Статистическая теория. Большая энциклопедия нефти и газа




Рис. 1а Процесс спада звуковой энергии

Основные положения . В статистической теории акустические процессы в помещении рассматриваются как постепенный спад энергии многократно отраженных преградами помещения волн. Этот спад происходит после прекращения действия источника звука. Идеализируя, считают этот процесс в первом приближении непрерывным. Тогда его можно изобразить в линейном масштабе экспонентой (рис.1,а), а в полулогарифмическом масштабе - прямой (рис 1,б). Предпосылкой к такому рассмотрению является выполнение двух условий: все направления движения волн равновероятны, а плотность звуковой энергии e = Е/V в каждой точке пространства помещения одинакова.

Рис. 1б. Процесс спада звуковой энергии в полулогарифмическом масштабе

Прежде чем анализировать процесс спада звуковой энергии в помещении, необходимо объяснить, почему в архитектурной акустике большее внимание уделяется не стационарному процессу (процессу установившихся колебаний), а переходному (нестационарному). Последний начинается после прекращения действия источника звука, заключается в постепенном спаде звучания вследствие потерь звуковой энергии и называется отзвуком, или реверберацией.

Реверберация существенно влияет на качество и речевого, и музыкального звучания. Чрезмерная длительность реверберации приводит к тому, что новые слоги речи звучат на фоне предыдущих затухающих слогов. Разборчивость речи при этом ухудшается. При коротком отзвуке разборчивость речи вполне удовлетворительна, но своеобразная "безжизненность", "стерильность" такого звучания воспринимается так же, как не-достаток, особенно при художественном чтении. Еще большее значение имеет процесс отзвука при слушании музыки. Каждая музыкальная фраза представляет собой последовательность звуковых импульсов. Затянутый отзвук нарушает эстетичность восприятия музыки тем сильнее, чем быстрее темп исполнения, так как звуки "набегают" друг на друга. Наоборот, при очень коротком отзвуке или его отсутствии (при исполнении на открытом воздухе) музыка звучит сухо. Утрачивается слитность звучания. Лишь при некотором, вполне определенном для каждого стиля исполнения времени отзвука образуется необходимая связность звучания, создающая наилучший эстетический результат.

Рассмотрим процессы, происходящие в помещении при звучании источника И (рис. 2). Первым в точку приема Пр, где находятся уши слушателя или микрофон, приходит по пути 1 прямой звук, затем по пути 2 звуки, отраженные от ближайших к источнику поверхностей, далее звуки по пути 3, отраженные от удаленных поверхностей. Позже приходят звуки, претерпевшие двукратные отражения на пути 4, и т. д. Количество отражений в единицу времени возрастает пропорционально второй степени времени. Помещение постепенно заполняется звуковой энергией. После прекращения звучания источника начинается процесс отзвука. В той же последовательности, как и при начале звучания, сперва в точку приема приходят сравнительно редкие начальные отражения. Далее плотность запаздывающих импульсов увеличивается, а их энергия постепенно спадает (рис. 3).


Статистическая теория занимается именно этой, второй частью отзвука с повышающейся плотностью импульсов во времени и уменьшающейся их энергией. Прямой звук и начальные сравнительно редкие отражения статистической теорией не принимаются во внимание.

Рис. 3. Структура ранних отражений реверберационного отклика

Метод, предложенный У. Сэбином, основан на модели идеального помещения, в котором звуковое поле после прекращения действия звукового сигнала может быть рассчитано на основе статистического рассмотрения процесса затухания звука. При этом предполагается, что амплитуды и фазы отраженных звуковых волн распределены хаотически, т. е. в волновом движении нет преобладающих направлений потоков и симметрии в распределении амплитуд. Принятое допущение позволяет считать, что средние значения звуковой энергии по различным направлениям одинаковы, т. е. звуковое поле изотропно, и средняя по времени плотность звуковой энергии в любой точке помещения тоже одинакова. Такое звуковое поле называют диффузным. Его рассмотрение дало возможность пренебречь явлениями интерференции и применить при расчетах энергетическое суммирование. Этот подход подобен используемому в кинетической теории газов и основан на математической теории вероятностей. Л. Бреховских показал, что для помещений, линейные размеры которых велики по сравнению с длиной волны, получаются достаточно удовлетворительные результаты.

Методами математической статистики в диффузном поле определяют среднюю длину пробега звукового луча между двумя отражениями. Для помещения в форме прямоугольного параллелепипеда с линейными размерами, близкими к "золотому сечению" (длина относится к ширине и к высоте, как 2: 20,5: 1, по другому определению 5: 3: 2), статистически определенная средняя длина свободного пробега звукового луча

где V - объем помещения, S - общая площадь всех ограничивающих поверхностей (пола, потолка, стен).

Впоследствии было установлено, что полученная зависимость примерно сохраняется и для помещений, линейные размеры которых отклоняются от "золотого сечения", и для помещений более сложной формы.

При каждом отражении часть падающей энергии поглощается преградами и превращается в тепло. Процесс постепенного уменьшения плотности звуковой энергии У. Сэбин назвал реверберацией (reverberation в переводе означает "отражение", "отзвук"). В Германии для обозначения этого процесса используется слово Nachhall, в переводе на русский "отзвук", "отголосок", "отклик". Термин "отзвук" ранее встречался и в русской технической литературе.

За длительность процесса, реверберации - время реверберации - было принято считать промежуток, за который плотность звуковой энергии уменьшается в 106 раз, звуковое давление в 103, а уровень звукового давления на 60 дБ.

Прямых объяснений мотивов выбора спада уровня на 60 дБ нет. Попытаемся найти разумные причины. Фортиссимо оркестра соответствуют уровни звукового давления 90-100 дБ, а пианиссимо - 35-40 дБ. Тогда средние уровни составят 63-70 дБ и принятое по определению (спад на 60 дБ) время реверберации будет примерно соответствовать длительности спада средних уровней до порога слышимости. Возможно, данное обстоятельство и стало причиной выбора такого определения времени реверберации.

Разумеется, все это справедливо в отсутствии акустических помех. При шумах, например, с уровнями 30-40 дБ, что характерно и для жилой комнаты, и для концертного зала, значительная часть отзвука будет маскироваться шумами, и слышимый отзвук будет длиться менее половины времени реверберации.

Расчетные соотношения. Для экспериментального определения времени реверберации Сэбин пользовался простейшими приспособлениями: органными трубами как источником звука и секундомером. Он нашел, что время реверберации Т прямо пропорционально объему помещения V и обратно пропорционально произведению среднего коэффициента поглощения aср и площади всех преград S:

Средний коэффициент поглощения:

где a1, a2,... - коэффициенты поглощения различных материалов;

S = S1 + S2 + ... - общая площадь преград; n - количество разных преград.

Из этого выражения можно заключить, что средний коэффициент поглощения соответствует единому материалу, которым можно было бы покрыть все поверхности преград помещения с сохранением общего звукопоглощения А = aсрS. Единицей поглощения считают 1 м2 открытого проема, полностью поглощающего всю падающую на него энергию (без учета дифракции). Эту единицу назвали сэбин (Сб).

По измерениям времени реверберации в пяти различных помещениях в форме прямоугольного параллелепипеда и объемами от 96 до 1960 м3 У. Сэбин принял значение = 0,164 (это число примерно равно хорошо запоминающейся дроби 1/6). При теоретическом выводе формулы для расчета времени реверберации было получено значение k = 0,161, которое и указывается в большинстве учебников. Чтобы согласовать физические размерности в левой и правой частях формулы, было решено придать коэффициенту k размерность с/м.

В дальнейшем было обнаружено, что k различно для помещений разной формы. Измеренные значения k приведены в таблице.

Форма помещения k

Крестообразное в плане, с куполообразным потолком 0,177

Близкое к "золотому сечению" 0,164

Трапециевидное в плане, театрального типа 0,160

Кубической формы 0,157

Очень широкое в плане, с низким потолком 0,152

Из приведенных примеров видно, что реверберации, хотя из структуры самой формулы У. Сэбина это не вытекает. Дело в том, что от соотношения линейных размеров зависит средняя длина пробега между двумя отражениями lcр, следовательно, зависит и время реверберации Т.

Теоретический вывод формулы Сэбина основан на предположении о диффузном, равномерном распределении звуковой энергии по пространству помещения и о непрерывном поглощении энергии преградами в процессе реверберации.

Это допущение дает сравнительно небольшое отклонение рассчитанной величины Т от измеренной, если средний коэффициент поглощения мал, и поэтому количество отражений получается достаточно большим, чтобы пренебречь дискретностью этого процесса.

На самом деле звуковая энергия поглощается преградами не непрерывно, а скачками, по мере достижения волной той или иной поверхности. Поэтому вполне равномерного заполнения энергией всего объема по-мещения не будет.

Более точные исследования реверберации были проведены в 1929 г. Шустером и Ветцманом, а в 1930 г. - Карлом Эйрингом. Формула Эйринга имеет вид:

Разложив выражение ln(1-a) в ряд и оставив в нем ввиду малости a только первый член, обнаружим, что при небольших значениях a формула Эйринга переходит в формулу Сэбина. Действительно,

Объясним смысл знака минус в знаменателе формулы. Логарифм чисел меньше единицы имеет отрицательное значение. Знак минус введен, чтобы исключить физическую несообразность - отрицательное значение Т. Выражение, стоящее в знаменателе, является эквивалентом общего поглощения А = acрS, содержащегося в формуле Сэбина.

Сравнивая формулы Сэбина и Эйринга, приходим к выводу, что приближение Сэбина дает завышенное значение T. Расхождение увеличивается с возрастанием acр: acр 0,2 0,5 0,8

Завышение Т, % 11 37 100

При значении acр = 1 получается физически нереальный результат: T = V/6S, хотя в этом случае должно Т = 0.

Формулы Сэбина и Эйринга могут быть применены, если звукопоглощающие материалы распределены по ограждающим помещение поверхностям достаточно равномерно, чтобы можно было пользоваться понятием среднего коэффициента поглощения.

Для оптимизации акустических условий в концертных залах рекомендуется acр = 0,19. Поэтому вполне допустимо время реверберации в этом случае рассчитывать по формуле Сэбина.

При выводе формулы Сэбина и Эйринга приняты некоторые допущения, которые редко оговариваются в литературе по акустике. Формула Сэбина получена в предположении, что волны падают на преграды под любыми углами, а при выводе формулы Эйринга принято, что волны падают на преграды под углами, близкими к нормали. Поэтому, строго говоря, в формулу Сэбина следовало бы подставлять значения коэффициента поглощения, определенные в диффузном поле, в реверберационной камере, а в формулу Эйринга - значения коэффициента поглощения, измеренные в плоском поле, при нормальном падении, т.е. в трубе.

При очень неравномерном распределении общего поглощения результат, вычисленный по формуле Эйринга, может оказаться далеким от измеренного. Миллингтон (Millington) объяснил причину этого расхожде-ния. Эйринг полагал, что число отражений от разных поверхностей с площадями S1, S2,... одинаково. В действительности вероятность числа отражений от данной поверхности тем больше, чем больше сама поверхность. На основании этих соображений Миллингтон вывел иную формулу для расчета времени реверберации:

где Si - площадь материалов с коэффициентами поглощения ai.

Недостаток формулы Миллингтона заключается в следующем: вычисленное значение времени реверберации получается равным нулю, если хотя бы один элемент преграды, как бы он ни был мал, имеет acр = 1. По-видимому, при выводе формулы было принято какоето сомнительное допущение. Впрочем, парадоксального результата легко избежать, приняв, что ни один коэффициент поглощения не равен единице.

Практика показала, что для помещений с небольшим acр (театральные и концертные залы, учебные аудитории и т. п.) все три формулы дают одинаково удовлетворительный результат. Для помещений со средними коэффициентами затухания (например, студии) более близки к измеренным значения времени реверберации, рассчитанные по формуле Эйринга. Если материалы имеют сильно различающиеся ai, а сами материалы распределены по поверхностям неравномерно, более близкими к измеренным получаются значения Т, рассчитанные по формуле Миллингтона. Используя названные формулы, необходимо принять те a, которые были рассчитаны с помощью этих же формул при обработке экспериментального материала, полученного в звукомерной камере.

Определение коэффициента поглощения. Коэффициенты поглощения материалов определяют измерениями в "гулкой" (реверберационной) камере. Обозначим объем камеры через V, а ее время реверберации через T0. После внесения в камеру исследуемого материала с площадью SM время реверберации уменьшается до TM. Тогда:

Если площадь исследуемого предмета (например, стола, кресла и т. д.) не может быть выражена определенным числом, находят поглощение предмета

Итак, с помощью вышеприведенных формул Сэбина и Эйринга решают обратную задачу: определяют a или А по измеренному времени реверберации.

ОБЩАЯ ТЕОРИЯ СТАТИСТИКИ

1.1. Предмет, метод, задачи и организация

Статистика – это наука, изучающая количественную сторону массовых явлений в неразрывной связи с их качественной стороной, количественное выражение закономерностей общественного развития.

Статистика как наука имеет пять особенностей.

Первая особенность статистики заключается в исследовании не отдельных фактов, а массовых социально-экономических явлений и процессов, выступающих как множества отдельных фактов, обладающих как индивидуальными признаками, так и общими признаками. Задача статистического исследования состоит в получении обобщающих показателей и выявлении закономерностей общественной жизни в конкретных условиях места и времени, которые проявляются лишь в большой массе явлений через преодоление случайности, свойственной единичным элементам.

Вторая особенность статистики состоит в том, что она изучает в первую очередь количественную сторону общественных явлений и процессов, но в отличие от математики, в конкретных условиях места и времени , т.е. предметом статистики являются размеры и количественные соотношения социально-экономических явлений, закономерности их связи и развития. При этом качественную определенность единичных явлений обычно определяют сопряженные науки.

Третья особенность статистики заключается в том, что она характеризует структуру, т.е. внутреннее строение массовых явлений (статистического множества) с помощью статистических показателей.

Четвертая особенность статистики заключается в исследовании изменений общественных явлений в пространстве и во времени. Изменения в пространстве (т.е. в статике) выявляются анализом структуры общественного явления, а изменения во времени (т.е. в динамике) - исследованием уровня и структуры явления.

Пятой особенностью статистики является выявление причинно-следственных связей отдельных явлений общественной жизни.

Под статистической методологией понимаетсясистема приемов, способов и методов, направленных на изучение количественных закономерностей, проявляющихся в структуре, динамике и взаимосвязяхсоциально-экономических явлений.

1.2. Статистическое наблюдение

Полный цикл статистического исследования включает следующие этапы:

1) сбор первичной информации (метод статистического наблюдения);

2) предварительную обработку данных (метод группировки, графический метод);

3) расчет и интерпретацию индивидуальных и сводных показателей (уровня, структуры и вариации, взаимосвязи и динамики);

4) моделирования и прогнозирования взаимосвязи и динамики исследуемых процессов и явлений.

Статистическое наблюдение – это планомерный систематический, базирующийся на научной основе сбор данных о явлениях и процессах общественной жизни посредством регистрации их наиболее важных признаков в соответствии с программой наблюдения.

План статистического наблюдения включает программно-методологическую и организационную части. В программно-методологической части указываются: цель, задачи и программа наблюдения, объект и единица наблюдения, совокупность признаков единицы наблюдения и инструментарий наблюдения (инструкцию по проведению наблюдения и статистический формуляр, содержащий программу и результаты наблюдения). В организационной части указываются: место и время наблюдения; перечень учреждений и организаций, ответственных за организацию и выполнение наблюдений, подготовку и расстановку кадров; выбор способов и регистрации сведений, перечень подготовительных мероприятий и т.д.

Статистические наблюдения классифицируют по форме, виду и способу наблюдения.

Наиболее распространенными формами статистического наблюдения являются: отчетность (предприятий, организаций, учреждений и т.п.) и специально организованные наблюдения с целью получения сведений, отсутствующих в отчетности (переписи, обследования, единовременные учеты).

Виды наблюдения различают: по времени наблюдения (непрерывные, периодические и единовременные) и по полноте охвата единиц статистической совокупности (сплошные и несплошные).

По способам статистического наблюдения различают: непосредственное, документальное наблюдения и опрос. В статистике применяются следующие виды опросов: устный (экспедиционный), саморегистрация (когда формуляры заполняются самими респондентами), корреспондентский, анкетный и явочный, с помощью современных средств вычислительной техники.

Показатели, используемые в экономико-статистическом анализе, характеризуют определенные категории и понятия, и расчет таких показателей должен проводиться путем теоретического анализа изучаемого явления. Поэтому в каждой конкретной области приложения статистики разрабатывается своя система статистических показателей.

1.3. Методы сплошного и выборочного наблюдения социально-экономических явлений и процессов

Задачей сплошного наблюдения является получение информации обо всех единицах исследуемой совокупности. Поэтому при проведении сплошного наблюдения важной задачей является формирование перечня признаков, подлежащих обследованию. От этого в конечном итоге зависит качество и достоверность результатов обследования.

До последнего времени российская статистика опиралась в первую очередь на сплошное наблюдение. Однако такой вид наблюдения имеет серьезные недостатки: высокую стоимость получения и обработки всего объема информации; большие затраты трудовых ресурсов; недостаточную оперативность информации, так как для ее сбора и обработки необходимо много времени. И, наконец, ни одно сплошное наблюдение, как правило, не обеспечивает полного охвата всех без исключения единиц совокупности. Большее или меньшее число единиц обязательно остается вне наблюдения как при проведении единовременных обследований, так и при получении сведений по такой форме наблюдения, как отчетность.

Например, при проведении сплошного статистического обследования малых предприятий по итогам работы за 2000 г. бланки форм (вопросники) были получены от 61% предприятий, которым были направлены вопросники. Причины неполучения ответов сведены в табл. 1.

Таблица 1

Количество и доля неохваченных единиц зависят от многих факторов: вида обследования (по почте, путем устного опроса); типа отчетной единицы; квалификации регистратора; содержания вопросов, предусмотренных программой наблюдения; времени дня или года проведения обследования и др.

Несплошное обследование изначально предполагает, что обследованию подлежит лишь часть единиц изучаемой совокупности. При его проведении следует заранее определить, какая часть совокупности должна быть подвергнута наблюдению и каким образом следует отобрать те единицы, которые должны быть обследованы.

Одним из преимуществ несплошных наблюдений является возможность получения информации в более короткие сроки и с меньшими затратами ресурсов, чем при сплошном наблюдении. Это связано с меньшим объемом собираемой информации, а следовательно, с более низкими затратами на ее получение, проверку достоверности, обработку и анализ.

Существует насколько видов несплошного наблюдения. Одно из них – выборочное наблюдение , при котором признаки регистрируются у отдельных единиц изучаемой совокупности, отобранных с помощью специальных методов, а полученные в процессе обследования результаты с определенным уровнем вероятности распространяются на всю исходную совокупность.

Преимущество выборочного наблюдения обеспечивается за счет:

1) экономии финансовых средств, затрачиваемых на сбор и обработку данных,

2) экономии материально-технических ресурсов (канцелярских товаров, оргтехники, расходных материалов, транспортного обслуживания и т. п.),

3) экономии трудовых ресурсов, привлекаемых на всех этапах выборочного наблюдения,

4) сокращения времени, затрачиваемого как на получение первичной информации, так и на ее последующую обработку вплоть до публикации итоговых материалов.

Главной проблемой при проведении выборочного исследования является то, насколько уверенно можно по свойствам отобранных объектов судить о действительных свойствах генеральной совокупности. Поэтому всякое такое суждение неизбежно имеет вероятностный характер, и задача сводится к обеспечению возможно большей вероятности правильного суждения.

Совокупность, из которой производится отбор, называется генеральной . Отобранные данные представляют собой выборочную совокупность или выборку . Для того, чтобы выборка полно и адекватно представляла свойства генеральной совокупности, она должна быть представительной или репрезентативной . Репрезентативность выборки обеспечивается только при объективности отбора данных.

Различают два вида выборочного наблюдения: повторный и бесповторный отбор.

При повторном отборе вероятность попадания каждой отдельной единицы в выборку остается постоянной, т.к. после отбора отобранная единица возвращается в совокупность и снова может быть выбранной – «схема возвратного шара».

При бесповторном отборе отобранная единица не возвращается обратно, вероятность попадания остающихся единиц в выборку все время меняется – «схема безвозвратного шара».

Выделяют следующие способы отбора единиц из генеральной совокупности:

а) индивидуальный отбор, когда в выборку отбираются отдельные единицы,

б) групповой отбор, когда в выборку попадают качественно однородные группы или серии изучаемых единиц,

в) комбинированный отбор, представляющий собой комбинацию первых двух способов.

Возможны следующие методы отбора единиц для формирования выборочной совокупности:

1) случайный (непреднамеренный) отбор, когда выборочная совокупность образуется путем жеребьевки или с помощью таблицы случайных чисел,

2) механический отбор, когда выборочная совокупность определяется из генеральной совокупности, разбитой на равные интервалы (группы),

3) типический отбор (расслоенный, стратифицированный) с предварительным расчленением генеральной совокупности на качественно однородные типические группы (не обязательно равные),

4) серийный или гнездовой отбор, когда из генеральной совокупности отбираются не отдельные единицы, а серии, при этом внутри каждой из попавшей в выборку серии обследуются все без исключения единицы.

1.4. Статистические группировки

Одним из основных и наиболее распространенных методов обработки и анализа первичной статистической информации является группировка. Понятие статистической группировки в широком смысле слова охватывает целый комплекс статистических операций. Прежде всего, к ним относится объединение зарегистрированных при наблюдении единичных случаев в группы, сходные в том или ином отношении, поскольку целостную характеристику совокупности необходимо сочетать с характеристикой основных ее частей, классов и т.д. Результаты сводки и группировки данных статистического наблюдения представляются в виде статистических рядов распределений и таблиц .

Значение группировок состоит в том, что этот метод, во-первых, обеспечивает систематизацию и обобщение результатов наблюдения, а во-вторых, метод группировок является основой применения других методов статистического анализа основных сторон и характерных особенностей изучаемых явлений.

Цель статистической группировки состоит в разделении единиц совокупности на ряд групп для расчета и анализа обобщающих групповых показателей, которые дают возможность получить представление о составе, структуре и взаимосвязях изучаемого объекта или явления.

Обобщающие статистические показатели, характеризующие каждую выделенную группу, могут быть представлены в форме абсолютных, относительных и средних величин.

В табл. 2 сведены различные виды статистических группировок, различающиеся в зависимости от задачи группировки:

Таблица 2

Основанием группировки выступают группировочные признаки, по которым единицы изучаемой совокупности относят к определенным группам. Если группировка выполнена по одному признаку, то она считается простой ,если по двум и более признакам – то комбинационной (или комбинированной ).

Первичной называют группировку, образованную на основе первичных данных, собранных в процессе статистического наблюдения.

Вторичная группировка выполняется по данным первичной, если есть необходимость получить меньшее количество, но более крупных групп или привести в сопоставимый вид данные, сгруппированные по размеру интервалы с целью их возможного сравнения.

Классификация и характеристика признаков группировки представлена в табл. 3.

С задачами типологической группировки, которая обычно предполагает разделение неоднородной совокупности на качественно однородные группы, тесно связаны две другие задачи группировок: изучение структуры и структурных сдвигов в исследуемой однородной совокупности и выявление в ней взаимосвязи отдельных признаков изучаемого явления.

Примерами типологических группировок служить группировки хозяйственных объектов по формам собственности, разделение экономически активного населения на занятых и безработных, работников на занятых преимущественно физическим и умственным трудом.

Методология типологических группировок определяется тем, насколько ясно проявляются качественные различия изучаемых явлений. Например, при группировке отраслей промышленности по экономическому

Таблица 3

Принцип классификации Виды признаков Характерные особенности
По содержанию (сущности) Существенные Выражают основное содержание изучаемых явлений
Второстепенные Важные для характеристики изучаемых явлений, но не отнесенные к существенным
По возможности количественного измерения Количественные, в том числе: а) дискретные (прерывные) б) непрерывные Отражают свойство явления, которое можно измерить Выражаются только целым числом Выражаются как целым, так и дробным числом
Атрибутивные (качественные), в том числе альтернативные Признак количественно не может быть измерен и записывается в виде текста Встречаются только в двух взаимоисключающих вариантах (или – или)

назначению продукции выделяются отрасли, производящие средства производства, и отрасли, производящие предметы потребления, в макроструктуре розничного товарооборота выделяются производственные и непроизводственные товары. В большинстве случаев качественные различия между явлениями не проступают столь отчетливо. Например, выделение в отраслях крупных, средних и мелких предприятий является достаточно сложной в методологическом отношении проблемой.

1.5. Методы обработки и анализа статистической информации

В процессе статистического наблюдения получают данные о значениях тех или иных признаков, характеризующих каждую единицу исследуемой совокупности. Для характеристики совокупности в целом или ее частей данные по отдельным единицам совокупности подвергают сводке и в результате получают обобщающие показатели, в которых отражаются результаты познания количественной стороны изучаемых явлений.

Статистическим показателем называют обобщающую количественно-качественную величину, характеризующую социально-экономические явления и процессы.

Индивидуальные значения совокупности представляют собой признаки, а количественно-качественная характеристика какого-либо свойства совокупности (группы) – статистический показатель. Например, средняя успеваемость конкретного студента – это признак, средняя успеваемость студентов вуза – показатель.

Обобщающие показатели могут быть представлены абсолютными , относительными и средними величинами, которые повсеместно используются в планировании и анализе деятельности предприятий и фирм, отраслей и экономики в целом.

Абсолютные показатели получают путем суммирования первичных данных. Они могут быть индивидуальные и общие (итоговые). Индивидуальные абсолютные величины выражают размер количественных признаков у отдельных единиц изучаемой совокупности. Общие и групповые абсолютные величины – это итоговые и групповые количественные характеристики признаков. С помощью абсолютной величины характеризуют абсолютные размеры изучаемых явлений: объем, массу, площадь, длину и др. Абсолютные показатели – это всегда именованные числа (имеют единицы измерения), которые могут быть натуральные, условно-натуральные (для сопоставления однородной, но разнокачественной продукции единицы физических величин переводят в условные единицы при помощи специальных коэффициентов) и стоимостные (денежные).

Для сравнения, сопоставления абсолютных величин между собой во времени, пространстве и прочих отношениях используются относительные величины, т.е. обобщающие показатели, выражающие количественное отношение двух абсолютных величин друг к другу.

Относительные величины могут быть результатом сопоставления:

– одноименных статистических показателей (с прошлым периодом – относительные величины динамики и планового задания; с планом – относительные величины выполнения плана; части и целого или частей между собой – относительные величины соответственно структуры и координации; в пространстве – относительные величины наглядности);

– разноименных статистических показателей (относительные величины интенсивности).

1.5.1. Метод средних величин

Средняя величина представляет собой обобщенный показатель, выражающий типичный, т.е. свойственный большинству признаков уровень. Метод средних позволяет заменить большое число варьирующих значений признака одной усредненной величиной.

Различают средние: степенные и структурные.

Формулы для расчета степенных средних представлены в табл. 4.

В табл. 4 используются следующие обозначения: значение признака й единицы совокупности или й вариант признака для взвешенной средней; объем совокупности; вес го варианта признака; число вариантов усредняемого признака.

Использование невзвешенных (простых) и взвешенных средних зависит от повторяемости вариант признака:

Таблица 4

Вид средней Формула для расчета средней
Невзвешенная Взвешенная
Средняя арифметическая
Средняя гармоническая
Средняя геометрическая
Средняя квадратическая
Средняя кубическая

– при отсутствии таких повторений или при повторении только отдельных вариант ограниченное число раз применяются невзвешенные средние;

– при повторении всех или почти всех вариант многократно применяются взвешенные средние.

Расчет средних величин используется при:

– оценке характеристики типичного уровня по данной совокупности;

– сравнении типичных уровней по двум и более совокупностям;

– расчете нормы при установлении плановых заданий, договорных обязательств.

На практике чаще всего используется среднее арифметическое. Средняя гармоническая используется в тех случаях, когда известен числитель, но неизвестен знаменатель исходного соотношения средней. В основном средняя геометрическая используется для осреднения индивидуальных показателей в динамике. Степенные средние второго и более высоких порядков применяются при расчете показателей вариации, взаимосвязи, структурных изменений, асимметрии и эксцесса.

К структурным средним относятся две основные характеристики вариационного ряда распределения – мода и медиана.

Мода – это то значение признака, которое наиболее часто встречается в данной совокупности, т.е. отражает то значение признака, которое является наиболее типичным, преобладающим, доминированным. При большом числе наблюдений совокупность может характеризоваться двумя и более модальными вариантами.

Медиана – это вариант изучаемого признака, который делит ранжированный ряд данных на две равные части: 50 % единиц исследуемой совокупности будут иметь значения признака меньше, чем медиана, а 50 % – значения признака больше, чем медиана.

При определении медианы по несгруппированным (первичным) данным сначала необходимо расположить их в возрастающем порядке (ранжировать). Затем нужно определить «позицию» медианы или определить номер той единицы, значение признака у которой будет соответствовать медиане:

где число единиц в исследуемой совокупности.

1.5.2. Вариационный анализ

Вариация – это различие индивидуальных значений (изменение) признаков внутри изучаемой совокупности. Показатели вариации позволяют оценить:

Разброс значений признака у единиц статистической совокупности;

Устойчивость развития изучаемых процессов во времени;

Влияние факторного признака на изменение признака результативности;

Различного рода риски (страховой, систематический и т.д.).

Различают абсолютные и относительные показатели вариации. К абсолютным показателям вариации относятся: размах вариации , среднее линейное отклонение , дисперсия и среднее квадратическое отклонение . Соотношения для расчета этих показателей сведены в табл. 5.

Таблица 5

Показатели Формулы расчета
для несгруппированных данных для сгруппированных данных
Размах вариации (колебаний)
Среднее линейное отклонение
Дисперсия
Среднеквадратическое отклонение

где: значение признака ; и соответственно максимальное и минимальное значение признака в совокупности; средняя арифметическая величина; объем совокупности; вес го варианта признака.

Определение размаха вариации является необходимым этапом группировки первичной статистической информации. Данный показатель вариации имеет два существенных недостатка: а) сильно зависит от максимальных аномальных значений признака и б) не учитывает «внутреннюю» вариацию между границами, определяемыми максимальным и минимальным значениями. Поэтому он не дает исчерпывающую характеристику вариации.

Показатель среднего линейного отклонения дает обобщенную характеристику степени разброса признака в совокупности, однако он реже используется по сравнению с дисперсией и средним квадратическим отклонением, так как при его расчете приходится допускать некорректные с точки зрения математики действия, нарушать законы алгебры.

Дисперсия представляется в квадратах единиц, в которых измеряется регистрируемый признак, поэтому интерпретация этого показателя довольно затруднительна. В связи с этим введен показатель среднеквадратического отклонения, который измеряется в тех же единицах измерения, что и индивидуальное значение признака.

Относительные показатели вариации рассчитываются в процентах (по отношению к средней арифметической или к медиане ряда). В статистике используются следующие относительные показатели вариации:

1) коэффициент осцилляции

показывает относительный разброс крайних значений признаков вокруг средней арифметической;

2) относительное линейное отклонение

характеризует долю усредненного значения абсолютных отклонений от средней арифметической;

3) коэффициент вариации

наиболее часто применяется, так как характеризует степень однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному).

1.5.3. Корреляционный анализ

Важнейшая задача общей теории статистики состоит в исследовании объективно существующих связей между явлениями. В процессе статистического исследования выясняются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие существенное влияние на вариацию изучаемых явлений и процессов.

В статистике различают функциональную связь и стохастическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Такая связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Если причинная связь проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая связь называется стохастической . Частным случаем стохастической является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.

При изучении конкретных зависимостей одни признаки выступают в качестве факторов, обусловливающих изменение других признаков. Признаки первой группы называют факторными , а признаки, которые являются результатом влияния этих факторов, – результативными .

В статистике не всегда требуются количественные оценки связи, часто важно определить лишь ее направление и характер, выявить форму воздействия одних факторов на другие. Одним из основных методов выявления наличия связи является корреляционный метод, который имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

В статистике различаются следующие варианты зависимостей:

1) парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными);

2) частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;

3) множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Основным методом выявления наличия корреляционной связи является метод аналитической группировки и определении групповых средних. Он заключается в том, что все единицы совокупности разбиваются на группы по величине факторного признака и для каждой группы определяется средняя величина результативного признака.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ВОЛЖСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Н.ТАТИЩЕВА

КАФЕДРА «БУХГАЛТЕРСКИЙ УЧЕТ, АНАЛИЗ И АУДИТ»

УТВЕРЖДАЮ

Проректор по учебной работе

Е.В.Никифорова

«_____»___________________2005г.

Теория статистики)

Учебно-методическое пособие, методические указания

и задания к контрольной (индивидуальной) работе

для студентов экономических специальностей

Составил – к.э.н., доцент Гениатулин В.Н.

Тольятти 2005

Учебно-методическое пособие разработано в соответствии с Государственными образовательными стандартами специальностей 060400 «Финансы и кредит»,

060500 «Бухгалтерский учет, анализ и аудит»,

061100 «Менеджмент организации», 061500 «Маркетинг»,

351200 «Налоги и налогообложение»

Рассмотрены на заседании кафедры «Бухгалтерский учет, анализ и аудит»

Зав. кафедрой «Бухгалтерский учет, анализ и аудит»____Е.В.Никифорова

Одобрено УМС экономического факультета

Протокол №____от_____________2005г.

Утверждено на заседании УМС ВУиТ

Протокол №____от_____________2005г.

Председатель УМС ВУиТ__________________Е.В.Никифорова

1. Предмет статистической науки и ее методология

3. Методические указания по выполнению контрольной работы

4. Задания к контрольной работе

5. Практикум по теории статистики

6. Вопросы к экзамену (зачету) по статистике

8. Учебно-методическое обеспечение дисциплины

1. ПРЕДМЕТ СТАТИСТИЧЕСКОЙ НАУКИ И ЕЕ МЕТОДОЛОГИЯ

Каждая наука обладает существенными специфическими особенностями, которые отличают ее от других наук и дают ей право на самостоятельное существование как особой отрасли знания. Главная особенность любой науки заключается в предмете познания, в принципах и методах его изучения, которые в совокупности образуют ее методологию.

Предметом исследования статистики являются массовые явления социально-экономической жизни; она изучает количественную сторону этих явлений в неразрывной связи с их качественным содержанием в конкретных условиях места и времени.

Явления и процессы в жизни общества характеризуются статистикой с помощью статистических показателей. Статистические показатели – это количественная оценка свойств изучаемого явления. Статистика при помощи статистических показаний характеризует размеры изучаемых явлений, их особенности, закономерности развития и их взаимосвязи. При этом статистические показатели подразделяются на учетно-оценочные и аналитические. Учетно-оценочные показатели отражают объем или уровень изучаемого явления; аналитические показатели используются для характеристики особенностей развития явления, распространенности в пространстве, соотношения его частей, взаимосвязи с другими явлениями. В качестве аналитических показателей, используются средние величины, показатели структуры, вариации, динамики, степени тесноты связи и др.

В настоящее время основными задачами российской статистики являются:

Разработка научно обоснованной статистической методологии соответствующей потребностям общества на современном этапе, а также международным стандартам;

Представление официальной статистической информации Президенту Российской Федерации, Правительству Российской Федерации, Федеральному Собранию Российской Федерации, федеральным органам исполнительной власти, общественности, а также международным организациям;

Предоставление всем пользователям равного доступа к открытой статистической информации путем распространения официальных докладов о социально-экономическом положении Российской Федерации, субъектов Российской Федерации, отраслей и секторов экономики, публикации статистических сборников и других материалов.

Формирование информационной системы статистических показателей для всестороннего анализа экономических и социальных процессов, происходящих в стране в целом и в ее регионах, осуществляется на базе показателей, содержащихся в статистической государственной отчетности (около 700 форм) и на основе выборочных статистических обследований.

На региональном уровне проводятся дополнительные статистические наблюдения, отражающие специфику каждого региона.

Действующая в России информационная статистическая система располагает комплексом средств для обеспечения необходимой разнообразной информацией как органов государственного управления, научных учреждений, так и средств массовой информации.

В целях оперативного информирования органов государственного управления об отдельных важных тенденциях в развитие экономики систематически выпускается экспресс-информация. Снабженная кратким анализом, она поступает потребителю через несколько часов после завершения машинной обработки данных.

Правительством Российской Федерации утверждена целевая программа реформирования статистики. Целью программы является наиболее полное обеспечение потребностей федеральных органов исполнительной власти субъектов Российской Федерации и всех заинтересованных пользователей объективной и актуальной информацией о социально-экономическом развитии Российской Федерации, субъектов Российской Федерации, отраслей экономики, хозяйствующих субъектов, населения.

Опираясь на теоретическую базу, статистика применяет специфические методы цифрового освещения явления, которые находят свое выражение в трех этапах (стадиях) статистического исследования:

1. Массовое научно организованное наблюдение, с помощью которого получают первичную информацию об отдельных единицах (фактах) изучаемого явления.

2. Группировка и сводка материала, представляющие собой расчленение всей массы случаев (единиц) на однородные группы и подгруппы, подсчет итогов по каждой группе и оформление полученных результатов в виде статистической таблицы. Группировки дают возможность выделить из состава всех случаев единицы разного качества, показать особенности явлений, развивающихся в различных условиях. После проведения группировки приступают к обобщению данных наблюдения. Эта ступень носит название сводки.

3. Обработка статистических показателей, полученных при сводке и анализ результатов для получения обоснованных выводов о состоянии изучаемого явления и закономерности его развития. Выводы, как правило, излагаются в текстовой форме и сопровождаются графиками и таблицами.

Таким образом, специфический метод статистики основан на соединении анализа и синтеза. Сначала выделяются в составе изучаемого явления и раздельно изучаются части (группы и подгруппы), оценивается существенность или несущественность наблюдаемых различий в величине признака выявляются причины в целом, во всей совокупности его сторон, тенденций и форм развития. Все стадии статистической работы тесно связаны друг с другом.


Структура статистической науки предоставлена на рис.1.


Рис.1. Структура статистической науки.

Таким образом, в статистической науке выделяются следующие части: общая теория статистики, экономическая статистика и ее отрасли, социальная статистика и ее отрасли.

Общая теория статистики разрабатывает общие принципы и методы статистического исследования общественных явлений, наиболее общие категории (показатели) статистики.

Задачей экономической статистики является разработка и анализ синтетических показателей, отражающих состояние национальной экономики, взаимосвязи отраслей, особенности размещения производственных сил, наличие материальных, трудовых и финансовых ресурсов, достигнутый уровень их использования.

Статистики крупных отраслей могут быть подразделены на более мелкие отраслевые статистики: например, статистика промышленности – на статистику машиностроения, металлургии, химии и др.; статистика сельского хозяйства – на статистику земледелия и животноводства и т.п.

Социальная статистика формирует систему показателей для характеристики образа жизни населения и различных аспектов социальных отношений; ее отрасли – статистика народонаселения, политики, культуры, здравоохранения, науки, просвещения, права и т.д.

Отрасли экономической статистики – статистика промышленности, сельского хозяйства, строительства, транспорта, связи, труда, природных ресурсов, охраны окружающей среды и т.д.; их задача – разработка и анализ статистических показателей развития соответствующих отраслей. Отраслевые статистики формируются на базе показателей экономической или социальной статистики, а те другие основываются в свою очередь на категориях (показателях) и методах анализа, разработанных общей теорией статистики.

Общая теория статистики является той учебной дисциплиной с изучения которой начинается формирование необходимых знаний у экономистов, менеджеров, руководителей предприятия.

Тема I . Предмет и метод, задачи и организация статистической науки.

Понятие о статистике как науке и статистическом исследовании.

Возникновение учета и статистики.

Предмет статистической науки. Место статистики в системе наук.

Метод статистики. Закон больших чисел и его роль в изучении статистических закономерностей. Границы статистического познания.

Разделы статистики. Общая теория статистики, её предмет и содержание. Связь общей теории статистики с социально-экономической и отраслевыми статистиками.

Cтраница 1


Статистическая теория информации оперирует понятием энтропии как меры неопределенности, учитывающей вероятность появления, а следовательно, и информативность тех или иных сообщений.  

В статистической теории информации (теории связи), предложенной Шенноном в 1948 г., энтропия количественно выражается как средняя функция множества вероятностей каждого из возможных исходов опыта.  

Для применения статистической теории информации к анализу и оценке психических процессов человека имеются препятствующие и благоприятствующие факторы. Препятствующие факторы касаются в основном общих психических процессов непосредственного восприятия объектов, которое по природе своей целостно, избирательно и осмысленно. Благоприятствующие факторы касаются инженерной психологии, изучающей деятельность оператора, который получает информацию о состоянии управляемого объекта не столь определенно и целостно, как это бывает при непосредственном восприятии объекта.  

Указанные отвлечения и определяют возможности статистической теории информации и равносильных ей теорий в описании информационных процессов.  

Подход к психике с позиций статистической теории информации оказывается в непосредственной связи с задачей выявления и количественной характеристики такого психологического феномена, как восприятие вероятностной структуры сигналов, в частности, способности индивида в процессе временного или пространственного развертывания сообщения, опираясь на знание уже воспринятых его элементов, предсказывать, какой элемент сообщения последует.  

К вопросу о ценности информации. а / - 0. б / - 1 58 (дезинформация. в / - 0 42.

Дальнейшее развитие данного подхода базируется на статистической теории информации и теории решений. Сущность метода состоит в том, что, кроме вероятностных характеристик неопределенности объекта, после получения информации вводятся функции штрафов или потерь и оценка. Максимальной ценностью обладает то количество информации, которое уменьшает потери до ноля при достижении поставленной цели.  

Причина этого заключается в том, что сами методы статистической теории информации оказались малоприспособленными для анализа задач управления. Хотя именно они в свое время сыграли большую роль в развитии кибернетики как науки. Статистическая теория информации весьма эффективна лишь для описания процесса передачи и хранения информации, но применение ее становится малооправданным, когда информацию необходимо рассматривать во взаимосвязи с целью управления.  

Информационный подход к распознаванию позволяет решать ряд задач по выбору признаков и их обработке, оценке надежности распознавания, однако ограниченность статистической теории информации может проявляться и здесь. Поэтому применение его к практическим задачам должно сопровождаться тщательным инженерным анализом.  

Открытие того, что информация - а значит и определенные стороны того, что в философии называется знанием - может трактоваться как измеримая величина, явилось первым важным гносеологическим результатом статистической теории информации.  

Через понятие информации и относящиеся к нему точные математические теории - прежде всего через восходящую главным образом к К. Шеннону статистическую теорию информации и ее аналоги, основанные на комбинаторном, топологическом или алгоритмическом определениях информации (количества информации) - находят свое уточнение и конкретизацию философские представления о свойстве отражения.  

Естественно, что наличие как однозначно-детерминированного, так и вероятностного принципов в работе систем, изучаемых в кибернетике, находит свое отражение в математических средствах этого научного направления. Ярким выражением первого подхода является статистическая теория информации, восходящая к работе К. Шеннона Математическая теория связи (1948), в которой были введены важные понятия энтропии источника сообщения, пропускной способности канала связи и количества информации и указаны соотношения, характеризующие эти понятия. Впрочем, вероятностно-статистические методы входят в кибернетику (и вычислительную математику) ныне в самой различной форме и по разнообразным направлениям.  

Сказанное возможно лишь при применении методов статистической теории информации в векторной форме.  

При этом необходимо отметить, что речь идет не о простой экстраполяции статистической теории информации на новые сферы научного исследования, а о существенном развитии в разных направлениях представлений об информационных процессах, которые осуществляются на базе единых научных воззрений на информацию.  

В работе4 под информацией понимаются сведения, необходимые для принятия решения. Это определение включает в термин сведения о всем многообразии информации и созвучно с пониманием информации в статистической теории информации К.