Основні формули тригонометрії. Основні тригонометричні тотожності, їх формулювання та висновок




Формули суми та різниці синусів і косинусів для двох кутів α і β дозволяють перейти від суми зазначених кутів до твору кутів α + β 2 і α - β 2 . Відразу зазначимо, що не варто плутати формули суми та різниці синусів та косінусів з формулами синусів та косинусів суми та різниці. Нижче ми перерахуємо ці формули, наведемо їх висновок та покажемо приклади застосування для конкретних завдань.

Yandex.RTB R-A-339285-1

Формули суми та різниці синусів та косинусів

Запишемо, як виглядають формули суми та різниці для синусів та для косинусів

Формули суми та різниці для синусів

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формули суми та різниці для косінусів

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Дані формули справедливі для будь-яких кутів α та β. Кути α + β 2 і α - β 2 називаються відповідно напівсумою та напіврізністю кутів альфа та бета. Дамо формулювання для кожної формули.

Визначення формул сум і різниці синусів та косинусів

Сума синусів двох кутівдорівнює подвоєному добутку синуса напівсуми цих кутів на косинус напіврізниці.

Різниця синусів двох кутівдорівнює подвоєному добутку синуса напіврізниці цих кутів на косинус напівсуми.

Сума косінусів двох кутівдорівнює подвоєному добутку косинуса напівсуми та косинуса напіврізниці цих кутів.

Різниця косінусів двох кутівдорівнює подвоєному добутку синуса напівсуми на косинус напіврізниці цих кутів, взятому з негативним знаком.

Висновок формул суми та різниці синусів та косинусів

Для виведення формул суми та різниці синуса та косинуса двох кутів використовуються формули складання. Наведемо їх нижче

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Також представимо самі кути у вигляді суми напівсум та напіврізниць.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходимо безпосередньо до висновку формул суми та різниці для sin та cos.

Висновок формули суми синусів

У сумі sin α + sin β замінимо α та β на вирази для цих кутів, наведені вище. Отримаємо

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Тепер до першого виразу застосовуємо формулу додавання, а до другого - формулу синуса різниць кутів (див. формули вище)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Розкриємо дужки, наведемо подібні доданки і отримаємо шукану формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Дії щодо висновку інших формул аналогічні.

Висновок формули різниці синусів

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Висновок формули суми косинусів

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Висновок формули різниці косінусів

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Приклади вирішення практичних завдань

Для початку зробимо перевірку однієї з формул, підставивши в неї конкретні значеннякутів. Нехай α = π 2 , β = π 6 . Обчислимо значення суми синусів цих кутів. Спочатку скористаємось таблицею основних значень тригонометричних функцій, а потім застосуємо формулу для суми синусів.

Приклад 1. Перевірка формули суми синусів двох кутів

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Розглянемо тепер випадок, коли значення кутів від основних значень, представлених у таблиці. Нехай ? = 165 °, ? = 75 °. Обчислимо значення різниці синусів цих кутів.

Приклад 2. Застосування формули різниці синусів

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

За допомогою формул суми та різниці синусів і косінусів можна перейти від суми або різниці до твору тригонометричних функцій. Часто ці формули називають формулами переходу від суми до твору. Формули суми та різниці синусів та косінусів широко використовуються при вирішенні тригонометричних рівняньі при перетворенні тригонометричних виразів.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

- Напевно зустрінуться завдання з тригонометрії. Тригонометрію часто не люблять за необхідність зубрити величезну кількість важких формул, що кишать синусами, косинусами, тангенсами та котангенсами. На сайті вже колись давалися поради, як згадати забуту формулу, на прикладі формул Ейлера та Піля.

А в цій статті ми постараємося показати, що достатньо твердо знати лише п'ять найпростіших тригонометричних формул, а про інших мати загальне уявленняі виводити їх у ході справи. Це як із ДНК: у молекулі не зберігаються повні креслення готової живої істоти. Там містяться, швидше, інструкції щодо його збирання з наявних амінокислот. Так і в тригонометрії, знаючи деякі загальні принципиМи отримаємо всі необхідні формули з невеликого набору тих, які потрібно обов'язково пам'ятати.

Спиратимемося на такі формули:

З формул синуса та косинуса сум, знаючи про парність функції косинуса та про непарність функції синуса, підставивши -b замість b, отримуємо формули для різниць:

  1. Синус різниці: sin(a-b) = sinacos(-b)+cosasin(-b) = sinacosb-cosasinb
  2. Косинус різниці: cos(a-b) = cosacos(-b)-sinasin(-b) = cosacosb+sinasinb

Поставляючи ці ж формули a = b, отримуємо формули синуса і косинуса подвійних кутів:

  1. Синус подвійного кута: sin2a = sin(a+a) = sinacosa+cosasina = 2sinacosa
  2. Косинус подвійного кута: cos2a = cos(a+a) = cosacosa-sinasina = cos2 a-sin2 a

Аналогічно виходять і формули інших кратних кутів:

  1. Синус потрійного кута: sin3a = sin(2a+a) = sin2acosa+cos2asina = (2sinacosa)cosa+(cos2 a-sin2 a)sina = 2sinacos2 a+sinacos2 a-sin 3 a = 3 sinacos2 a-sin 3 a = 3 sina(1-sin2 a)-sin 3 a = 3 sina-4sin 3 a
  2. Косинус потрійного кута: cos3a = cos(2a+a) = cos2acosa-sin2asina = (cos2 a-sin2 a)cosa-(2sinacosa)sina = cos 3 a- sin2 acosa-2sin2 acosa = cos 3 a-3 sin2 acosa = cos 3 a-3(1- cos2 a)cosa = 4cos 3 a-3 cosa

Перш ніж рухатися далі, розглянемо одне завдання.
Дано: кут – гострий.
Знайти його косинус, якщо
Рішення, дане одним учнем:
Т.к. , то sina= 3,а cosa = 4.
(З математичного гумору)

Отже, визначення тангенсу пов'язує цю функцію і з синусом і з косинусом. Але можна отримати формулу, що дає зв'язок тангенсу тільки з косинус. Для її висновку візьмемо основне тригонометричне тотожність: sin 2 a+cos 2 a= 1 і розділимо його на cos 2 a. Отримаємо:

Отже, вирішенням цього завдання буде:

(Т.К. Кут гострий, при витягуванні кореня береться знак +)

Формула тангенсу суми – ще одна, що важко піддається запам'ятовуванню. Виведемо її так:

Відразу виводиться і

З формули косинуса подвійного кута можна отримати формули синуса та косинуса для половинного. Для цього до лівої частини формули косинуса подвійного кута:
cos2 a = cos 2 a-sin 2 a
додаємо одиницю, а правої – тригонометричну одиницю, тобто. суму квадратів синуса та косинуса.
cos2a+1 = cos2 a-sin2 a+cos2 a+sin2 a
2cos 2 a = cos2 a+1
Висловлюючи cosaчерез cos2 aта виконуючи заміну змінних, отримуємо:

Знак береться залежно від квадранту.

Аналогічно, відібравши від лівої частини рівності одиницю, а від правої - суму квадратів синуса та косинуса, отримаємо:
cos2a-1 = cos2 a-sin2 a-cos2 a-sin2 a
2sin 2 a = 1-cos2 a

І, нарешті, щоб перетворити суму тригонометричних функцій на твір, використовуємо наступний прийом. Припустимо, нам потрібно подати у вигляді твору суму синусів sina+sinb. Введемо змінні x та y такі, що a = x+y, b+x-y. Тоді
sina+sinb = sin(x+y)+ sin(x-y) = sin x cos y+ cos x sin y+ sin x cos y- cos x sin y = 2 sin x cos y. Виразимо тепер x та y через a та b.

Оскільки a = x+y, b = x-y, то . Тому

Відразу ж можна вивести

  1. Формулу для розбиття твори синуса та косинусав суму: sinacosb = 0.5(sin(a+b)+sin(a-b))

Рекомендуємо потренуватися і вивести самостійно формули для перетворення на твір різниці синусів та суми та різниці косінусів, а також для розбиття у суму творів синусів та косинусів. Виконавши ці вправи, ви досконально освоїте майстерність виведення тригонометричних формул і не втратитеся навіть на найскладнішій контрольній, олімпіаді чи тестуванні.

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях (які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор "повернувся" щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом в (один градус) називають центральний кутв колі, що спирається на кругову дугу, що дорівнює частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, на малюнку зображено кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжинідуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все вірно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (у нашому прикладі, це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все вірно. Крім того, нам відомо, що - це радіус одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно, ! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координаті! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося у цьому прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні.

У другому випадку, тобто радіус-вектор зробить три повні обороти і зупиниться в положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Не існує;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Не існує

Не існує

Не існує

Не існує

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута (), а також значення тангенсу кута. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному виглядікоординати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, оскільки координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

1.

Можна зауважити, що. Адже ми знаємо, що відповідає повному обороту початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

2. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Ми знаємо, що відповідає двом повним оборотам початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

Синус та косинус – це табличні значення. Згадуємо їх значення та отримуємо:

Таким чином, потрібна точка має координати.

3. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Зобразимо приклад на малюнку:

Радіус утворює з віссю кути, рівні та. Знаючи, що табличні значення косинуса та синуса рівні, і визначивши, що косинус тут набуває від'ємне значення, А синус позитивне, маємо:

Докладніше такі приклади розбираються щодо формул приведення тригонометричних функцій у темі .

Таким чином, потрібна точка має координати.

4.

Кут повороту радіуса вектора (за умовою)

Для визначення відповідних знаків синуса та косинуса побудуємо одиничне коло та кут:

Як можна побачити, значення, тобто позитивно, а значення, тобто – негативно. Знаючи табличні значення відповідних тригонометричних функцій, отримуємо, що:

Підставимо отримані значення в нашу формулу і знайдемо координати:

Таким чином, потрібна точка має координати.

5. Для вирішення цього завдання скористаємося формулами у загальному вигляді, де

Координати центру кола (у нашому прикладі,

Радіус кола (за умовою,)

Кут повороту векторного радіуса (за умовою,).

Підставимо всі значення у формулу та отримаємо:

та - табличні значення. Згадуємо та підставляємо їх у формулу:

Таким чином, потрібна точка має координати.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута - це ставлення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).

Довідкові дані щодо тангенсу (tg x) та котангенсу (ctg x). Геометричне визначення, характеристики, графіки, формули. Таблиця тангенсів та котангенсів, похідні, інтеграли, розкладання до лав. Вирази через комплексні змінні. Зв'язок із гіперболічними функціями.

Геометричне визначення




|BD|
- Довжина дуги кола з центром у точці A .

α - кут, виражений у радіанах. Тангенс () tg α

- це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, рівна відношенню довжини протилежного катета |BC| до довжини прилеглого катета | AB | .) Котангенс (

ctg α

- це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, що дорівнює відношенню довжини прилеглого катета |AB| до довжини протилежного катета | BC | .Тангенс

Де n- ціле.
.
;
;
.

У


західної літератури

- це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, що дорівнює відношенню довжини прилеглого катета |AB| до довжини протилежного катета | BC | .Тангенс

тангенс позначається так:
.
Графік функції тангенсу, y = tg x
;
;
.

Котангенс


У західній літературі котангенс позначається так:

Також прийнято такі позначення:

Графік функції котангенсу, y = ctg x Властивості тангенсу та котангенсуПеріодичність Функції y = tg x

та y =

ctg x

періодичні з періодом π.

Парність до довжини протилежного катета | BC | .Функції тангенс та котангенс - непарні.

Області визначення та значень, зростання, спадання Властивості тангенсу та котангенсу Області визначення та значень, зростання, спадання Функції y =
Функції тангенс і котангенс безперервні у своїй області визначення (див. доказ безперервності). Основні властивості тангенсу та котангенсу представлені в таблиці (
- ціле). -∞ < y < +∞ -∞ < y < +∞
y = -
Область визначення та безперервність -
Область значень - -
Зростання 0
Зменшення 0 Області визначення та значень, зростання, спадання 0 -

Екстремуми

Нулі, y =

; ;
; ;
;

Точки перетину з віссю ординат, x =



Формули

Вирази через синус та косинус

Формули тангенсу та котангенс від суми та різниці

Інші формули легко отримати, наприклад

Твір тангенсів

Формула суми та різниці тангенсів

;
;

У цій таблиці представлені значення тангенсів та котангенсів при деяких значеннях аргументу.

; .


.
Вирази через комплексні числа
.
Вирази через гіперболічні функції

Похідні

Похідна n-го порядку змінної x від функції :

Виведення формул для тангенсу >>>; для котангенсу > > > Інтегралиі Розкладання до лавЩоб отримати розкладання тангенса за ступенями x, потрібно взяти кілька членів розкладання в степеневий ряд для функцій

sin x

cos x
і розділити ці багаточлени один на одного, . При цьому виходять такі формули.- Числа Бернуллі. Вони визначаються або з рекурентного співвідношення:
;
;
де.
Або за формулою Лапласа:


Зворотні функції

Зворотними функціямидо тангенсу і котангенсу є арктангенс і арккотангенс відповідно.

Арктангенс, arctg


, де до довжини протилежного катета | BC | .Тангенс

Арккотангенс, arcctg


, де до довжини протилежного катета | BC | .Тангенс

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.
Г. Корн, Довідник з математики для науковців та інженерів, 2012.

Вивчення тригонометрії ми розпочнемо з прямокутного трикутника. Визначимо, що таке синус та косинус, а також тангенс та котангенс гострого кута. Це є основи тригонометрії.

Нагадаємо, що прямий кут- це кут, що дорівнює 90 градусів. Іншими словами, половина розгорнутого кута.

Гострий кут- менше 90 градусів.

Тупий кут- більший за 90 градусів. Стосовно такого кута «тупий» - не образа, а математичний термін:-)

Намалюємо прямокутний трикутник. Прямий кут зазвичай позначається. Звернімо увагу, що сторона, що лежить навпроти кута, позначається тією ж літерою, лише маленькою. Так, сторона, що лежить навпроти кута A, позначається .

Кут позначається відповідною грецькою літерою.

Гіпотенузапрямокутного трикутника - це сторона, що лежить навпроти прямого кута.

Катети- Сторони, що лежать навпроти гострих кутів.

Катет, що лежить навпроти кута, називається протилежним(По відношенню до кута). Інший катет, який лежить на одній із сторін кута, називається прилеглим.

Сінусгострого кута в прямокутному трикутнику - це відношення протилежного катета до гіпотенузи:

Косінусгострого кута у прямокутному трикутнику - відношення прилеглого катета до гіпотенузи:

Тангенсгострого кута в прямокутному трикутнику - відношення протилежного катета до прилеглого:

Інше (рівносильне) визначення: тангенсом гострого кута називається відношення синуса кута до його косинусу:

Котангенсгострого кута в прямокутному трикутнику - відношення прилеглого катета до протилежного (або, що те саме, відношення косинуса до синуса):

Зверніть увагу на основні співвідношення для синуса, косинуса, тангенсу та котангенсу, які наведені нижче. Вони стануть у нагоді нам при вирішенні завдань.

Давайте доведемо деякі з них.

Добре, ми дали визначення та записали формули. А для чого ж потрібні синус, косинус, тангенс і котангенс?

Ми знаємо, що сума кутів будь-якого трикутника дорівнює.

Знаємо співвідношення між сторонамипрямокутного трикутника. Це теорема Піфагора: .

Виходить, знаючи два кути в трикутнику, можна знайти третій. Знаючи дві сторони прямокутного трикутника, можна знайти третю. Значить, для кутів – своє співвідношення, для сторін – своє. А що робити, якщо у прямокутному трикутнику відомий один кут (крім прямого) та одна сторона, а знайти треба інші сторони?

З цим і зіткнулися люди в минулому, складаючи карти місцевості та зоряного неба. Адже не завжди можна безпосередньо виміряти усі сторони трикутника.

Синус, косинус та тангенс - їх ще називають тригонометричними функціями кута- дають співвідношення між сторонамиі кутамитрикутник. Знаючи кут, можна знайти всі його тригонометричні функціїза спеціальними таблицями. А знаючи синуси, косинуси та тангенси кутів трикутника та одну з його сторін, можна знайти інші.

Ми також намалюємо таблицю значень синуса, косинуса, тангенсу та котангенсу для «хороших» кутів від до .

Зверніть увагу на два червоні прочерки в таблиці. При відповідних значеннях кутів тангенс та котангенс не існують.

Розберемо кілька завдань із тригонометрії з Банку завдань ФІПД.

1. У трикутнику кут дорівнює . Знайдіть .

Завдання вирішується за чотири секунди.

Оскільки , .

2 . У трикутнику кут дорівнює , , . Знайдіть .

Знайдемо за теоремою Піфагора.

Завдання вирішено.

Часто в задачах зустрічаються трикутники з кутами або з кутами і . Основні співвідношення для них запам'ятовуйте напам'ять!

Для трикутника з кутами і катет, що лежить навпроти кута, дорівнює половині гіпотенузи.

Трикутник з кутами і рівнобедрений. У ньому гіпотенуза в раз більше катета.

Ми розглянули завдання на вирішення прямокутних трикутників- тобто перебування невідомих сторін чи кутів. Але це не все! У варіантах ЄДІз математики безліч завдань, де фігурує синус, косинус, тангенс чи котангенс зовнішнього кута трикутника. Про це – у наступній статті.