Я конечно мог бы не разводить балобольню и ответить коротко, но я не люблю клонеров (бездумно клонирующих чущие схемы), поэтому данный ответ построю на ряде вопросов таким образом, что думающий человек поймет о чем речь, а бестолковый будет и дальше тратить свою бюджет на взрывающиеся полевики. (Ехидно хихикаю...)

Итак, потихоньку поехали:
Изначально стояло несколько штук BLV740, открываем даташник и смотрим всего одну единственную строчку - количество энергии, запасенной затвором, которая обозначается Q g .
Почему именно эту строчку?
Потому что от этого значения на прямую зависит время открытия и закрытия полевого транзистора технологии MOSFET. Чем больше это значение, тем больше требуется энергии, чтобы открыть или закрыть полевой транзистор. Сразу оговорюсь - есть такое понятние в полевых транзисторах, как емкость затвора. Этот параметр тоже важный, но уже когда преобразование происходит на частотах сотни кГц. Лезть туда настоятельно не рекомендую - нужно съесть не одну собаку в этой области, чтобы успешно перешагнуть хотя бы сотню килогерц, причем есть собаку вместе с будкой.
Поэтому для наших относительно низкочастотных целей наиболее важным является именно Q g . Открываем даташник на BLV740, при этом не забываем отметить у себя в голове, что эти транзисторы производит только SHANGHAI BELLING CO. Итак, что мы видим:

Нижнее значение Q g вообще не нормировано, впрочем как и типовое, указано только максимальное - 63 nC. Из этого напрашивается какой вывод?
Не понятно?
Ладно, подскажу чуточку - отбраковка производится только по максимальному значению, т.е. транзисторы выпущенные заводом SHANGHAI BELLING CO в январе и мае могут отличаться друг от друга, причем не только параметром Q g , а и всеми остальными.
Че делать?
Ну например можно вспомнить, что максимально одинаковые транзисторы могут получится только когда производится одна партия, т.е. когда "пилится" один кристалл кремния, в помещении одна и таже влажность и температура и обслуживает оборудование одна и таже смена обслюживающего персонала со своим идивидуальным запахом, влажностью рук и т.д.
Да, да, это все влияет на качество конечного кристалла и всего транзистора в целом и именно поэтому разброс параметров в одной партии не превышает 2%. Обратите внимание даже в одинаковых условиях нет одинаковых транзисторов, есть разброс не более 2-х %. Что уж говорить о транзисторах других партий.
Теперь включаем и прогреваем думатель...
Готово? Тогда вопрос - что произойдет, если у нас включены два транзистора в параллель, но у одного энергия затвора равна 30 nC, а у второго 60 nC?
Нет, первый не откроется в 2 раза быстрее - это зависит еще от резисторов в затворах, однако мысль потекла в нужном направлении - ПЕРВЫЙ ОТКРОЕТСЯ БЫСТРЕЕ ВТОРОГО. Другими словами первый транзистор возьме на себя не половину нагрузки а всю. Да, это будет длится какие то наносекунды, но даже это уже увеличит его температуру и в конечном итоге приведет через десяток-другой часов к перегреву и тепловому пробою. Про токовый пробой я не говорю - обычно технологический запас позволяет транзистору остаться живым, но работа на технологическом запасе это раскуривание кальяна на пороховой бочке.
Теперь случай чуток тяжелее - параллельно включено четыре транзистора. У первого Q g равно 50 nC, у второго - 55 nC, у третьего - 60 nC, у четвертого - 45 nC.
Вот тут уже говорить о тепловом пробое смысла не имеет -есть огромная вероятность того, что тот, кто открывается первым даже прогреться не успеет как слдеует - он принимает на себя нагрузку, предназначенную для четырех транзисторов.
Кто догадался какой транзистор кончится первым молодец, ну а кто не доехал, то возвращаемся на три абзаца вверх и чиатем второй раз.
Итак, надеюсь понятно, что транзисторы параллельно включать можно и нужно, только необходимо соблюдать определенные правила, чтобы не было лишних трат. Правило первое и самое простое:
ТРАНЗИСТОРЫ ДОЛЖНЫ БЫТЬ ОДНОЙ ПАРТИИ, о производителе я вообще молчу - это само собой разумеется, поскольку даже нормированные параметры у заводов могут отличаться:

Итак, в итоге видно, что транзисторы от STMicroelectronics и Fairchild имеют типовое значение Q g , которое может отличаться как сторону уменьшения, так и увеличения, а вот Vishay Siliconix решил не заморачиваться и обозначил только максимальное значение, а остальное как Бог на душу положит.
Для тех же, кто часто балуется ремонтом всяких преобразователей или собирает мощные усилители, где в оконечном каскаде несколько транзисторов настоятельно рекомендую собрать стенд для отбраковки именно силовых транзисторов. Денег съест этот стенд не много, а вот нервы и бюджет будет экономить регулярно. Подробнее об этом стенде здесь:

Кстати сказать - видео можно просмотреть и сначала - есть некоторые моменты, которые любят пропускать начинающие и не очень опытные паяльщики.
Данный стенд универсален - позволяет отбраковать как биполярные транзисторы, так и полевые, причем обоих структур. Принцип отбраковки основан на выборе транзисторов с одинаковым коф усиления, причем это происходит при токе кллектора порядка 0,5-1 А. Этот же параметр для полевых транзисторов на прямую связан со скоростью открытия-закрытия.
Разработанно это устройство было ОЧЕНЬ давно, когда собирались на продажу услители Холтона на 800 Вт и в оконечном каскаде стояло по 8 штук IRFP240-IRFP9240. В брак уходило ОЧЕНЬ мало транзисторов, но это было до тех пор, пока их выпускала International Rectifier. Как только на рынке появились IRFP240-IRFP9240 Vishay Siliconix с усилителями Холтона в оригинале было покончено - из 10 транзисторов даже одной партии одинаковых попадалось лишь 2 или 3. Холтон был переведен на 2SA1943-2SC5200. Пока еще есть из чего выбирать.
Ну если с параллельным включением все более-менее прояснилось, то как быть с плечами преобразователя? Можно использовать в одном плече транзисторы из одной пратии, а во втором из другой?
Ответ я был дал, да вот только злоупотреблю уже прогретым Вашим думателем - разная скорость открытия-закрытия, одно плечо открыто дольше другого, а сердечник должен полностью размагничиваться и для этого на него нужно подавать ПЕРЕМЕННОЕ напряжение с одинаковой длительностью как отрицательной, так и положительной полуволны. Если этого не будет происходить, то некоторый момент времени намагниченный сердечник будет выстпать в роли АКТИВНОГО сопротивления, равного активному сопротивлению обмотки. Это когда на ОМах измеряешь сколько она Ом. Ну так и что будет?
Снова ехидно хихикаю...
Что до биполярных транзисторов, то тут решающим фактором является коф усиления. Именно от него зависит какой транзистор откроется быстрее и сильнее, он же на прямую влияет на ток перехода база-эмиттер.

Нюанс при покупке принтера (08.07.2017). → Ранее была жуткая головная боль от схемотехники в сфере логики работы транзисторов , причем именно с практическим акцентом. Пришло время соединять полевые и биполярные транзисторы параллельно, в результате опытов открылись странные свойства полевиков.

В случае с полевыми транзисторами выравнивающие резисторы не нужны. Но обнаружился другой нюанс: чем больше транзисторов в параллельной связке - тем немного большее время требуется для их открытия. Измерения делались на одном и трех транзисторах AUIRFU4104 (живучие, так и не смог их убить даже при частичном открытии). Тест: 5.18В, 0.21Ом, транзистор. Конечный ток был меньше 24.6А за счет нагрева проводов и падения на транзисторах, однако он составлял не менее 17А:
- при использовании на затворе такого же напряжения, как на стоке (положительного), транзисторы начинают открываться медленно, не доходя до режима насыщения (падает 3.3В). И это при заявленном пороговом напряжении открытия 2-4В (возможно, это нижний порог открытия: минимум и максимум минимального напряжения начала открытия). Резистор на затворе отсутствует, и это не вредит процессу. Присоединение 910кОм на каждом затворе влияет на скорость открытия транзисторов, но не на конечный номинал падения напряжения на транзисторах. Транзисторы греются до такой степени, что истекают оловом. Связка открывается медленнее отдельного транзистора процентов на 10;
- при использовании на затворе напряжения, превышающего на стоке (12В), транзисторы моментально входят в режим насыщения, падение составляет всего 0.2В на всей связке. Резистор С5-16МВ 0.2Ом/2Вт взорвался спустя 10сек какими-то застывающими на воздухе соплями (впервые вижу резистор с наполнителем). Транзисторы нагрелись менее чем на 50 градусов, а одиночный - <100 градусов. Резистор на затворе отсутствует, и это не вредит процессу.

(добавлено 07.07.2017) Уточнена величина падения напряжения на полевиках: 3.3В. Для подтверждения теории об отрицательной обратной связи у биполярников необходим практический тест (как было в случае с

Одним из наиболее распространенных требований при разработке или доработке источников питания является увеличение его выходного тока.

В таких источниках простое соединение одноименных выводов транзисторов обычно не дает практических результатов из-за неравномерного распределения тока между транзисторами. При повышении рабочей температуры неравномерное распределение тока между транзисторами становится еще большим до тех пор, пока практически весь ток нагрузки не потечет через один из транзисторов.

Предложенный вариант на рисунке 1 может быть реализован при условии, что параллельно соединенные транзисторы имеют совершенно идентичные характеристики и работают при одинаковой температуре. Такое условие практически не реализуемо из-за относительно больших разбросов характеристик биполярных транзисторов. Рис. 2 показывает, как осуществлять параллельное включение транзисторов в линейном источнике питания. При таком включении нужно стремиться использовать транзисторы с близкими параметрами Вст. Транзисторы большой мощности при этом должны устанавливаться на один теплоотвод. Для дополнительного выравнивания токов в данной схеме в цепях эмиттеров применены резисторы R1 и R2. Сопротивление резисторов следует выбирать исходя из падения напряжения на них в интервале рабочих токов, около 1 вольта или, по крайней мере, — не менее 0,7 вольта. Данная схема должна применяться с большой осторожностью, так как даже транзисторы одного типа и из одной партии выпуска имеют очень большой разброс по параметрам. Выход из строя одного из транзисторов неизбежно приведет к выходу из строя и других транзисторов в цепочке. При параллельном включении двух транзисторов максимальный суммарный ток коллектора не должен превышать 150 процентов от предельного тока коллектора одного из транзисторов! Количество транзисторов, включенных по этой схеме, может быть сколько угодно большим — все зависит от степени необходимой надежности устройств, в которых применяется такое включение транзисторов и допустимого КПД всего устройства, так как на резисторах выделяется отнюдь не маленькая тепловая мощность. На схемах нарисованы р-n-p транзисторы, естественно все сказанное будет справедливо и для n-p-n транзисторов.

Об одном способе включения транзисторов

Статический коэффициент усиления по току такого каскада равен коэффициенту усиления одного транзистора, так как общий ток управления равномерно распределяется между базами транзисторов. Значительно большее усиление можно получить, если включить транзисторы по схеме, показанной на рис. 3. Такое включение транзисторов напоминает известный составной транзистор, но отличается от него наличием резистора R, подбираемого экспериментально. Правильно выбранное сопротивление R обеспечивает равномерное распределение общего тока коллектора между транзисторами при одновременном увеличении общего коэффициента усиления. Увеличение коэффициента усиления объясняется тем, что весь ток управления сначала усиливается транзистором VT1, а затем часть тока эмиттера этого транзистора дополнительно усиливается транзистором VT2. Преимущества включения двух транзисторов по схеме рис. 3 были выявлены при сравнительной экспериментальной проверке обоих вариантов схем. Обе схемы были поочередно собраны на одних и тех же экземплярах транзисторов П217В. Общий ток коллектора устанавливался равным 2 А в обоих случаях. В случае параллельного включения транзисторов, (рис. 2) равномерное распределение тока между транзисторами, было достигнуто при сопротивление резисторов R1 и R2 равном 0,69 Ом. При этом ток базы равнялся 44 мА, напряжение между эмиттером и коллектором - 4В. Во втором случае (рис. 3) равномерное распределение тока между транзисторами удалось получить при сопротивлении резистора R, равное 0,2 Ом, а то же напряжение между эмиттером и коллектором (4В) - при токе базы 20 мА. Таким образом, схема рис. 3 имеет вдвое больший статический коэффициент усиления и обладает более высоким КПД. Такая схема может быть использована и для соединения транзисторов с различными видами приводимости (рис. 4), что невозможно осуществить при включении транзисторов по схеме рис. 2. Усилитель по схеме рис. 4 был собран на транзисторах П306 и П701. Общий ток устанавливался равным 0.4 а. Сопротивление резистора R равно 8 ОМ. При токе базы, равном 7 мА, напряжение между эмиттером и коллектором составило 7В.
Используемые информационные источники
1. http://radiocon-net.narod.ru/page16.htm
2. РАДИО № 5 1972г