Ацетилен и другие горючие газы. Газ ацетилен. Все о газе ацетилен Ацетилен растворимость в воде




Жидкий

Ацетилен — ненасыщенный углеводород C 2 H 2 . Имеет тройную связь между т омами углерода, принадлежит к классу алкинов.

Физические свойства

При нормальных условиях — бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения −83,8 °C. При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах.Взрывоопасный. Нельзя выпускать на открытый воздух. Частицы C 2 H 2 есть на Уране и Нептуне.

Химические свойства

Ацетилено-кислородное пламя(температура «ядра» 3300 °C)

Для ацетилена (этина) характерны реакции присоединения:

HC≡CH + Cl 2 -> СlСН=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекулавысокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³. При сгорании температура пламени достигает 3300°С. Ацетилен можетполимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метаниз эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра иодновалентной меди.

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.) :

История

Открыт в 1836 г. Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 г.).

Способ производства

В промышленности ацетилен часто получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.), а также при дегидрировании двух молекул метана при температуре свыше 1400° Цельсия.

Применение

Ацетиленовая лампа

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидка),
  • в производстве взрывчатых веществ (см. ацетилениды),
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.

Безопасность

Поскольку ацетилен растворим в воде и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры. Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например N 2 , метаном или пропаном. При длительном соприкосновении ацетилена с медью или серебром образуется взрывчатая ацетиленистая медь или ацетиленистое серебро, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов). Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 "Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест". ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), т.к. концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100%. Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

ОПРЕДЕЛЕНИЕ

Ацетилен (этин) - газ без цвета и запаха, обладает слабым наркотическим действием (строение молекулы показано на рис. 1).

Мало растворим в воде и очень хорошо в ацетоне. В виде ацетонового раствора его хранят в стальных баллонах, заполненных каким-нибудь инертным пористым материалом. Смеси ацетилена с воздухом взрывоопасны.

Рис. 1. Строение молекулы ацетилена.

Таблица 1. Физические свойства ацетилена.

Получение ацетилена

Выделяют промышленные и лабораторные способы получения ацетилена. Так, в промышленности ацетилен получают путем высокотемпературного крекинга метана:

2CH 4 → СH≡CH +3H 2 .

В лаборатории ацетилен получают гидролизом карбида кальция:

CaC 2 +2H 2 O = Ca(OH) 2 + C 2 H 2 .

Кроме вышеперечисленных реакций, для получения ацетилена используют реакции дегидрирования алканов и алкенов:

CH 3 -CH 3 → СH≡CH +2H 2 ;

CH 2 =CH 2 → СH≡CH +H 2 .

Химические свойства ацетилена

Ацетилен вступает в реакции присоединения, протекающие по нуклеофильному механизму, такие как:

— гидрирование

СH≡CH +H 2 O→ → CH 3 -CH=O (H 2 SO 4 (18%), t = 90 o C);

— галогенирование

СH≡CH +Br 2 →CHBr=CHBr + Br 2 →CHBr 2 -CHBr 2 ;

— гидрогалогенирование

СH≡CH +HСl→ CH 2 =CHCl + HCl → CH 3 -CHCl 2 .

Кроме этого ацетилен способен образовывать соли при взаимодействии с активными металлами (1) и оксидом серебра (2):

2СH≡CH +2Na→2 СH≡C-Na + H 2 (1);

СH≡CH + Ag 2 O→ Ag- С≡C-Ag↓ + H 2 O (2).

Он способен тримеризоваться:

3C 2 H 2 → C 6 H 6 (t = 600 o C, kat = C active).

Применение ацетилена

Ацетилен является исходным продуктом для многих важнейших химических производств. Например, из ацетилена получают различные галогенпроизводные, такие как тетрахлорэтан и трихлорэтилен, являющиеся хорошими растворителями, а также винилхлорид, служащий мономером для получения поливинилхлорида. Кроме этого ацетилен используется для получения синтетических каучуков.

Примеры решения задач

ПРИМЕР 1

Задание Эквимолекулярная смесь ацетилена и формальдегида полностью реагирует с 69,6 г Ag 2 O, растворенного в аммиаке. Определите состав исходной смеси.
Решение Запишем уравнения реакций, указанных в условии задачи:

HC≡CH + Ag 2 O → AgC≡Cag + H 2 O (1);

H-C(O)H + 2 Ag 2 O → CO 2 + H 2 O + 4Ag (2).

Рассчитаем количество вещества оксида серебра (I):

n(Ag 2 O) = m(Ag 2 O) / M(Ag 2 O);

M(Ag 2 O) = 232 г/моль;

n(Ag 2 O) = 69,6 / 232 = 0,3 моль.

По уравнению (2) количество вещества формальдегида будет равно 0,1 моль. По условию задачи смесь эквимолекулярна, следовательно, ацетилена тоже будет 0,1 моль.

Найдем массы веществ, составляющих смесь:

M(HC≡CH) = 26 г/моль;

M(H-C(O)H) = 30 г/моль;

m(HC≡CH) = 0,1 × 26 = 2,6 г;

m(H-C(O)H) = 0,1 × 30 = 3 г.

Ответ Масса ацетилена равна 2,6 г, формальдегида - 3 г.

ПРИМЕР 2

Задание При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.
Решение При пропускании смеси пропана и ацетилена через склянку с бромной водой происходит поглощение ацетилена. Запишем уравнение химической реакции, соответствующее этому процессу:

НC ≡ СH + 2Вr 2 → НСВr 2 -СНВr 2 .

Таким образом, значение, на которое увеличилась масса склянки (1,3 г) представляет собой массу ацетилена. Найдем количество вещества ацетилена (молярная масса - 26 г/моль):

n (C 2 H 2) = m (C 2 H 2) / M (C 2 H 2);

n (C 2 H 2) = 1,3/26 = 0,05 моль.

Запишем уравнение реакции сгоранияацетилена:

2С 2 Н 2 + 5О 2 = 4СО 2 + 2Н 2 О.

Согласно уравнению реакции, в неё вступило 2 моль ацетилена, однако, известно, что 0,05 моль из этого количества поглотилось бромной водой. Т.е. выделилось:

2-0,05 = 0,1 моль СО 2 .

Найдем общее количество оксида углерода (IV):

n sum (CO 2) = V (CO 2) / V m ;

n sum (CO 2) = 14/22,4 = 0,625 моль.

Запишем уравнение реакции сгорания пропана:

С 3 Н 8 + 5О 2 = 3СO 2 + 4Н 2 О.

Учитывая, что в реакции сгорания ацетилена выделилось 0,1 моль оксида углерода (IV), количество вещества оксида углерода (IV), выделившееся в ходе сгорания пропана равно:

0,625 — 0,1 = 0,525 моль СО 2 .

Найдем количество вещества пропана, вступившего в реакцию горения. Согласно уравнению реакции n(CO 2) : n(С 3 Н 8) = 3: 1, т.е.

n(С 3 Н 8) = n(CO 2) / 3 = 0,525/3 = 0,175 моль.

Вычислим массу пропана (молярная масса 44 г/моль):

m(С 3 Н 8) = n(С 3 Н 8) ×M(С 3 Н 8);

m(С 3 Н 8) = 0,175 × 44 = 7,7 г.

Тогда, общая масса смеси углеводородов составит:

m mixture = m(C 2 H 2) + m(С 3 Н 8) = 1,3+7,7 = 9,0 г.

Найдем массовую долю пропана в смеси:

ω = m / m mixture × 100%;

ω(С 3 Н 8) = m(С 3 Н 8) / m mixture × 100%;

ω(С 3 Н 8) =7,7/9,0× 100% = 0,856 × 100%= 85,6%.

Ответ Массовая доля пропана 85,6%.

Ацетилен относится к одним из самых распространенных газов для сварки. Он обладает относительно невысокой стоимостью, если сравнивать с аргоновой сваркой и прочими современными методами. Главным отличием газа является высокая температура горения. С его помощью можно сваривать намного более толстые изделия, чем с другими газами. Технические характеристики ацетилена для сварки считаются одними из лучших, но опасность его применения усложняет процесс работы.

Плотность ацетилена ниже, чем у воздуха и сам он легче. Газ не имеет цвета, но у него сильный резкий запах, что помогает быстро обнаруживать утечки, если они появились. Главным негативным свойством является способность к самовоспламенению. Загорается ацетилен при температуре при 335 градусах Цельсия. Очень часто случаются взрывы газа. Из-за высокой взрывоопасности существует целый ряд требований техники безопасности. Энергия от взрыва будет большей, чем при использовании нитроглицерина или тротила, что вызовет большие разрушения.

Область применения

Горение ацетилена при сварке обеспечивает не только нужную температуру горения, но и достаточно высокий уровень защиты сварочной ванны от негативных факторов. В сравнение с природными газами, водородом и прочими разновидностями расходных материалов для сварки, ацетилен дает лучшую защиту. Его применяют как в бытовой, так и в промышленной отрасли. Коммунальные службы, занимающиеся сваркой труб, ремонтом металлоконструкций в домах и прочими процедурами соединения металла, используют ацетилен для самых сложных работ. Ремонтные мастерские и отделы сборки металлоконструкций также широко применяют данный газ. Применение ацетилена возможно практически во всех местах, где можно использовать газовую и полуавтоматическую сварку.

Преимущества

Популярность ацетилен заслужил благодаря ряду следующих преимуществ:

  • Применение газа, в сравнение с другими разновидностями, является выгодным с экономической точки зрения;
  • Есть возможность получать сырье не только закупая его в баллонах и заправляя их, но и добывать при помощи соответствующих генераторов, путем добавления воды на карбид кальция;
  • Горение ацетилена имеет самую большую температуру среди защитных газов.

При этом имеется ряд недостатков затрудняющих его использования во многих случаях:

  • Во время работы с этим газом получается высокая загазованность помещения, так что нужно сильное проветривание;
  • Много условий обеспечения безопасности для нормального хранения;
  • Высокий уровень взрывоопасности;
  • Из-за высокой температуры могут возникать такие виды дефектов как перегрев или пережог, особенно, при работе с тонкими металлами.

Формула ацетилена

Газ является непредельным углеводородом, который обладает тройной связью атомов углерода. Формула ацетилена – С2Н2. При этом структурная формула ацетилена выглядит следующим образом Н-С=С-Н, так как связь идет между атомами углерода.

Химические и физические свойства

В нормальных условиях газ является бесцветным. Он легче воздуха. В техническом ацетилене имеются добавки, которые придают ему резкий запах, но в чистом виде он ни чем не пахнет. Лучше всего газ растворяется в ацетоне, но в воде он мало растворим. Температура кипения достигает -83,6 градусов Цельсия.

Газ требует очень аккуратного обращения. Баллон может взорваться от обыкновенного удара при падении или при нагреве около 500 градусов Цельсия. Воспламениться струя может даже от статического электричества от пальца человеческой руки. Молярная масса ацетилена составляет 26 г/моль. Температура горения ацетилена в ядре пламени может составлять более 2600 градусов Цельсия.

Химические свойства ацетилена показывают, в какие реакции может вступать субстанция с другими веществами. В присутствии катализаторов, в частности солей ртути, газ образует уксусный альдегид. Благодаря наличию тройной связи, молекулы вещества имеют большой запас энергии. Это обеспечивает ей высокую теплоту сгорания, которая составляет 14 000 ккал/м 3 . Если при сгорании добавить струю кислорода, то температура пламени достигнет более 3100 градусов Цельсия. Газ может полимеризироваться в такое вещество как бензол и прочие органические соединения, к примеру, винилацетилен или полиацетилен. Полимеризация в бензол происходит при температуре в 500 градусов Цельсия и при наличии графита. Если в качестве катализатора использоваться трикарбонил никеля, то данная реакция может пройти при температуре в 65 градусов Целься. Ацетилен обладает очень сильными кислотными свойствами. Атомы водорода могут легко отщепиться в качестве протонов. В эфирном растворе металмагнийбромида данный газ вытесняет метан. В сочетании с солями одновалентной меди и серебра ацетилен образует взрывчатый нерастворимый осадок.

Состав

Горение ацетилена и прочие его практические свойства во многом зависят от состава. Даже небольшие отклонения от нормы могут привести к тому, что газ поменяет свои характеристики. Поэтому, выделяют несколько основных сортов, отличающихся друг от друга по своему составу.

Состав ацетилена газообразного технического:

  • Основной газ – 98,5%;
  • Воздух – 1,4%;
  • Фосфорный водород – 0,08%;
  • Сероводород – 0,05%.

Растворенное вещество первого сорта марки Б должно обладать следующим составом:

  • Основной газ – 99,1%;
  • Воздух – 0,8%;
  • Фосфорный водород – 0,02%;
  • Сероводород – 0,005%.

Растворенное вещество второго сорта марки Б должно обладать следующим составом:

  • Основной газ – 98,8%;
  • Воздух – 1%;
  • Фосфорный водород – 0,05%;
  • Сероводород – 0,05%.

Растворенное вещество марки А должно обладать следующим составом:

  • Основной газ – 99,5%;
  • Воздух – 0,5%;
  • Фосфорный водород – 0,005%;
  • Сероводород – 0,002%.

Технология и режимы сварки

Перед началом сварки нужно подобрать баллон с ацетиленом и понять саму его конструкцию.

Потом подбирается горелка требуемого размера от 0 до 5. Толщина этого инструмента определяет расход газа, а также ширину образуемого шва. Чтобы проверить готовность изделия к работе, ее нужно продуть ацетиленом до тех пор, чтобы почувствовать его запах.

Поджог газа осуществляется еще до добавления кислорода. После загорания можно добавить понемногу струю кислорода, пока не образуется устойчивое пламя. Выходное давление основного газа должно быть до 4 атмосфер, а дополнительного – до 2 атмосфер. Затем подбирается мощность пламени согласно толщине свариваемого металла.

Заранее очищенные заготовки предварительно прогреваются пламенем горелки до нужной температуры. После этого добавляется , которая вместе с основным металлом образует сварочную ванну. Процесс сварки может проводиться как правым, так и левым способом. После окончания процедуры горение ацетилена поможет постепенному охлаждению шва с подогревом.

Заключение

Разбираясь, для чего нужен ацетилен в сварочной области, в первую очередь нужно думать о безопасности. Отличные практические качества и низкая стоимость газа не позволяют отказаться от него полностью из-за взрывоопасности. Любой специалист может оценить все преимущества работы с ним, но сложности хранения затрудняют его применение в домашних условиях.

Ацетилен химическое соединение углерода и водорода. легче воздуха, 1 м 3 ацетилена при 20°С и 760 мм рт. ст. плотность ацетилена равна 1,091 кг/м 3 . Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см 2 . При сгорании с он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула - C 2 H 2 , структурная формула Н-С=С-Н.

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м 3 . Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

... При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи... Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь... Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема и вода, которые являются единственными продуктами горения... Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода... Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Дэви получил карбид калия К 2 С 2 и обработал его водой.

В статье мы писали о том, что его «двууглеродистый » впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Для полного сгорания 1 м 3 ацетилена по реакции: С 2 Н 2 + 2,5O 2 =2СO 2 + Н 2 O + Q 1

требуется теоретически 2,5 м 3 кислорода или = 11,905 м 3 воздуха. При этом выделяется тепло Q 1 ≈ 312 ккал/моль. Высшая 1 м 3 ацетилена при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет Q В = 14000 ккал/м 3 (58660 кДж/м 3), что соответствует расчетной:

312×1,1709×1000/26,036 = 14000 ккал/м 3

Низшая теплотворная способность при тех же условиях может быть принята Q H = 13500 ккал/м 3 (55890 кДж/м 3).

Практически при сжигании - ацетилена в горелках при восстановительном пламени в горелку подается не 2,5 м 3 кислорода на 1 м 3 ацетилена, а всего лишь от 1 до 1,2 м 3 у что примерно соответствует неполному сгоранию по реакции:

С 2 H 2 + О 2 = 2СО + H 2 + Q 2

где Q2 ≈ 60 ккал/моль или 2300 ккал/кг ацетилена. Остальные 1,5-1,3 м 3 кислорода поступают в пламя из окруающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

2СО + H 2 + 1,5О 2 = 2СO 2 + H 2 O + Q 3

Реакция неполного горения протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад ацетилена на его составляющие по реакции:

С 2 H 2 = 2С + H 2 + Q 4

где Q 4 ≈54 ккал/моль или 2070 ккал/кг ацетилена.

Таким образом, общая полезная теплопроизводительность пламени ацетилена применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде ацетилена, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370×1,1709 ≈ 5120 ккал/м 3 .

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1×100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только (СО 2) и вода (H 2 О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% ацетилена - процесс горения прекращается или не возникает.

Ацетилен выпускают по растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных по , заполненных пористой, пропитанной ацетоном массой (см. статью . Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части .

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см 2), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см 2). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг ацетилена по массе (4,6-5,3 м 3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом.


ИСТОРИЯ ОТКРЫТИЯ

НАЗВАНИЕ АЦЕТИЛЕНА ПО НОМЕНКЛАТУРЕ ИЮПАК

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

СТРУКТУРНАЯ ФОРМУЛА АЦЕТИЛЕНА

ХАРАКТЕРИСТИКА КЛАССА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ АЦЕТИЛЕНА

РЕАКЦИИ ПОЛУЧЕНИЯ АЦЕТИЛЕНА

ХАРАКТЕРНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ АЦЕТИЛЕНА

ОБЛАСТИ ПРИМЕНЕНИЯ АЦЕТИЛЕНА

ВОЗДЕЙСТВИЕ АЦЕТИЛЕНА НА ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ И ОКРУЖАЮЩУЮ СРЕДУ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ИСТОРИЯ ОТКРЫТИЯ


Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 + Н2О=С2Н2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С2Н3 ацетилом.

На латыни acetum - уксус; молекула уксусной кислоты (С2Н3О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С2Н3 - Н = С2Н2. Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС2 + СО. Это произошло в конце XIX века.

Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени - от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).

Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.

В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина РН3, арсина AsH3.


НАЗВАНИЕ АЦЕТИЛЕНА ПО НОМЕНКЛАТУРЕ ИЮПАК


Согласно номенклатуре ИЮПАК при построении названий алкинов в названиях соответствующих насыщенных углеводородов суффикс -ан заменяется суффиксом -ин. Для указания положения тройной связи и замещающих групп цепь нумеруют также, как в соответствующих алкенах. Этин также возможно именовать тривиально - ацетилен.


ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ


При нормальных условиях - бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения?83,8 °C. При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах. Взрывоопасный. Нельзя выпускать на открытый воздух. C2H2 обнаружен на Уране и Нептуне.


СТРУКТУРНАЯ ФОРМУЛА АЦЕТИЛЕНА



ХАРАКТЕРИСТИКА КЛАССА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ АЦЕТИЛЕНА


Ацетилен принадлежит к классу алкинов.

Алки?ны (иначе ацетиленовые углеводороды) - углеводороды, содержащие тройную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n-2. Атомы углерода при тройной связи находятся в состоянии sp-гибридизации.

Для алкинов характерны реакции присоединения. В отличие от алкенов, которым свойственны реакции электрофильного присоединения, алкины могут вступать также и в реакции нуклеофильного присоединения. Это обусловлено значительным s-характером связи и, как следствие, повышенной электроотрицательностью атома углерода. Кроме того, большая подвижность атома водорода при тройной связи обуславливает кислотные свойства алкинов в реакциях замещения.

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С4) - газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, лучше - в органических растворителях.

ацетилен реакция соединение формула

РЕАКЦИИ ПОЛУЧЕНИЯ АЦЕТИЛЕНА


В лаборатории ацетилен получают действием воды на карбид кальция

2 Н2О = С2Н2? + Са(ОН)2


а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:


СН4 = С2Н2? +3Н2?


ХАРАКТЕРНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ АЦЕТИЛЕНА


Основные химические реакции ацетилена (реакции присоединения):

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации).

ОБЛАСТИ ПРИМЕНЕНИЯ АЦЕТИЛЕНА


Ацетилен используют:

для сварки и резки металлов,

как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),

в производстве взрывчатых веществ (см. ацетилениды),

для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов,

для получения технического углерода,

в атомно-абсорбционной спектрофотометрии при пламенной атомизации,

в ракетных двигателях (вместе с аммиаком).


ВОЗДЕЙСТВИЕ АЦИТЕЛЕНА НА ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ И ОКРУЖАЮЩУЮ СРЕДУ


Поскольку ацетилен растворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном. При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


1.Ньюленд Ю., Фогт Р., Химия ацетилена, Иниздат, 1947.

.Федоренко Н.П., Методы и экономика получения ацетилена, Химическая наука и промышленность, 3, т. 1, 1956.

.Федоренко Н.П. Химия и химическая технология, № 3, т. I, 1956.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.