Як вирішувати систему шляхом алгебраїчного складання. Розв'язання системи рівнянь методом додавання





Розберемо два види розв'язання систем рівняння:

1. Рішення системи шляхом підстановки.
2. Рішення системи методом почленного складання (віднімання) рівнянь системи.

Для того, щоб вирішити систему рівнянь методом підстановкипотрібно слідувати простому алгоритму:
1. Висловлюємо. З будь-якого рівняння виражаємо одну змінну.
2. Підставляємо. Підставляємо в інше рівняння замість вираженої змінної отримане значення.
3. Вирішуємо отримане рівняння з однією змінною. Знаходимо рішення системи.

Для того щоб вирішити систему методом почленного складання (віднімання)потрібно:
1.Вибрати змінну у якої робитимемо однакові коефіцієнти.
2.Складаємо або віднімаємо рівняння, в результаті отримуємо рівняння з однією змінною.
3. Вирішуємо отримане лінійне рівняння. Знаходимо рішення системи.

Рішенням системи є точки перетину графіків функції.

Розглянемо докладно з прикладів рішення систем.

Приклад №1:

Вирішимо методом підстановки

Вирішення системи рівнянь методом підстановки

2x+5y=1 (1 рівняння)
x-10y=3 (2 рівняння)

1. Висловлюємо
Видно що у другому рівнянні є змінна x з коефіцієнтом 1, звідси виходить що найлегше висловити змінну x з другого рівняння.
x=3+10y

2.Після того, як висловили підставляємо в перше рівняння 3+10y замість змінної x.
2(3+10y)+5y=1

3. Вирішуємо отримане рівняння з однією змінною.
2(3+10y)+5y=1 (розкриваємо дужки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Рішенням системи рівняння є точки перетинів графіків, отже нам потрібно знайти x і у, тому що точка перетину складається з x і y.Знайдемо x, в першому пункті де ми виражали туди підставляємо y.
x=3+10y
x=3+10*(-0,2)=1

Точки прийнято записувати першому місці пишемо змінну x, але в другому змінну y.
Відповідь: (1; -0,2)

Приклад №2:

Вирішимо методом почленного складання (віднімання).

Розв'язання системи рівнянь методом додавання

3x-2y=1 (1 рівняння)
2x-3y=-10 (2 рівняння)

1.Вибираємо змінну, припустимо, вибираємо x. У першому рівнянні у змінної x коефіцієнт 3, у другому 2. Потрібно зробити коефіцієнти однаковими, при цьому маємо право домножити рівняння чи розділити будь-яке число. Перше рівняння примножуємо на 2, а друге на 3 і отримаємо загальний коефіцієнт 6.

3x-2y = 1 | * 2
6x-4y = 2

2x-3y=-10 | *3
6x-9y=-30

2.З першого рівняння віднімемо друге, щоб позбавитися від змінної x.Вирішуємо лінійне рівняння.
__6x-4y=2

5y = 32 | :5
y=6,4

3. Знаходимо x. Підставляємо у будь-яке з рівнянь знайдений y, допустимо у перше рівняння.
3x-2y=1
3x-2 * 6,4 = 1
3x-12,8 = 1
3x = 1 +12,8
3x = 13,8 |: 3
x = 4,6

Точкою перетину буде x = 4,6; y=6,4
Відповідь: (4,6; 6,4)

Хочеш готуватися до іспитів безкоштовно? Репетитор онлайн безкоштовно. Без жартів.

Цим відео я починаю цикл уроків, присвячених системам рівнянь. Сьогодні ми поговоримо про рішення систем лінійних рівнянь методом складання— це один із самих простих способів, але водночас і один із найефективніших.

Спосіб складання складається з трьох простихкроків:

  1. Подивитися на систему та вибрати змінну, у якої в кожному рівнянні стоять однакові (або протилежні) коефіцієнти;
  2. Виконати алгебраїчне віднімання(для протилежних чисел - додавання) рівнянь один з одного, після чого навести подібні доданки;
  3. Вирішити нове рівняння, що вийшло після другого кроку.

Якщо все зробити правильно, то на виході ми отримаємо одно-єдине рівняння з однією змінною— вирішити його не важко. Потім залишиться лише підставити знайдений корінь у вихідну систему і отримати остаточну відповідь.

Однак на практиці все не так просто. Причин тому кілька:

  • Рішення рівнянь способом складання має на увазі, що у всіх рядках повинні бути присутні змінні з однаковими/протилежними коефіцієнтами. А що робити, якщо ця вимога не виконується?
  • Далеко не завжди після складання/віднімання рівнянь вказаним способом ми отримаємо гарну конструкцію, яка легко вирішується. Чи можливо спростити викладки і прискорити обчислення?

Щоб отримати відповідь на ці запитання, а заразом розібратися з кількома додатковими тонкощами, на яких «завалюються» багато учнів, дивіться мій відеоурок:

Цим уроком ми розпочинаємо цикл лекцій, присвячений системам рівнянь. А почнемо ми з найпростіших із них, а саме з тих, що містять два рівняння та дві змінні. Кожна з них буде лінійною.

Системи — це матеріал 7-го класу, але цей урок також буде корисним для старшокласників, які хочуть освіжити свої знання в цій темі.

Взагалі, існує два методи вирішення подібних систем:

  1. Метод складання;
  2. Метод вираження однієї змінної через іншу.

Сьогодні ми займемося першим методом — застосовуватимемо спосіб віднімання і складання. Але для цього потрібно розуміти наступний факт: як тільки у вас є два або більше рівнянь, ви маєте право взяти будь-які два з них і скласти один з одним. Складаються вони почленно, тобто. "ікси" складаються з "іксами" і наводяться подібні, "ігреки" з "ігреками" - знову наводяться подібні, а те, що стоїть праворуч від знака рівності, також складається один з одним, і там теж наводяться подібні.

Результатами подібних махінацій буде нове рівняння, яке, якщо й має коріння, то вони обов'язково будуть серед коренів вихідного рівняння. Тому наше завдання — зробити віднімання чи додавання таким чином, щоб або $x$, або $y$ зник.

Як цього добитися та яким інструментом для цього користуватися — про це ми зараз і поговоримо.

Вирішення легких завдань із застосуванням способу складання

Отже, вчимося застосовувати метод додавання на прикладі двох найпростіших виразів.

Завдання №1

\[\left\( \begin(align)& 5x-4y=22 \\& 7x+4y=2 \\end(align) \right.\]

Зауважимо, що $y$ коефіцієнт у першому рівнянні $-4$, а другому — $+4$. Вони взаємно протилежні, тому логічно припустити, що якщо ми їх складемо, то в отриманій сумі «Ігреки» взаємно знищаться. Складаємо та отримуємо:

Вирішуємо найпростішу конструкцію:

Чудово ми знайшли «ікс». Що тепер із ним робити? Ми маємо право підставити його на будь-яке з рівнянь. Підставимо у перше:

\ -4y = 12 \ left | :\left(-4 \right) \right.\]

Відповідь: $ \ left (2; -3 \ right) $.

Завдання №2

\[\left\( \begin(align)& -6x+y=21 \\& 6x-11y=-51 \\end(align) \right.\]

Тут цілком аналогічна ситуація, лише з «іксами». Складемо їх:

Ми отримали найпростіше лінійне рівняння, давайте вирішимо його:

Тепер давайте знайдемо $x$:

Відповідь: $ \ left (-3; 3 \ right) $.

Важливі моменти

Отже, щойно ми вирішили дві найпростіші системи лінійних рівнянь шляхом складання. Ще раз ключові моменти:

  1. Якщо є протилежні коефіцієнти при одній зі змінних, необхідно скласти всі змінні в рівнянні. І тут одна з них знищиться.
  2. Знайдену змінну підставляємо у будь-яке із рівнянь системи, щоб знайти другу.
  3. Остаточний запис відповіді можна по-різному. Наприклад, так $x=...,y=...$, або у вигляді координати точок - $\left(...;... \right)$. Другий варіант кращий. Головне пам'ятати, що першою координатою йде $x$, а другою $y$.
  4. Правило записувати відповідь у вигляді координат точки застосовується не завжди. Наприклад, його не можна використовувати, коли ролі змінних виступають не $x$ і $y$, а, наприклад, $a$ і $b$.

У наступних завданнях ми розглянемо прийом віднімання, коли коефіцієнти не протилежні.

Вирішення легких завдань із застосуванням методу віднімання

Завдання №1

\[\left\( \begin(align)& 10x-3y=5 \\& -6x-3y=-27 \\\end(align) \right.\]

Зауважимо, що протилежних коефіцієнтів тут немає, проте є однакові. Тому віднімаємо з першого рівняння друге:

Тепер підставляємо значення $x$ у будь-яке рівняння системи. Давайте в перше:

Відповідь: $ \ left (2; 5 \ right) $.

Завдання №2

\[\left\( \begin(align)& 5x+4y=-22 \\& 5x-2y=-4 \\end(align) \right.\]

Ми знову бачимо однаковий коефіцієнт $5$ при $x$ у першому та у другому рівнянні. Тому логічно припустити, що потрібно від першого рівняння відняти друге:

Одну змінну ми вирахували. Тепер давайте знайдемо другу, наприклад, підставивши значення $y$ у другу конструкцію:

Відповідь: $ \ left (-3; -2 \ right) $.

Нюанси рішення

Отже, що бачимо? Фактично, схема нічим не відрізняється від вирішення попередніх систем. Відмінність лише в тому, що ми рівняння не складаємо, а віднімаємо. Ми проводимо алгебраїчне віднімання.

Іншими словами, як тільки ви бачите систему, що складається з двох рівнянь із двома невідомими, перше, на що вам необхідно подивитися це на коефіцієнти. Якщо десь однакові, рівняння віднімаються, і якщо вони протилежні — застосовується метод складання. Завжди це робиться для того, щоб одна з них зникла, і в результаті рівняння, що залишилася після віднімання, залишилася б тільки одна змінна.

Зрозуміло, що це ще не все. Зараз ми розглянемо системи, у яких рівняння взагалі не узгоджені. Тобто. немає в них таких змінних, які були або однакові, або протилежні. У цьому випадку для вирішення таких систем застосовується додатковий прийом, а саме домноження кожного рівняння на спеціальний коефіцієнт. Як знайти його та як вирішувати взагалі такі системи, зараз ми про це і поговоримо.

Розв'язання задач методом збільшення на коефіцієнт

Приклад №1

\[\left\( \begin(align)& 5x-9y=38 \\& 3x+2y=8 \\\end(align) \right.\]

Ми бачимо, що ні за $x$, ні за $y$ коефіцієнти не тільки не взаємно протилежні, а й взагалі ніяк не співвідносяться з іншим рівнянням. Ці коефіцієнти ніяк не зникнуть, навіть якщо ми складемо або віднімемо рівняння один з одного. Тому необхідно застосувати домноження. Давайте спробуємо позбутися змінної $y$. Для цього ми домножимо перше рівняння на коефіцієнт при $ y $ з другого рівняння, а друге рівняння – при $ y $ з першого рівняння, при цьому не чіпаючи знак. Примножуємо та отримуємо нову систему:

\[\left\( \begin(align)& 10x-18y=76 \\& 27x+18y=72 \\\end(align) \right.\]

Дивимося на неї: за $y$ протилежні коефіцієнти. У такій ситуації необхідно застосовувати метод складання. Складемо:

Тепер потрібно знайти $y$. Для цього підставимо $x$ у перший вираз:

\--9y = 18 \ left | :\left(-9 \right) \right.\]

Відповідь: $ \ left (4; -2 \ right) $.

Приклад №2

\[\left\( \begin(align)& 11x+4y=-18 \\& 13x-6y=-32 \\\end(align) \right.\]

Знову коефіцієнти за жодної зі змінних не узгоджені. Домножимо на коефіцієнти при $y$:

\[\left\( \begin(align)& 11x+4y=-18\left| 6 \right. \\& 13x-6y=-32\left| 4 \right. \\end(align) \right .\]

\[\left\( \begin(align)& 66x+24y=-108 \\& 52x-24y=-128 \\end(align) \right.\]

Наша нова системарівносильна попередньої, однак коефіцієнти при $y$ є взаємно протилежними, і тому легко застосувати метод складання:

Тепер знайдемо $y$, підставивши $x$ на перше рівняння:

Відповідь: $ \ left (-2; 1 \ right) $.

Нюанси рішення

Ключове правило тут таке: завжди множимо лише на позитивні числа— це позбавить вас дурних і образливих помилок, пов'язаних із зміною знаків. А взагалі схема рішення досить проста:

  1. Дивимося на систему та аналізуємо кожне рівняння.
  2. Якщо бачимо, що ні за $y$, ні за $x$ коефіцієнти не узгоджені, тобто. вони не є ні рівними, ні протилежними, то робимо таке: вибираємо змінну, якої потрібно позбутися, а потім дивимося на коефіцієнти при цих рівняннях. Якщо перше рівняння домножимо на коефіцієнт з другого, а друге, відповідне, домножимо на коефіцієнт з першого, то в результаті ми отримаємо систему, яка повністю рівнозначна попередній, і коефіцієнти $y$ будуть узгоджені. Всі наші дії чи перетворення спрямовані лише на те, щоб отримати одну змінну в одному рівнянні.
  3. Знаходимо одну змінну.
  4. Підставляємо знайдену змінну в одне із двох рівнянь системи та знаходимо другу.
  5. Записуємо відповідь у вигляді координати точок, якщо у нас змінні $x$ та $y$.

Але навіть у такому нехитрому алгоритмі є свої тонкощі, наприклад коефіцієнти при $x$ або $y$ можуть бути дробами та іншими «некрасивими» числами. Ці випадки ми зараз розглянемо окремо, тому що в них можна діяти інакше, ніж за стандартним алгоритмом.

Розв'язання задач з дробовими числами

Приклад №1

\[\left\( \begin(align)& 4m-3n=32 \\& 0,8m+2,5n=-6 \\end(align) \right.\]

Для початку зауважимо, що у другому рівнянні присутні дроби. Але зауважимо, що можна поділити $4$ на $0,8$. Отримаємо $5$. Давайте друге рівняння домножимо на $5$:

\[\left\( \begin(align)& 4m-3n=32 \\& 4m+12,5m=-30 \\end(align) \right.\]

Віднімаємо рівняння один з одного:

$n$ ми знайшли, тепер порахуємо $m$:

Відповідь: $ n = -4; m = 5 $

Приклад №2

\[\left\( \begin(align)& 2,5p+1,5k=-13\left| 4 \right. \\& 2p-5k=2\left| 5 \right. \\end(align ) \right.\]

Тут, як і в попередній системі, присутні дробові коефіцієнти, проте за жодної зі змінних коефіцієнти в ціле число разів один в одного не укладаються. Тому використовуємо стандартний алгоритм. Позбудеться $p$:

\[\left\( \begin(align)& 5p+3k=-26 \\& 5p-12,5k=5 \\end(align) \right.\]

Застосовуємо метод віднімання:

Давайте знайдемо $p$, підставивши $k$ у другу конструкцію:

Відповідь: $ p = -4; k = - 2 $.

Нюанси рішення

Ось і вся оптимізація. У першому рівнянні ми не стали примножувати взагалі ні на що, а друге рівняння примножили на $5$. У результаті ми отримали узгоджене і навіть однакове рівняння за першої змінної. У другій системі ми діяли за стандартним алгоритмом.

Але як знайти числа, куди необхідно домножувати рівняння? Адже якщо примножувати на дробові числа, ми отримаємо нові дроби. Тому дроби необхідно домножити на число, яке дало б нове ціле число, а вже після цього домножувати змінні на коефіцієнти, дотримуючись стандартного алгоритму.

Насамкінець хотів би звернути вашу увагу на формат запису відповіді. Як я вже й казав, оскільки тут у нас тут не $x$ і $y$, а інші значення ми користуємося нестандартним записом виду:

Вирішення складних систем рівнянь

Як заключний акорд до сьогоднішнього відеоуроку давайте розглянемо пару дійсно складних систем. Їхня складність полягатиме в тому, що в них і зліва, і праворуч стоятимуть змінні. Тому для їх вирішення нам доведеться застосовувати попередню обробку.

Система №1

\[\left\( \begin(align)& 3\left(2x-y \right)+5=-2\left(x+3y ​​\right)+4 \\& 6\left(y+1 \right) )-1=5\left(2x-1 \right)+8 \\\end(align) \right.\]

Кожне рівняння несе у собі певну складність. Тому з кожним виразом давайте поступимо як із звичайною лінійною конструкцією.

Разом ми отримаємо остаточну систему, яка дорівнює вихідній:

\[\left\( \begin(align)& 8x+3y=-1 \\& -10x+6y=-2 \\end(align) \right.\]

Подивимося на коефіцієнти при $y$: $3$ вкладається в $6$ двічі, тому домножимо перше рівняння на $2$:

\[\left\( \begin(align)& 16x+6y=-2 \\& -10+6y=-2 \\end(align) \right.\]

Коефіцієнти при $y$ тепер рівні, тому віднімаємо з першого рівняння друге: $$

Тепер знайдемо $y$:

Відповідь: $\left(0;-\frac(1)(3) \right)$

Система №2

\[\left\( \begin(align)& 4\left(a-3b \right)-2a=3\left(b+4 \right)-11 \\& -3\left(b-2a \right) )-12=2\left(a-5 \right)+b \\\end(align) \right.\]

Перетворимо перший вираз:

Розбираємось з другим:

\[-3\left(b-2a \right)-12=2\left(a-5 \right)+b\]

\[-3b+6a-12=2a-10+b\]

\[-3b+6a-2a-b=-10+12\]

Отже, наша початкова система набуде такого вигляду:

\[\left\( \begin(align)& 2a-15b=1 \\& 4a-4b=2 \\end(align) \right.\]

Подивившись на коефіцієнти при $a$, бачимо, що перше рівняння потрібно примножити на $2$:

\[\left\( \begin(align)& 4a-30b=2 \\& 4a-4b=2 \\end(align) \right.\]

Віднімаємо з першої конструкції другу:

Тепер знайдемо $a$:

Відповідь: $ \ left (a = \ frac (1) (2); b = 0 \ right) $.

От і все. Сподіваюся, цей відеоурок допоможе вам розібратися у цій нелегкій темі, а саме у вирішенні систем простих лінійних рівнянь. Далі ще буде багато уроків, присвячених цій темі: ми розберемо більше складні прикладиде змінних буде більше, а самі рівняння вже будуть нелінійними. До нових зустрічей!

За допомогою даної математичної програми ви можете вирішити систему двох лінійних рівнянь із двома змінними методом підстановки та методом складання.

Програма як дає відповідь завдання, а й наводить докладне рішення з поясненнями кроків рішення двома способами: методом підстановки і методом складання.

Ця програмаможе бути корисна учням старших класів загальноосвітніх шкілпри підготовці до контрольним роботамта іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри. А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробитидомашнє завдання

з математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Таким чином ви можете проводити своє власне навчання та/або навчання своїх молодших братів або сестер, при цьому рівень освіти в галузі розв'язуваних завдань підвищується.

Правила введення рівнянь
Як змінна може виступати будь-яка латинська буква.

Наприклад: (x, y, z, a, b, c, o, p, q \) і т.д. При введенні рівняньможна використовувати дужки
. У цьому рівняння спочатку спрощуються.

Рівняння після спрощень мають бути лінійними, тобто. виду ax+by+c=0 з точністю порядку прямування елементів.

Наприклад: 6x+1 = 5(x+y)+2
У рівняннях можна використовувати як цілі, а й дробові числа як десяткових і звичайних дробів. Правила введення десяткових дробів.Ціла і дробова частина в
десяткових дробах

може розділятися як точкою, так і комою.
Наприклад: 2.1n + 3,5m = 55
Правила введення звичайних дробів.
Як чисельник, знаменник і ціла частина дробу може виступати тільки ціле число. /
Знаменник може бути негативним.При введенні числового дробу чисельник відокремлюється від знаменника знаком розподілу: &

Ціла частина
відокремлюється від дробу знаком амперсанд:
приклади.


Приклад: 3x-4y = 5

Приклад: 6x+1 = 5(x+y)+2
Розв'язати систему рівнянь
Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.

Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.
У браузері вимкнено виконання JavaScript.

Т.к. охочих вирішити задачу дуже багато, ваш запит поставлений у чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у Формі зворотного зв'язку.
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Вирішення систем лінійних рівнянь. Спосіб підстановки

Послідовність дій під час вирішення системи лінійних рівнянь способом підстановки:
1) виражають із якогось рівняння системи одну змінну через іншу;
2) підставляють в інше рівняння системи замість цієї змінної отриманий вираз;



$$ \left\( \begin(array)(l) 3x+y=7 \\ -5x+2y=3 \end(array) \right. $$

Виразимо з першого рівняння y через x: y = 7-3x. Підставивши у друге рівняння замість y вираз 7-Зx, отримаємо систему:
$$ \left\( \begin(array)(l) y = 7-3x \\ -5x+2(7-3x)=3 \end(array) \right. $$

Неважко показати, що перша і друга системи мають одні й самі рішення. У другій системі друге рівняння містить лише одну змінну. Розв'яжемо це рівняння:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Підставивши рівність y=7-3x замість x число 1, знайдемо відповідне значення y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1; 4) - рішення системи

Системи рівнянь із двома змінними, що мають одні й ті самі рішення, називаються рівносильними. Системи, які мають рішень, також вважають рівносильними.

Розв'язання систем лінійних рівнянь способом складання

Розглянемо ще один спосіб розв'язання систем лінійних рівнянь – спосіб складання. При розв'язанні систем цим способом, як і при вирішенні способом підстановки, ми переходимо від даної системи до іншої рівносильної їй системі, в якій одне з рівнянь містить тільки одну змінну.

Послідовність дій під час вирішення системи лінійних рівнянь способом складання:
1) помножують почленно рівняння системи, підбираючи множники так, щоб коефіцієнти при одній зі змінних стали протилежними числами;
2) складають почленно ліві та праві частини рівнянь системи;
3) вирішують рівняння, що вийшло, з однією змінною;
4) знаходять відповідне значення другої змінної.

приклад. Розв'яжемо систему рівнянь:
$$ \left\( \begin(array)(l) 2x+3y=-5 \\ x-3y=38 \end(array) \right. $$

У рівняннях цієї системи коефіцієнти за y є протилежними числами. Склавши почленно ліві та праві частини рівнянь, отримаємо рівняння з однією змінною 3x=33. Замінимо одне з рівнянь системи, наприклад, перше, рівнянням 3x=33. Отримаємо систему
$$ \left\( \begin(array)(l) 3x=33 \\ x-3y=38 \end(array) \right. $$

З рівняння 3x=33 знаходимо, що x=11. Підставивши це значення x до рівняння (x-3y = 38) отримаємо рівняння зі змінною y: (11-3y = 38). Розв'яжемо це рівняння:
\(-3y=27 \Rightarrow y=-9 \)

Таким чином ми знайшли рішення системи рівнянь способом додавання: \(x=11; y=-9 \) або \((11; -9) \)

Скориставшись тим, що в рівняннях системи коефіцієнти при y є протилежними числами, ми звели її рішення до вирішення рівносильної системи (підсумувавши обидві частини кожного з рівнянь вихідної симтеми), в якій одне з рівнянь містить лише одну змінну.

Книги (підручники) Реферати ЄДІ та ОДЕ тести онлайн Ігри, головоломки Побудова графіків функцій Орфографічний словник російської мови Словник молодіжного сленгу

Застосування рівнянь поширене у житті. Вони використовуються в багатьох розрахунках, будівництві споруд та навіть спорті. Рівняння людина використовувала ще в давнину і відтоді їх застосування лише зростає. Тільки вирішуючи самостійно різної складності системи рівнянь, ви навчитеся швидко визначати методи розв'язання будь-якої системи. Іноді буває досить складно вирішити систему квадратних рівнянь.

Однак найчастіше використовуваним методом для розв'язання даних рівнянь є спосіб підстановки/складання.

Припустимо, дана така система рівнянь:

\[\left\(\begin(matrix) x^2-xy = 3, \\ y^2-xy = -2 \end(matrix)\right.\]

Виконаємо складання рівнянь системи:

\[\left\(\begin(matrix) x^2 - xy = 3, \\ x^2 - 2xy + y = 1. \end(matrix)\right.\]

Вирішимо отриману систему:

\[\left\(\begin(matrix) x(x -y) = 3, \\ (x - y)^2= 1; \end(matrix)\right.\]

\[(x - y) = -1 \] або \[(x - y) = 1\] - одержуємо з 2 рівняння

Підставимо в 1 рівняння 1 або -1:

\ або \

Оскільки тепер ми знаємо значення однієї невідомої, можемо знайти 2:

Підставимо в 1 рівняння 1 або -1:

\[-3 - y= -1\] або \

Відповідь: [(-3; -2); (3; 4) \] Якщо вам необхідно вирішити систему 2 ступеня та 1 лінійне, то з лінійного можна виразити 1 зі змінних та підставитидане рівняння

у квадратне.

Вирішити систему рівнянь онлайн можна на нашому сайті https://сайт. Безкоштовний онлайн вирішувач дозволить вирішити рівняння онлайн будь-якої складності за лічені секунди. Все, що вам необхідно зробити – це просто ввести свої дані у вирішувачі. Також ви можете переглянути відео інструкцію та дізнатися, як вирішити рівняння на нашому сайті. А якщо у вас залишилися питання, ви можете задати їх у нашій групі Вконтакте http://vk.com/pocketteacher. Вступайте до нашої групи, ми завжди раді допомогти вам.

Дуже часто учні не можуть вибрати спосіб вирішення систем рівнянь.

У цій статті ми розглянемо один із способів вирішення систем – спосіб підстановки.

Якщо знаходять загальне рішення двох рівнянь, то кажуть, що ці рівняння утворюють систему. У системі рівнянь кожне невідоме означає одне й те число у всіх рівняннях. Щоб показати, що ці рівняння утворюють систему, їх зазвичай записують одне під одним і об'єднують фігурною дужкою, наприклад

Помічаємо, що з х = 15 , а у = 5 обидва рівняння системи правильні. Ця пара чисел є рішення системи рівнянь. Кожна пара значень невідомих, яка одночасно задовольняє обидва рівняння системи, називається рішенням системи.

Система може мати одне рішення (як у нашому прикладі), безліч рішень і не мати рішень.

Як вирішувати системи способом підстановки? Якщо коефіцієнти при якому-небудь невідомому в обох рівняннях рівні абсолютної величини(якщо ж не рівні, то зрівнюємо), то, складаючи обидва рівняння (або віднімаючи одне з іншого), можна отримати рівняння з одним невідомим. Потім розв'язуємо це рівняння. Визначаємо одне невідоме. Підставляємо отримане значення невідомого в одне з рівнянь системи (перше або друге). Знаходимо інше невідоме. Давайте розглянемо приклади застосування цього способу.

приклад 1.Розв'яжіть систему рівнянь

Тут коефіцієнти при у абсолютному значенню рівні між собою, але протилежні за знаком. Спробуємо почленно скласти рівняння системи.

Отримане значення х=4, підставляємо в якесь рівняння системи (наприклад у перше) і знаходимо значення у:

2 * 4 + у = 11, у = 11 - 8, у = 3.

Наша система має рішення х = 4, у = 3. Або відповідь можна записати в круглих дужках, як координати точки, на першому місці х, на другому у.

Відповідь: (4; 3)

Приклад 2. Розв'язати систему рівнянь

Зрівняємо коефіцієнти при змінній х, для цього помножимо перше рівняння на 3, а друге на (-2), отримаємо

Будьте уважні при складанні рівнянь

Тоді у = - 2. Підставимо у перше рівняння замість у число (-2), отримаємо

4х + 3(-2) = - 4. Вирішуємо це рівняння 4х = - 4 + 6, 4х = 2, х = ½.

Відповідь: (1/2; - 2)

приклад 3.Розв'яжіть систему рівнянь

Помножимо перше рівняння на (-2)

Вирішуємо систему

отримуємо 0 = – 13.

Система рішень немає, оскільки 0 не дорівнює (-13).

Відповідь: рішень немає.

приклад 4.Розв'яжіть систему рівнянь

Зауважуємо, що всі коефіцієнти другого рівняння поділяються на 3,

давайте розділимо друге рівняння на три і ми отримуємо систему, що складається з двох однакових рівнянь.

Ця система має безліч рішень, тому що перше і друге рівняння однакові (ми отримали всього одне рівняння з двома змінними). Як же уявити рішення цієї системи? Давайте висловимо змінну у з рівняння х + у = 5. Отримаємо у = 5 – х.

Тоді відповідьзапишеться так: (х; 5-х), х – будь-яке число.

Ми розглянули рішення систем рівнянь способом складання. Якщо залишилися питання чи щось – то незрозуміло запишіться на урок і ми з вами усунемо всі проблеми.

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.