Какие вещества проводят электрический ток. Что такое проводник и диэлектрик




Проводники проводники́

вещества, хорошо проводящие электрический ток, то есть обладающие высокой электропроводностью (>10 4 -10 6 Ом -1 ·см -1), благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма).

ПРОВОДНИКИ

ПРОВОДНИКИ́, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10 -6 ом. см.
Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы.
Твердыми проводниками являются металлы (см. МЕТАЛЛЫ) , металлические сплавы (см. СПЛАВЫ) , некоторые модификации углерода, а также твердые электролиты (см. ТВЕРДЫЕ ЭЛЕКТРОЛИТЫ) .
К жидким проводникам относятся жидкие металлы (см. ЖИДКИЕ МЕТАЛЛЫ) и различные электролиты (см. ЭЛЕКТРОЛИТЫ) .
Механизм прохождения тока в металлах в твердом и жидком состоянии обусловлен направленным движением свободных электронов, поэтому их называют проводниками с электронной электропроводностью или проводниками 1 рода. При низких температурах многие металлы и сплавы переходят в сверхпроводящее состояние (см. Сверхпроводники (см. СВЕРХПРОВОДНИКИ) ). Проводимость в твердых электролитах обеспечивается переносом заряда одним типом ионов.
Механизм прохождения тока в жидких электролитах, или проводниках 2 рода, связан с переносом вместе с электрическими зарядами ионов. Проводниками 2 рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. В результате прохождения тока через такие проводники состав электролита постепенно меняется, а на электродах выделяются продукты электролиза.
Все газы и пары при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля выше некоторого критического значения, то газ может стать проводником, обладающим электронной и ионной электропроводностями. В ионизированных газах и парах веществ, в том числе в парах металлов, прохождение электрического тока будет обусловлено движением как электронов, так и ионов, и механизм проводимости будет смешанным. Сильно ионизированный газ, в котором концентрации положительных и отрицательных зарядов равны, называется плазмой (см. ПЛАЗМА) .


Энциклопедический словарь . 2009 .

Смотреть что такое "проводники" в других словарях:

    ПРОВОДНИКИ - класс веществ, обладающих способностью хорошо проводить электрический ток, т. е. имеющих высокую электропроводность. К П. относятся (см.), (см.) и (см.). Природа проводимости бывает различной, а деление на П. и непроводники условно, т.к.… … Большая политехническая энциклопедия

    Тонкие тросы, служащие для передачи с помощью их более толстых тросов одного судна на другое, на стенку, пристань и т. д. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 ПРОВОДНИКИ… … Морской словарь

    Вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы, полупроводники), ионные (электролиты) и смешанные, где имеет место движение как электронов,… … Большой Энциклопедический словарь

    Вещества, хорошо проводящие электрич. ток, т. е. обладающие высокой электропроводностью s (низким уд. сопротивлением r=1/s). К хорошим П. обычно относят в ва с r … Физическая энциклопедия

    Электрический провод Проводник вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы. Пример проводящих жидкостей электролиты. Пример проводящих газов ионизированный газ… … Википедия

    Электрические, вещества, хорошо проводящие электрический ток, т. е. обладающие высокой электропроводностью (низким удельным сопротивлением ρ). К хорошим П. обычно относят вещества с ρ ≤ 10 6 ом․см. В противоположность П. изоляторы… … Большая советская энциклопедия

    Электрические тела (вещества), обладающие способностью хорошо проводить электрич. ток. П. содержат большое число носителей тока. В П. 1 го рода (металлах и сплавах) носителями тока являются электроны, в П. 2 го рода (электролитах) ионы … Большой энциклопедический политехнический словарь

    В ва, хорошо проводящие электрич. ток, т. е. обладающие высокой электропроводностью (> 104 106 Ом 1 см 1), благодаря наличию в них большого кол ва подвижных заряж. частиц. Делятся на электронные (металлы), ионные (электролиты) и смешанные, где… … Естествознание. Энциклопедический словарь

    ПРОВОДНИКИ - CONDUITSДва агентства с федеральной поддержкой и несколько частных компаний, занимающихся покупкой ипотек у кредитных учреждений, предоставляющих ипотечные ссуды. Эти агентства и компании часто объединяют ипотеки в пулы и продают их инвесторам,… … Энциклопедия банковского дела и финансов

    проводники внешних цепей - (В щитке) должны предусматриваться места для размещения проводников внешних цепей и удобного их присоединения к аппаратам и зажимам. [ГОСТ Р 51778 2001] Тематики НКУ (шкафы, пульты, ...)электропроводка, электромонтаж … Справочник технического переводчика

Книги

  • Чудеса архангела Михаила. Посланники небес. Духи-проводники. Что шепчет ангел (комплект из 4 книг) , . …
  • Оракул фей. Новая духовность. Наши проводники (+ 40 карт) (количество томов: 2) , Кассиди Паулина. Оракул фей. Послания, которые несут нам духи природы (40 карт) Замечали ли вы когда-нибудь очертания лиц в узорах древесной коры? Слышали ли смех в журчании ручья? Находясь одни в лесу,…

Проводники, диэлектрики и поток электронов

Электроны различных типов атомов обладают разными степенями свободы перемещения. В некоторых материалах, таких как металлы, внешние электроны атомов настолько слабо связаны с ядром, что легко могут покидать свои орбиты и хаотично двигаться в пространстве между соседними атомами даже при ком натной температуре. Такие электроны часто называют свободными электронами .

В других типах материалов, таких как стекло, у электронов в атомах существует очень небольшая свобода перемещени я. Однако внешние силы, например физическое трение, могут заставить некоторые из этих электронов покинуть собственные атомы и перейти к атомам другого материала, но они не могут свободно перемещаться между атомами материала.

Эта относительная подвижность электронов в материале известна как электропроводность . Электропроводность определяется типами атомов материала (количество протонов в ядре атома, определяющее его химическую идентичность) и способом соединения атомов друг с друг ом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками.

Ниже приведено несколько примеров наиболее распространенных проводников и диэлектриков:

Проводники:

  • серебро
  • медь
  • золото
  • алюминий
  • железо
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон


Диэлектрики:

  • стекло
  • резина
  • нефть
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухой) хлопок
  • (сухая) бумага
  • (сухая) древесина
  • пластмасса
  • воздух
  • алмаз
  • чистая вода

Следует понимать, что не у всех проводящих материалов одинаковый уровень проводимости, и не все диэлектрики одинаково сопротивляются движению электронов . Электрическая проводимость аналогична прозрачности некоторых материалов: материалы, которые легко "пропускают" свет, называют "прозрачными", а те, которые его не пропускают, называют "непрозрачными ". Однако, не все прозрачные материалы одинаково пропускают св ет. Оконное стекло - лучше чем органическое стекло, и конечно лучше чем "прозрачное" стекловолокно. Так же и с электрическими проводниками, некоторые из них лучше пропускают электроны, а некоторые - хуже.

Например, серебро является лучшим проводником в представленном выше списке "проводников", обеспечивая более легкий проход электронов чем любой другой материал из этого списка. Грязная вода и бетон также значатся как проводники, но эти материалы являются существенно менее проводящими чем любой металл.

Некоторые материалы изменяют свои электрические свойства при различных температурных условиях. Например, стекло является очень хорошим диэлектриком при комнатной температуре, но становится проводником, если его нагреть до очень высокой температуре. Газы, такие как воздух, в обычном состоянии - диэлектрики, но они также становятся проводниками при нагревании до очень высоких температур. Большинство металлов, наоборот, становятся менее проводимыми при нагревании, и увеличивают свою проводимость при охлаждении. Многие проводники становятся идеально проводящими (сверхпроводимость ) при экстремально низких температурах.

В обычном состоянии движение "свободных" электронов в проводнике хаотично, без определенного направления и скорости. Однако, путем внешнего воздействия можно заставить эти электроны двигаться скоординировано через проводящий материал. Такое направленное движение электронов мы называем электричеством , или электрическим током . Чтобы быть более точным, его можно назвать динамическим электричеством в отличие от статического электричества, в котором накопленный электрический заряд неподвижен. Электроны могут перемещаться в пустом пространстве внутри и между атомами проводника точно так же, как вода течет через пустоту трубы. Приведенная аналогия с водой в нашем случае уместна, потому что движение электронов через проводник часто упоминается как "поток".

Поскольку электроны двигаются через проводник равномерно, то каждый из них толкает находящиеся впереди электроны. В результате все электроны движутся одновременно. Начало движения и остановка электронного потока на всем протяжении проводника фактически мгновенны, даже несмотря на то, что движение каждого электрона может быть очень медленным. Приблизительную аналогию мы можем увидеть на примере трубки, заполненной мраморными шариками:

Трубка заполнена мраморными шариками точно также, как проводник заполнен свободными электронами, готовыми к перемещению под воздействием внешних факторов. Если вставить еще один мраморный шарик в эту заполненную трубку слева, то последний шарик сразу выйдет из нее справа . Несмотря на то, что каждый шарик прошел короткое расстояние, передача движения через трубку в целом произошла мгновенно от левого конца до правого, независимо от длины труб ки. В случае с электричеством, передача движения электронов от одного конца проводника к другому происходит со скоростью света: около 220 000 км. в секунду!! ! Каждый отдельный электрон проходит через проводник в гораздо более медленном темпе.

Если мы хотим, чтобы электроны текли в определенном направлении к определенному месту, мы должны проложить для них соответствующий путь из проводов, точно так же, как водопроводчик должен проложить трубопровод, чтобы подвести воду к нужному месту. Для облегчения этой задачи, провода изготавливаются из хорошо проводящих металлов, таких как медь или алюминий.

Электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала . Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающего передвижение электронов. По аналогии с мраморными шариками мы можем видеть, что шарики будут "течь" через трубку только в том случае, если она будет открыта с правой стороны. Если трубку заблокировать, то мрамор будет "накапливаться" в ней, а со ответственно не будет и "потока". То же самое верно и для электрического тока: непрерывный поток электронов требует непрерывного пути для обе спечения этого потока. Давайте посмотрим на схему, чтобы понять, как это работает:

Тонкая, сплошная линия (показанная выше) является схематическим обозначением непрерывной части провода. Так как провод сделан из проводящего материала, такого как медь, у составляющих его атомов существует много свободных электронов, которые могут свободно перемещаться по нему. Однако, в пределах такого провода никогда не будет направленного и непрерывного потока электронов, если у него не будет места, откуда приходят электроны и места, куда они идут. Давайте в нашу схему добавим гипотетические "Источник" и "Получатель" электронов:

Теперь, когда Источник поставляет новые электроны в провод, через этот провод пойдет поток электронов (как показано стрелками, слева-направо ). Однако, поток будет прерван, если проводящий путь, образованный проводом, повредить:

В связи с тем, что воздух является диэлектриком, образовавшийся воздушный разрыв разделит провод на две части . Некогда непрерывный путь нарушается, и электроны не могут течь от Источника к Получателю . Аналогичная ситуация получится, если водопроводную трубу разрезать на две части, а концы в месте разреза закупорить: вода в этом случае течь не сможе т. Когда провод был одним целым, у нас была электрическая цепь, и эта цепь была нарушена в момент повреждения.

Если мы возьмем еще один провод и соединим им две части поврежденного провода, то снова будем иметь непрерывный путь для потока электроно в. Две точки на схеме показывают физический (металл-металл) контакт между проводами:


Теперь у нас снова есть цепь, состоящая из Источника, нового провода (соединяющего поврежденный) и Получателя электронов . Если рассматривать аналогию с водопроводом, то установив тройник на одной из закупоренных туб, мы можем направить воду через новый сегмент трубы к месту назначени я. Обратите внимание, что в правой части поврежденного провода нет потока электронов, потому что он больше не является частью пути от Источника до получателя электронов.

Следует отметить что проводам, в отличие от водопроводных труб, которые в конечном итоге разъедаются ржавчиной, никакой "износ" от воздействия потока электронов не грозит. При движении электронов, в проводнике возникает определенная сила трения, которая может вырабатывать тепло. Подробнее эту тему мы рассмотрим несколько позже.

Краткий обзор:

  • В проводниках , электроны находящиеся на внешних орбитах атомов могут легко покинуть эти атомы, или наоборот присоединится к ним. Такие электроны называются свободными электронами .
  • В диэлектриках внешние электроны имеют намного меньше свободы передвижения, чем в проводниках.
  • Все металлы являются электрически проводящими.
  • Динамическое электричество , или электрический ток - это направленное движение электронов через проводник.
  • Статическое электричество - это неподвижный (если на диэлектрике), накопленный заряд, сформированный избытком или недостатком электронов в объекте.
  • Для обеспечения потока электронов нужен целый, неповрежденный проводник, который обеспечит приём и выдачу электронов.


Источник : Lessons In Electric Circuits

Термин имеет два значения: 1) электропроводящее вещество (например, металл или электролит), 2) деталь, изделие или конструкция, позволяющие передавать электричество.

Первое значение используется в физике и в материаловедении, где все материалы по своей электропроводности делятся на проводники, диэлектрики и полупроводники. В энерготехнике чаще пользуются вторым значением этого термина. Передача электрической энергии по проводникам может происходить - от одного элемента источника, преобразователя или приемника электрической энергии к другому по соединяющим проводникам на расстояние от нескольких нанометров (например, в интегральных схемах) до нескольких метров (например, в мощном силовом оборудовании); - от одного элемента электроустановки к другому или от одной электроустановки к другой по электрическим линиям на расстояние от нескольких метров (например, в пределах одной установки) до нескольких тысяч километров (между крупными энергосистемами).

Совокупность линий и их узлов в электроустановке называется электропроводкой , а совокупность линий и их узлов, связывающая между собой электроустановки, – электрической сетью . По назначению и протяженности в энергосистемах различают системообразующие (основные) и распределительные сети, на предприятиях межцеховые и цеховые сети и др.

Передачу электрического заряда по проводнику (льняной нити) обнаружил в 1663 г. мэр города Магдебурга Отто фон Гюрике (Otto von Guericke, 1602–1686), который перед этим в том же году изготовил первый в мире электростатический генератор. Более подробное исследование электрических явлений началось в 18-м веке, и 2 июля 1729 года английский физик-любитель Стивен Грей (Stephen Gray, 1666–1735) проложил, использовав для проверки передаваемости электричества, конопляную веревку длиной в 80,5 футов на горизонтальных шелковых шнурах (рис. 4.5.1); этим он создал первую в мире электрическую линию. 14 июля он провел публичную демонстрацию линии, длина которой была уже 650 футов, а проводом в которой по-прежнему служила конопляная веревка, проложенная по шелковым шнурам, натянутым между опорами (первая воздушная линия). Опыт, несмотря на очень плохую проводимость провода, удивительным образом удался; веревка, очевидно, была (благодаря английскому климату) достаточно влажной. Грей впервые ввел также классификацию веществ на проводящие и непроводящие. Спустя 10 лет (в 1739 году) другой английский физик Жан Теофил Дезагюлье (Jean Theophile Desaguliers, 1683–1744) ввел понятие проводник (англ. conductor). Первую воздушную линию с металлическими (железными) проводами построил в 1744 году в Эрфурте (Erfurt, Германия) немецкий профессор философии Андреас Гордон (Andreas Gordon, 1712–1751), а первую опытную кабельную (телеграфную) линию проложил в 1841 году в Санкт-Петербурге Борис Семенович Якоби (Moritz Hermann Jacobi).

Рис. 1. Принцип устройства первой электрической линии Стивена Грея. 1 конопляная веревка (провод), 2 шелковые шнуры (изоляторы)

В технике электропередачи находят применение как гибкие, так и жесткие проводники. К первым относятся различные провода и кабели , ко вторым шины . Провода и шины могут быть изолированными или неизолированными (голыми). Изолированные провода и кабели могут содержать от одной до нескольких токоведущих жил , изолированных друг от друга.

Отличительным признаком кабеля является герметичная оболочка, изготовленная из полимерных материалов (например, из поливинилхлорида) или из металла (в настоящее время чаще всего из алюминия, раньше главным образом из свинца), защищающая жилы от вредных воздействий окружающей среды. Упрощенная классификация проводников по их гибкости, изоляции и области применения приведена на рис. 2.

Рис. 2. Классификация проводников (упрощенно)

Металлическая часть жил, в зависимости от сечения и требуемой гибкости, может быть массивной или состоять из проволок; диаметр проволок может при этом составлять от десятых долей миллиметра (в тонкопроволочных жилах) до нескольких миллиметров. От проводников требуется

Высокая электропроводность,
- хорошие контактные свойства,
- высокая электрическая прочность изоляции,
- достаточная механическая прочность,
- достаточная гибкость (в случае проводов и кабелей),
- долгосрочная химическая стабильность,
- достаточная стойкость при нагреве,
- достаточная теплоемкость,
- защищенность от внешних воздействий,
- безвредность для окружающей среды,
- простота использования в электромонтажных работах,
- умеренная стоимость.

Из электропроводных материалов этим требованиям лучше всех соответствуют
- чистая (без каких-либо примесей) медь,
- чистый алюминий (по соображениям надежности начиная с сечения 16 mm2),
- в проводах воздушных линий
- комбинации алюминия и стали.
Из изоляционных материалов наиболее часто используют
- полиэтилен n ,
- поливинилхлорид n , который лучше других материалов сопротивляется воспламенению, но который содержит ядовитый и опасный для окружающей среды хлор, - синтетические (в том числе особо нагревостойкие кремнийорганические) каучуки.

Проводники (и жилы многожильных проводников) делятся по их назначению
- на рабочие проводники (к которым в случае переменного тока относятся фазные и нейтральные проводники; в некоторых сетях или установках нейтральные проводники могут отсутствовать);
- на защитные проводники , необходимые для обеспечения безопасности людей;
- на вспомогательные проводники (например, для управления, связи или сигнализации). Рабочие проводники могут быть все изолированы от земли, но часто один из них (обычно нейтральный) заземлен. Таким рабочим заземлением достигается более низкое и равномерно распределенное напряжение фазных проводников относительно земли, что, например, в сетях высокого напряжения позволяет снизить стоимость изоляции.

Защитные проводники предусмотрены для надежного заземления тех частей электроустановок, которые при нарушении изоляции могут оказаться под напряжением (открытых проводящих частей). Такое защитное заземление должно исключить возникновение опасного напряжения между этими частями и землей и тем самым исключить возможность поражения людей электрическим током. В электрических сетях низкого напряжения ранее практиковалось совмещение защитного и нейтрального проводников; в настоящее время эти проводники, по соображениям надежности и безопасности, друг от друга отделены.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица в системе СИ - сименс. Русское обозначение этой единицы - См, интернациональное - S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр - См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора - микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

Топ лучших проводников - металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро - 62 500 000.
  2. Медь - 59 500 000.
  3. Золото - 45 500 000.
  4. Алюминий - 38 000 000.

Видно, что самый электропроводный металл - серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина - высокая стоимость.

Зато медь и алюминий - самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.